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SOME CARDINAL CHARACTERISTICS OF ORDERED SETS

Vítězslav Novák, Brno

(Received August 17, 1995)

Abstract. For ordered (= partially ordered) sets we introduce certain cardinal charac-
teristics of them (some of those are known). We show that these characteristics—with one
exception—coincide.

0. Preliminaries

An ordered set is a pair (G, <) whereG is a set and< is an irreflexive and transitive

binary relation on G. We shall write briefly G instead of (G, <). Such a set will be
always assumed to be nonempty. The symbol x −< y means that y is a cover of x,

i.e. x < y and x < z < y holds for no z ∈ G. If x � y or y � x then the elements
x, y are comparable; otherwise they are incomparable, notation x ‖ y. A chain is an

ordered set any two elements of which are comparable; an antichain is an ordered
set any two distinct elements of which are incomparable. By the symbol 2 we denote
the two-element chain, i.e. 2 = ({0, 1} ; 0 < 1).

An ideal in an ordered setG is such a subset A ⊆ G that the following holds: y ∈ A,

x ∈ G, x � y ⇒ x ∈ A. The empty set ∅ will be also assumed to be an ideal in G. If
x ∈ G, then (x] = {t ∈ G ; t � x} is an ideal in G, called the principal ideal generated

by the element x. If G, H are ordered sets then the cardinal power GH ([1]) is the
set of all order preserving mappings f : H → G ordered by f � g ⇐⇒ f(x) � g(x)

for all x ∈ H . Especially, if H is an antichain, then GH is the set of all mappings
f : H → G ordered by this rule. The symbol maxG (minG) denotes the greatest

(least) element of G, if this element exists.
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1. 2-pseudodimension

Let G be an ordered set. The dimension of G ([3]) can be defined in the following
manner:

dim G = min{cardT ; there exists a system (Lt ; t ∈ T ) of chains and a system
(ft ; t ∈ T ) where ft : G → Lt is injective and order preserving for any t ∈ T

such that x � y ⇐⇒ ft(x) � ft(y) for all t ∈ T }.
If all chains Lt have the same order type α we get the definition of the α−dimension

of G ([5], this cardinal need not exist). By a slight modification we get the definition

of the α-pseudodimension of G ([7], this cardinal always exists). We describe here
especially the definition of the 2-pseudodimension of G.
Let G be an ordered set, let T �= ∅ be a set and let ft : G → 2 be a mapping for

any t ∈ T . The system (ft ; t ∈ T ) will be called a 2-realizer of G iff for any x, y ∈ G

the following holds:

(1) x � y ⇐⇒ ft(x) � ft(y) for all t ∈ T.

Evidently, the condition (1) can be reformulated in the following way:

(i) x < y ⇒ ft(x) � ft(y) for all t ∈ T and there exists t0 ∈ T(2)

with ft0(x) = 0 < 1 = ft0(y),

(ii) x ‖ y ⇒ there exist t1, t2 ∈ T such that ft1(x) = 0, ft1(y) = 1,

ft2(x) = 1, ft2(y) = 0.

Let G be an ordered set, let T �= ∅ be a set, let (At ; t ∈ T ) be a system of ideals in
G. This system is called an order base in G ([10]) iff for any x, y ∈ G the following

holds:

(i) x < y ⇒ there exists t0 ∈ T such that x ∈ At0 , y /∈ At0 ,(3)

(ii) x ‖ y ⇒ there exist t1, t2 ∈ T such that x ∈ At1 , y /∈ At1 ,

x /∈ At2 , y ∈ At2 .

The condition (3) can be reformulated in the following way:

(4) x �� y ⇒ there exists t0 ∈ T such that y ∈ At0 , x /∈ At0 .

Theorem 1.1. Let G be an ordered set, let T �= ∅ be a set. Then the following
statements are equivalent:
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(i) For any t ∈ T there exists a mapping ft : G → 2 such that (ft ; t ∈ T ) is a

2-realizer of G.
(ii) For any t ∈ T there exists an ideal At ⊆ G such that (At ; t ∈ T ) is an order

base in G.

�����. (i) ⇒ (ii): Let (i) hold and put At = f−1t (0) for any t ∈ T . If y ∈ At,

x ∈ G, x � y then ft(y) = 0, thus ft(x) = 0 and x ∈ At. Hence At is an ideal in G.
If x, y ∈ G, x < y then by (2) there exists t0 ∈ T with ft0(x) = 0, ft0(y) = 1; thus

x ∈ At0 , y /∈ At0 . If x ‖ y then there exist t1, t2 ∈ T such that ft1(x) = 0, ft1(y) = 1,
ft2(x) = 1, ft2(y) = 0. Then x ∈ At1 , y /∈ At1 , x /∈ At2 , y ∈ At2 . By (3) (At ; t ∈ T )

is an order base in G and (ii) holds.
(ii) ⇒ (i): Let (ii) hold and let (At ; t ∈ T ) be an order base in G. Let us define

a mapping ft : G → 2 for any t ∈ T by ft(x) = 0 if x ∈ At, ft(x) = 1 if x /∈ At.
We show that (ft ; t ∈ T ) is a 2-realizer of G. Let x, y ∈ G, x < y. If ft(y) = 0

then y ∈ At and as At is an ideal, x ∈ At so that ft(x) = 0. Thus ft(x) � ft(y)
for all t ∈ T . Further, by (3) there exists t0 ∈ T such that x ∈ At0 , y /∈ At0 . Then

ft0(x) = 0, ft0(y) = 1. Let x, y ∈ G, x ‖ y. Then there exist t1, t2 ∈ T such that
x ∈ At1 , y /∈ At1 , x /∈ At2 , y ∈ At2 . Hence ft1(x) = 0, ft1(y) = 1, ft2(x) = 1,

ft2(y) = 0. By (2), (ft ; t ∈ T ) is a 2-realizer of G and (i) holds. �

Corollary. Let G be an ordered set. Then there exists a 2-realizer of G.

�����. The system of all principal ideals is trivially an order base in G. �

Definition. Let G be an ordered set. We put

2-pdim G = min{cardT ; (ft ; t ∈ T ) is a 2-realizer of G};

this cardinal is called the 2-pseudodimension of G.

Theorem 1.2. Let G be an ordered set, let T �= ∅ be a set. Then the following
statements are equivalent:

(i) For any t ∈ T there exists a mapping ft : G → 2 such that (ft ; t ∈ T ) is a

2-realizer of G.
(ii) There exists an isomorphic embedding of G into 2T .

�����. (i) ⇒ (ii): Let (i) hold. Define for any x ∈ G a mapping ϕ(x) : T → 2
by the rule ϕ(x)(t) = ft(x). We show that ϕ is an isomorphic embedding of G

into 2T . Indeed, for x, y ∈ G we have x � y ⇐⇒ ft(x) � ft(y) for all t ∈ T ⇐⇒
ϕ(x)(t) � ϕ(y)(t) for all t ∈ T ⇐⇒ ϕ(x) � ϕ(y) in 2T . Therefore (ii) holds.

(ii) ⇒ (i): Let (ii) hold and let ϕ be an isomorphism of G into 2T . Let us define
for any t ∈ T a mapping ft : G → 2 by ft(x) = ϕ(x)(t). For x, y ∈ G we have:
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x � y ⇐⇒ ϕ(x) � ϕ(y)⇐⇒ ϕ(x)(t) � ϕ(y)(t) for all t ∈ T ⇐⇒ ft(x) � ft(y) for all

t ∈ T . Thus (ft ; t ∈ T ) is a 2-realizer of G and (i) holds. �

Corollary. Let G be an ordered set. Then the following cardinals are equal:

(i) 2-pdim G,

(ii) the least cardinal m such that G can be isomorphically embedded into a set

of type 2m,

(iii) the least cardinal n such that in G there exists an order base of cardinality n.

2. Rings of sets

Let G �= ∅ be a set, A ⊆ G, x, y ∈ G, x �= y. We say that the set A separates

elements x, y iff either x ∈ A, y /∈ A or x /∈ A, y ∈ A.
Let A be a system of subsets of G , x, y ∈ G, x �= y. We say that the system A

separates elements x, y iff there exists a set A ∈ A which separates x, y.
Let A , B be systems of subsets of G. We say that A , B similarly separate

elements of G iff for any two elements x, y ∈ G the following holds:

(5) A separates x, y ⇐⇒ B separates x, y.

Example 2.1. Let G = {a, b, c}, A = {∅, {a}, {b}, {c}, {a, b, c}}, B = {{a, b},
{a, c}}. Then A , B similarly separate elements of G.

Indeed, as A contains all one-element subsets of G, it separates any two elements

of G. Thus it suffices to show that B separates any two elements of G. The set
{a, c} ∈ B separates elements a, b and the set {a, b} ∈ B separates both a, c and b, c.

Let A be a nonempty system of sets. A is called a ring of sets ([2], p. 12) iff
A ∪B ∈ A , A ∩B ∈ A for any A, B ∈ A . If

⋃{X ; X ∈ A } = G then we will say

that A is a ring of sets on G.
Let B be a nonempty system of sets and

⋃{X ; X ∈ B} = G. As the system of

all rings of sets on G is a closure system on G, there exists the least ring of sets A

on G such that B ⊆ A . We say that B generates the ring A .

Theorem 2.1. Let B be a nonempty system of sets,
⋃{X ; X ∈ B} = G, let

A be a ring of sets on G and let B ⊆ A . If B generates A then A , B similarly

separate elements of G.

�����. Suppose that B generates A and the assertion does not hold. As

B ⊆ A , there must exist x, y ∈ G such that A separates them, B does not.
Thus there exists A ∈ A which separates x, y and no B ∈ B separates x, y. Put
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C = {X ∈ A ; X does not separate x, y}. Then B ⊆ C ⊆ A , C �= A as A /∈ C .

We show that C is a ring of sets. Let X, Y ∈ C . Then X, Y ∈ A and we have
either x, y ∈ X or x, y /∈ X and also either x, y ∈ Y or x, y /∈ Y . If x, y ∈ X then
x, y ∈ X ∪ Y ; the same holds if x, y ∈ Y . If both x, y /∈ X and x, y /∈ Y then

x, y /∈ X ∪ Y . Thus X ∪ Y ∈ A and it does not separate x, y, i.e. X ∪ Y ∈ C .
If x, y /∈ X then x, y /∈ X ∩ Y and the same if x, y /∈ Y . If both x, y ∈ X and

x, y ∈ Y then x, y ∈ X ∩ Y . Thus X ∩ Y ∈ A and X ∩ Y does not separate x, y,
i.e. X ∩ Y ∈ C . Hence C is a ring on G, C ⊇ B, C ⊆ A , C �= A , a contradiction

with the assumption that B generates A . �

Let G �= ∅ be a set, let A , B be systems of subsets of G. We will say that B

separates elements of G better than A iff for any two elements x, y ∈ G the following

holds:

(6)
there exists A ∈ A such that x ∈ A, y /∈ A =⇒ there exists B ∈ B

such that x ∈ B, y /∈ B.

We will say that A , B equally separate elements of G iff A separates elements of G
better than B and B separates elements of G better than A .

Example 2.2. Let G = {a, b, c} and A = {∅, {a}, {b}, {c}, {a, b, c}}, B =

{{a, b}, {a, c}, {b, c}}. Then A , B equally separate elements of G.

Indeed, as A contains all one-element subsets of G, it suffices to show: for any
x, y ∈ G, x �= y there exists B ∈ B such that x ∈ B, y /∈ B. This is really so:

a ∈ {a, c}, b /∈ {a, c}, b ∈ {b, c}, a /∈ {b, c} a.s.o.
The relation of better separating is transitive in the following sense: If A , B, C

are systems of subsets of a set G such that B separates elements of G better than A

and C separates elements of G better than B then C separates elements of G better

than A . It is also reflexive. The relation of equal separating is reflexive, symmetric
and transitive. Further, we have: If A , B equally separate elements of G, C , D

equally separate elements of G and A separates elements of G better than C then
B separates elements of G better than D .

Let A be a system of subsets of a set G. We will say that A is a complete ring of
sets on G iff for any set I and any Ai ∈ A (i ∈ I) we have

⋃
i∈I

Ai ∈ A ,
⋂
i∈I

Ai ∈ A .

Note that if A is a complete ring of sets on G then ∅ ∈ A , G ∈ A .
Let B be a system of subsets of a set G. Then there exists the least complete ring

of sets A on G such that B ⊆ A ; we will say that B generates the complete ring
A .

Definition. Let A be a complete ring of sets on a set G. We put

w(A ) = min{cardB ; B ⊆ A , B generates A };
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this cardinal will be called the weight of the complete ring A .

Theorem 2.2. Let A be a complete ring of sets on a set G, let B ⊆ A be a

system of subsets of G. IfB generates A then A , B equally separate elements of G.

����� is similar to the proof of Theorem 2.1. Thus let B generate A and

suppose that there exist x, y ∈ G, A ∈ A , x ∈ A, y /∈ A such that there exists
no B ∈ B with x ∈ B, y /∈ B. Denote C = {X ∈ A ; neither x ∈ X nor y /∈ X

holds} = {X ∈ A ; either x /∈ X or y ∈ X holds }. Then B ⊆ C ⊆ A , C �= A as
A /∈ C and we show that C is a complete ring on G. Clearly ∅ ∈ C . Let I �= ∅ be
a set and Xi ∈ C for i ∈ I. For any i ∈ I we have x /∈ Xi or y ∈ Xi. If y ∈ Xi

for some i ∈ I, we have y ∈ ⋃
i∈I

Xi; in the other case x /∈ Xi for all i ∈ I and then

x /∈ ⋃
i∈I

Xi. Thus
⋃
i∈I

Xi ∈ A and x /∈ ⋃
i∈I

Xi or y ∈ ⋃
i∈I

Xi, i.e.
⋃
i∈I

Xi ∈ C . If x /∈ Xi

for some i ∈ I, then x /∈ ⋂
i∈I

Xi; otherwise y ∈ Xi for all i ∈ I and then y ∈ ⋂
i∈I

Xi.

Thus
⋂
i∈I

Xi ∈ A , x /∈ ⋂
i∈I

Xi or y ∈ ⋂
i∈I

Xi, i.e.
⋂
i∈I

Xi ∈ C . Further, clearly G ∈ C .

Thus C is a complete ring on G, B ⊆ C ⊆ A , C �= A , a contradiction. �

Theorem 2.3. Let A , B be complete rings of sets on a set G. Then A ⊆ B if

and only if B separates elements of G better than A .

�����. If A ⊆ B then trivially B separates elements of G better than A .
Suppose that B separates elements of G better than A . For any x ∈ G there exists

the least element B(x) ∈ B which contains x, namely B(x) =
⋂{B ∈ B ; x ∈ B}.

Let A ∈ A be any element, A �= ∅. We show A =
⋃{B(x) ; x ∈ A}. Trivially,

A ⊆ ⋃{B(x) ; x ∈ A}. Suppose the existence of an element y ∈ ⋃{B(x) ; x ∈
A} − A. Then y /∈ A and there exists an element z ∈ A such that y ∈ B(z) =⋂{B ∈ B ; z ∈ B}. As z ∈ A, y /∈ A, there exists B ∈ B such that z ∈ B,

y /∈ B. Then y /∈ ⋂{B ∈ B ; z ∈ B} = B(z), which is a contradiction. Thus
A =

⋃{B(x) ; x ∈ A}, which implies A ∈ B. Hence A ⊆ B. �

Corollary. Let A , B be complete rings of sets on a set G. Then A = B iff A ,

B equally separate elements of G.

Theorem 2.4. Let B1, B2 be systems of subsets of a set G, let A1, A2 be

complete rings of sets on G and let B1 generate A1, B2 generate A2. Then A1 ⊆ A2
iff B2 separates elements of G better than B1.

�����. If A1 ⊆ A2 then A2 separates elements of G better than A1. By

Theorem 2.2, A1, B1 equally separate elements of G, and A2, B2 equally separate
elements of G. Thus B2 separates elements of G better than B1. If B2 separates
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elements of G better than B1 then A2 separates elements of G better than A1. By

Theorem 2.3 we have A1 ⊆ A2. �

As a corollary, we obtain

Theorem 2.5. Let B1, B2 be systems of subsets of a set G. Then B1, B2
generate the same complete ring of sets on G iff B1, B2 equally separate elements

of G.

Further, we have

Theorem 2.6. Let G �= ∅ be a set, A a complete ring of sets on G and B ⊆ A

a system of subsets of G. Then B generates A iff A , B equally separate elements

of G.

�����. The necessity of the given condition follows from Theorem 2.2, its

sufficiency follows from Theorem 2.5, as trivially A generates A . �

Let G be an ordered set. Then the system of all its ideals is a complete ring of

sets on G. Now, we prove

Theorem 2.7. Let G be an ordered set, let A be the complete ring of all its

ideals and let B be some system of its ideals. Then B generates A iff B is an order

base in G.

�����. 1. LetB generateA . By Theorem 2.6, A ,B equally separate elements
of G. Let x, y ∈ G, x �� y. Then (y] ∈ A , y ∈ (y], x /∈ (y]. Thus there exists B ∈ B

such that y ∈ B, x /∈ B. By (4), B is an order base in G.
2. Let B be an order base in G. Let x, y ∈ G, A ∈ A be such elements that

x ∈ A, y /∈ A. As A is an ideal in G, necessarily y �� x. By (4) there exists B ∈ B

such that x ∈ B, y /∈ B. Thus A , B equally separate elements of G and by Theorem
2.6 B generates A . �

A similar result is proved in [11], Hilfsatz 3.2.

Corollary. Let G be an ordered set. Then the following cardinals are equal:

(i) 2-pdim G,

(ii) the least cardinal m such that G can be isomorphically embedded into a set

of type 2m,

(iii) the least cardinal n such that in G there exists an order base of cardinality n,

(iv) w(A ) where A is the complete ring of all ideals in G.
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3. Dense subsets

Let G be an ordered set and H ⊆ G. We will say that H is dense in G iff the
following holds:

(i) x, y ∈ G, x < y =⇒ there exist u, v ∈ H such that x � u < v � y,(7)

(ii) x, y ∈ G, x ‖ y and z > y for any z ∈ G, z > x =⇒ x ∈ H.

The condition (i) was formulated already in [4], p. 89, for linearly ordered sets,

the condition (ii) can be found—in a modified form—in [9].
Clearly, any ordered set is dense in itself.

Definition. Let G be an ordered set. We put

sepG = min{cardH ; H ⊆ G is dense in G};

this cardinal will be called the separability of G.

Lemma 3.1. Let G be an ordered set, let H ⊆ G be dense in G and let x, y ∈ G.

If u � y for any u ∈ H , u � x, then x � y.

�����. Let the condition be satisfied. If x ∈ H , then x � y for x � x. Thus
let x /∈ H . Assume x ‖ y. If z ∈ G, z > x then by (7) there exist u, v ∈ H such that

x � u < v � z; by assumption then u � y and thus z > y. By (ii) in (7) we have
x ∈ H , a contradiction. Thus the elements x, y must be comparable. If x < y, then

there exist u, v ∈ H such that x � u < v � y so that u � x, u �� y, a contradiction.
Hence x � y. �

Theorem 3.1. Let G be an ordered set, let H ⊆ G be dense in G. Then

((u] ; u ∈ H) is an order base in G.

�����. Let x, y ∈ G, x < y. By (7) there exist u, v ∈ H such that x � u < v �
y. Then x ∈ (u], y /∈ (u] and condition (i) from (3) is satisfied. Let x, y ∈ G, x ‖ y.

If x, y ∈ H then x ∈ (x], y /∈ (x], x /∈ (y], y ∈ (y]. Suppose x /∈ H , y ∈ H . Then
x /∈ (y], y ∈ (y]. If u � y for any u ∈ H with u � x, then by Lemma 3.1 x � y, a

contradiction. Thus there exists u ∈ H such that u � x, u �� y and then x ∈ (u],
y /∈ (u]. Similarly in the case x ∈ H , y /∈ H . Finally, let x /∈ H , y /∈ H . If u � y

for any u ∈ H with u � x, then x � y by Lemma 3.1, a contradiction. Hence there
exists u ∈ H such that u � x, u �� y; then x ∈ (u], y /∈ (u]. For the same reason
there exists v ∈ H such that v � y, v �� x and then x /∈ (v], y ∈ (v]. Thus the
condition (ii) from (3) is satisfied and ((u] ; u ∈ H) is an order base in G. �
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Corollary. Let G be an ordered set. Then 2-pdim G � sep G.

By examples we can show that 2-pdim G = sep G need not hold. If, e.g., G is a
finite chain with m elements, then sep G = m; as the cardinal power 2m−1 contains

anm-element chain and 2m−2 contains no such chain, we see that 2-pdim G = m−1.
If G is a finite m-element antichain, then sep G = m and 2-pdim G = n where n

is the least positive integer with
(

n
[n2 ]

)
� m, for a maximal antichain in 2n contains(

n
[n2 ]

)
elements ([13], [6]). If G is an infinite antichain, cardG = m then sep G = m

and 2-pdim G = n where n is the least cardinal with 2n � m, for the cardinal power
2n (n infinite) contains an antichain of cardinality 2n ([12], p. 450, Theorem 1, [8],

Theorem 8). We show that if G is an infinite chain then 2-pdim G = sep G. In
contrast to all preceding theorems and lemmas, for a proof of this assertion we need

the axiom of choice (AC).

Theorem 3.2. (AC). Let G be an infinite chain. Then 2-pdim G = sepG.

�����. It suffices to show sep G � 2-pdim G. Let 2-pdim G = m; clearly

m � ℵ0. By Corollary to Theorem 1.2, in G there exists an order base (At ; t ∈
T ) with cardT = m. Denote T0 = {t ∈ T ; At contains the greatest element,

G − At contains the least element}, T12 = {(t1, t2) ∈ T 2 ; At2 − At1 �= ∅}, H0 =⋃
t∈T0

{maxAt,min(G − At)} and let H12 ⊆
⋃

(t1,t2)∈T12

(At2 − At1) be such a set that

H12 ∩ (At2 − At1) is a one-point set for any (t1, t2) ∈ T12. Put H = H0 ∪H12; then
cardH � m and we show that H is dense in G. First, we show: If x, y ∈ G, x−< y,

then x, y ∈ H . Indeed, there exists t ∈ T such that x ∈ At, y /∈ At. Then necessarily
x = maxAt, y = min(G − At) so that x, y ∈ H . Now let x, y ∈ G, x < y. If x −< y

or if there exists z ∈ G such that x < z −< y, then x, y ∈ H and condition (i) from
(7) is satisfied. Let there exist w, z ∈ G such that x < w < z < y. By (i) in (3) there

exist t1, t2, t3 ∈ T such that x ∈ At1 , w /∈ At1 , w ∈ At2 , z /∈ At2 , z ∈ At3 , y /∈ At3 .
Thus At2 −At1 �= ∅, At3 −At2 �= ∅ and there exist u, v ∈ H such that u ∈ At2 −At1 ,

v ∈ At3 −At2 . Then x < u < v < y and condition (i) in (7) is satisfied. Hence H is
dense in G. �

Corollary. Let G be an infinite chain. Then the following cardinals are equal:

(i) 2-pdim G,

(ii) the least cardinal m such that G can be isomorphically embedded into a set

of type 2m,

(iii) the least cardinal n such that in G there exists an order base of cardinality n,

(iv) w(A ) where A is the complete ring of all ideals in G,

(v) sep G.
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