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HOMOMORPHISMS BETWEEN A-PROJECTIVE ABELIAN

GROUPS AND LEFT KASCH-RINGS

Ulrich Albrecht, Auburn, Jong-Woo Jeong, Chonju

(Received March 20, 1995)

Abstract. Glaz and Wickless introduced the class G of mixed abelian groups A which
have finite torsion-free rank and satisfy the following three properties: i) Ap is finite for all
primes p, ii) A is isomorphic to a pure subgroup of ΠpAp, and iii) Hom(A, tA) is torsion.
A ring R is a left Kasch ring if every proper right ideal of R has a non-zero left annihilator.
We characterize the elements A of G such that E(A)/tE(A) is a left Kasch ring, and discuss
related results.
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1. Introduction

One of the oldest problems in abelian group theory is to determine when a given

sequence of abelian groups splits. The result which is perhaps most frequently cited
in this context is Szele’s Theorem [9, Proposition 27.1] describing when a subgroup

of the form
⊕
I

�/pn� of an abelian group is a direct summand. Szele’s result was

extended to valuated p-groups by one of the authors in [1]. The key in this extension
was to study an indecomposable finite valuated p-group E(A) as a module over its

endomorphism ring. Since this ring is finite and local, the valuated version of Szele’s
result then follows from the fact that every module over a local Artinian ring is

either projective or has infinite projective dimension. Another area of abelian group
theory where local Artinian rings have played an important role is the investigation

of quasi-decomposition of torsion-free abelian groups of finite rank. Indeed, one
of the author showed in [2] that results in the spirit of Szele’s Theorem also exist

for torsion-free abelian groups of finite rank. For instance, an exact sequence 0 →
An → Am such that n, m < ω quasi-splits whenever �E(A) has finistic dimension 0,
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i. e. every finitely generated right �E(A)-module is either projective or has infinite

projective dimension. This class of rings was discussed in [8] where Bass showed that
a Noetherian ring R has finistic dimension 0 exactly if and only if every proper right
ideal of R has a non-zero left annihilator, i. e. iff R is a left Kasch-ring in the sense

of [12].

It is the goal of this paper to further investigate the relation between left Kasch-

rings and splitting results for abelian groups similar to the previously mentioned.
Whenever R is a Kasch-ring whose additive group is torsion-free, then R+ is divisible

since, for any non-zero integer n, nR is a left ideal whose right annihilator is zero.
But this setting has been investigated in [2]. On the other hand, if A is a p-group with

two non-isomorphic cyclic direct summands, then no Szele-style result can exist for
A unless A ∼=

⊕
I

�/pn� for some n < ω since there always exists a monomorphism

between these two cyclic summands which does not split. Therefore, the case of
p-groups has been covered by Szele’s original result. We may therefore assume that

A is an honest mixed group.

The investigation of properties of mixed groups which are determined by the en-

domorphism ring has been particularly successful for the class G of mixed abelian
groups which was introduced by Glaz and Wickless in [10]. In order to define G,
we first consider the class Γ of mixed groups G with the property that G is isomor-
phic to a pure subgroup of Πp Gp containing

⊕
p

Gp. The symbol Γ∞ denotes the

groups in Γ which have finite torsion-free rank. Every G ∈ Γ∞ contains a finite
subset X such that F = 〈X〉 is a free subgroup of G with G/F torsion. We view
G as a pure subgroup of Πp Gp, and write X = {xi = (xip) | i = 1, . . . , n}. Glaz
and Wickless investigated the class G of groups in Γ∞ for which Gp is finite for all
p and satisfies Gp = 〈x1p, . . . , xnp〉 for all but finitely many p. Observe that every

element of G is either an honest mixed group or finite. They showed in [10] that
a group G ∈ Γ∞ such that Gp is finite for all p is in G if and only if Hom(G, tG)

is a torsion group. In particular, E(A)/tE(A) is a finite dimensional �-algebra for
A ∈ G. Goeters, Wickless, and the author continued the discussion of [10] in [6] by
showing that the elements of G are the mixed self-small abelian groups which have
finite torsion-free rank. Moreover, they showed that A is flat as an E(A)-module iff

A/tA is a projective E(A)/tE(A)-module.

Section 2 investigates the groups A ∈ G for which E(A)/tE(A) is a left Kasch-ring.

We show that a group A ∈ G has this property if and only if, whenever 0 → U →
An → Am β→ G → 0 is an exact sequence with n, m < ω such that SA(U) is torsion,
then U is finite and β quasi-splits (Theorem 2.2). The section concludes with a

discussion of consequences of Theorem 2.2. Section 3 investigates the structure of
groups G which arise as cokernels and kernels of maps An → Am where n, m < ω.
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We show that each such G is isomorphic to a group of the form TA(M) where M is

a finitely presented right E(A)-module (Theorem 3.1). We in particular investigate
when such G’s are a direct sum of a finite group and an A-projective group of finite
A-rank. Here P is A-projective (of finite A-rank) if it is isomorphic to a direct

summand of
⊕
I

A for some (finite) index-set I (Theorem 3.4).

2. Groups A ∈ G such that E(A)/tE(A) is a Left Kasch-Ring

If A is an abelian group, then the symbol HA(G), where G is an abelian group,
denotes the right E(A)-module Hom(A, G) whose E(A)-module structure is induced

by composition of maps. If M is a right E(A)-module, then TA(M) = M ⊗E(A) A.
Since HA and TA form an adjoint pair of functors, we can find natural maps θG :

TAHA(G) → G and ϕM : M → HA TA(M) for any abelian group G and right
E(A)-module M . We say that G is A-solvable if θG is an isomorphism. For instance,

if A ∈ G, then A-projective groups are A-solvable, while ϕM is an isomorphism if M
is projective [6]. We denote the image of θG by SA(G), and call a group G (finitely)

A-generated if it is an image of an A-projective group of (finite) A-rank. Clearly, G
is A-generated iff SA(G) = G. We say that an A-generated group G is A-presented

if G ∼= (
⊕
I

A)/U for some index-set I and an A-generated subgroup U of
⊕
I

A.

Theorem 2.1. Let A ∈ G, p1, . . . , pn be primes of �, and C a fully invariant

subgroup of A such that A = B ⊕ C where B = Ap1 ⊕ . . .⊕Apn .

a) If G is a direct summand of an A-presented group, then G = SB(G)⊕SC(G).

b) If 0 → U
α→ ⊕

I

A
β→ G → 0 is an exact sequence such that SA(U) = U ,

then the induced sequences 0 → SB(U)
α|SB(U)−→ ⊕

I

B
β|⊕I B−→ SB(G) → 0 and

0→ SC(U)
α|SC(U)−→ ⊕

I

C
β|⊕I C−→ SC(G)→ 0 are exact.

�����. a) Let H be an A-presented group, and consider an exact sequence

0 → U
α→ ⊕

I

A
β→ H → 0 with SA(U) = U . For g ∈ Hp, we can find x ∈ ⊕

I

A such

that g = β(x). If psg = 0 for some s < ω, then psx = α(u) for some u ∈ U . Since

U is A-generated, U/tU is an epimorphic image of the divisible group A/tA. Hence,
there are u1 ∈ U and t ∈ tU with u = psu1 + t. Then ps

(
x− α(u1)

)
= α(t) ∈ ⊕

I

tA

yields ps+rm
(
x − α(u1)

)
= 0 for some r < ∞ and integer m relatively prime to p.

Since m
(
x− α(u1)

)
∈ ⊕

I

Ap, we have pnpm
(
x− α(u1)

)
= 0 where np < ω is chosen

minimal with pnpAp = 0. Then, pnpmg = 0 from which pnpHp = 0 follows. In
particular, �(p∞) 	⊆ H .
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We write H = [
⊕
J

�] ⊕ L for some index-set J and a reduced group L. By

[4, Theorem 2.2], RA(L) = 0 where RA(L) = ∩ {ker ϕ | ϕ ∈ Hom(L, A)}, and
we can find an index-set J1 such that L ⊆ BJ1 ⊕ CJ1 . If SB(L) 	⊆ BJ1 , then the
projection of BJ1⊕CJ1 → CJ1 with kernel BJ1 would induce a non-zero map

⊕
I

B →

CJ1 which would contradict the fact that Hom(B, C) = 0. A similar argument
establishes SC(L) ⊆ CJ1 . Moreover, since B is finite,

⊕
J

� ⊆ SC(H). We obtain

SB(H) = SB(L) and SC(H) = SC(L) ⊕ [
⊕
J

�] which yields SB(H) ∩ SC(H) = 0.

On the other hand, A = B ⊕ C yields H = SA(H) = SB(H) + SC(H). Finally,
if H = G ⊕ W , then SB(H) = SB(G) ⊕ SB(W ) and SC(H) = SC(G) ⊕ SC(W ).

Therefore, G = SA(G) = SB(G)⊕ SC(G) as desired.

b) Since U is reduced, ker θU is torsion-free divisible by [4, Theorem 2.2a]. Hence
U is a direct summand of the A-presented group TAHA(U), and U = SB(U) ⊕
SC(U). Since Hom(B, C) = 0 = Hom(C, B), we have

⊕
I

B = SB(
⊕
I

A) and
⊕
I

C =

SC(
⊕
I

A). Therefore, the maps in the sequences have the indicated domains and

ranges and it remains to show that the restrictions of β are onto. For this, observe

G = SB(G)⊕ SC(G) ⊇ β(
⊕
I

B) + β(
⊕
I

C) ⊇ β(
⊕
I

A) = G. �

We now show that the investigation of splitting conditions similar to Szele’s is

closely related to the question for which A ∈ G the ring E(A)/tE(A) is a left Kasch-
ring. For reasons of simplicity, the symbol M denotes the E(A)/tE(A)-module

M/tM .

Theorem 2.2. The following conditions are equivalent for a group A ∈ G:
a) E(A)/tE(A) is a left Kasch-ring.

b) If 0 → U → An α→ Am β→ G → 0 is an exact sequence in which SA(U) is

torsion, then U is finite and β quasi-splits.

�����. a) ⇒ b): Suppose that E(A)/tE(A) is a left Kasch-ring, and consider

an exact sequence as in b). It induces the commutative diagram

0 −−−−→ HA(U) −−−−→ HA(An)
HA(α)−−−−→ HA(Am)

�π1

�π2

HA(A
n)

HA(α)−−−−→ HA(A
m).

in which the vertical maps are the obvious projections. For x ∈ kerHA(α), there
is y ∈ HA(An) with x = π1(y). Then, 0 = HA(α)π1(y) = π2HA(α)(y) yields
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HA(α)(�1y) = 0 for some non-zero �1 ∈ �. Since HA(U) = HA

(
SA(U)

)
is a

torsion group by [4, Lemma 2.1], we have �2�1y = 0 for some non-zero �2 ∈ �.
Therefore, HA(α) is a monomorphism which splits since E(A)/tE(A) is a left
Kasch-ring. If δ : HA(Am) → HA(An) is a splitting-map for HA(α), then we

can find a map γ : HA(Am) → HA(An) with π1γ = δπ2 since HA(Am) is a pro-
jective E(A)-module. Furthermore, π1γHA(α) = δHA(α)π1 = π1 yields that

γHA(α)−1HA(An) mapsHA(An) into tHA(An). By [4, Lemma 2.1], tAn is A-solvable
and tHA(An) = HA(tAn). An application of the Adjoint-Functor-Theorem yields

that HomE(A)

(
HA(An), HA(tAn)

)
is isomorphic to the torsion group Hom(An, tAn).

Hence we can find a non-zero integer k such that kγHA(α) = k 1HA(An). We obtain

the diagram

TAHA(An)
kTA(γ)←−−−−−−−→

TAHA(α)
TAHA(Am)

�
�θAn �

�θAm

An α−−−−−−→ Am.

Therefore, we can find a mapping ε : Am → An with kεα = k 1An .

Let p1, . . . , ps be the primes dividing k, and write A = B⊕C whereB = Ap1 ⊕ . . .⊕
Aps as in Theorem 2.1. Since kεα = k1An , we have kU = 0. Therefore, U is finite
since it is isomorphic to a subgroup of the finite groupBn. Furthermore, the sequence

0→ Cn α|Cn−→ Cm β|Cm−→ SC(G)→ 0 is exact by Theorem 2.1. Since ε(Cm) ⊆ Cn and
multiplication by k is an automorphism of C, we have that ε|Cm is a splitting map

for α|Cn . But then β|Cm splits too. Since G/β(Cm) is isomorphic to the finite group
β(Bm) by Theorem 2.1, β : Am → G quasi-splits.

b) ⇒ a): To show that E(A)/tE(A) is a left Kasch-ring, it suffices to show by
[8, Corollary 5.6] that, for every exact sequence 0 → E(A)

n α→ E(A)
m → M →

0 of right E(A)/tE(A)-modules, M is projective. Let π1 : E(A)n → E(A)
n
and

π2 : E(A)m → E(A)
m
be the canonical projections, and consider the commutative

diagram

0 −−−−→ U −−−−→ E(A)n
α−−−−→ E(A)m

β−−−−→ X −−−−→ 0

π1

� π2

�

0 −−−−→ E(A)
n α−−−−→ E(A)

m
.
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A standard diagram chase shows that U is torsion. If V denotes the kernel of TA(α),

then we have a commutative diagram

0 −−−−→ HA(V ) −−−−→ HA TA

(
E(A)n

) HA TA(α)−−−−−−→ HA TA

(
E(A)m

)

�
�ϕE(A)n �

�ϕE(A)m

0 −−−−→ U −−−−→ E(A)n α−−−−−−→ E(A)n

from which it follows that HA(V ) is torsion. But this is only possible if SA(V ) is

torsion. By b), V is finite and TA(β) quasi-splits. We choose a map σ : TA(X) →
TA

(
E(A)m

)
such that TA(β)σ = k 1TA(X) for some non-zero integer k. Without loss

of generality, we may assume that kV = 0. Let p1, . . . , ps be the primes dividing k,
and write A = B⊕C where B = Ap1⊕. . .⊕Aps . By Theorem 2.1, the sequence 0 −→

TA

(
E(C)n

) TA(α|E(C)n)−−−−−−−→TA

(
E(C)m

)
is exact, and splits as before. Since E(A) =

E(C), no generality is lost if we assume that α is a monomorphism and 0→ E(A)n
α→

E(A)m
β→ X → 0 splits. Moreover, the sequence 0→ tE(A)n → tE(A)m → tX → 0

is exact. We extend the first diagram using the kernels of the vertical maps. The

3×3-Lemma can be applied to this extended diagram and yields that the induced
sequence 0 → tX → X → M → 0 is exact. Since X has been shown to be a

projective E(A)-module, M ∼= X/tX is a projective E(A)/tE(A)-module. �

In particular, every essentially indecomposable group A ∈ G has the property that
E(A)/tE(A) is a left Kasch-ring since it is a local Artinian ring. Furthermore, every
A ∈ G for which E(A)/tE(A) is a quasi-Frobenius ring has this property.

Corollary 2.3. Let A ∈ G have the property that E(A)/tE(A) is a left Kasch-

ring. Then every exact sequence 0→ P → Am such that P is an A-projective group

and in G splits if and only if Ap is homogeneous for each prime p.

�����. Clearly, a group A ∈ G with the stated splitting property has to have
homogeneous p-components. To show the converse, observe that P is a direct sum-

mand of An for some n < ω by [4, Theorem 2.2]. The sequence 0 → P
α→ An

quasi-splits, say σα = k 1P for some σ : An → P and non-zero integer k. Write

A = B ⊕ C where B and C are fully invariant subgroups of A such that B is finite
and ksB = 0 for some s < ω. Observe that B and C are as in Theorem 2.1. As

before, the sequence 0 −→ SC(P )
α|SC(P )−−−−−→Cm splits. Moreover since the endomor-

phism ring of B is self-injective as a finite product of matrix-rings over self-injective

rings, the sequence 0 −→ SB(P )
α|SB(P )−−−−−→Bm splits too. By Theorem 2.1, α(P ) is a

direct summand of An. �

36



In [2], it was shown that a torsion-free abelian group of finite rank whose quasi-

endomorphism ring is a left Kasch-ring has the property that every exact sequence
0 → P

α→ G with α(P ) ∩ RA(G) = 0 quasi-splits. It is natural to ask if a similar
extension of Corollary 2.3 exists in the setting of this paper. However, if A ∈ G is
an honest mixed group, then A is isomorphic to a pure subgroup of ΠpAp. Since
[ΠpAp]/A is torsion-free divisible, this embedding does not quasi-split although

RA(ΠpAp) = 0. Therefore, the splitting condition in Corollary 2.3 cannot be ex-
tended as in [2].

We conclude this section with an example that finitely A-generated subgroups of

An need not quasi-summands if E(A)/tE(A) is a Kasch-ring:

Example 2.4. There exists an essentially indecomposable group A which con-

tains a finitely A-generated subgroup U which is not a quasi-summand of A.

�����. Let R =
{(

x
y
0
x

) ∣∣ x, y ∈ �
}
. It easy to see that R is a commutative

local ring whose maximal ideal is J =
{( 0

y
0
0

) ∣∣ y ∈ �
}
. Since there exists an exact

sequence 0 → J → R → J → 0 which does not split, J has infinite projective
dimension. Moreover, a slight modification of the arguments used in the proof of

[6, Theorem 4.1] yields a group A ∈ G of torsion-free rank 2 with E(A)/tE(A) =
R whose p-primary components are homogeneous. Since Mat2(�) is a projective

R-module, A is flat as an E(A)-module. Furthermore, it easy to see that A/tA is
faithful as an E(A)/tE(A)-module. Hence, A is a faithfully flat left E(A)-module

by [6]. We choose a cyclic ideal I of E(A) with [I + tE(A)]/tE(A) = J . Consider
the induced exact sequence 0 → IA → A. If it were to quasi-split, then it would

induce the exact sequence 0 → HA(IA) → HA(A) which also quasi-splits. Since A

is faithfully flat as an E(A)-module, we have that I is a quasi-summand of E(A).

But then I were a direct summand of E(A) from which it would follow that J ∼= I

is projective, a contradiction. �

3. Tensor-Products of Finitely Presented Modules

In [4], we investigated A-solvable groups in G. We showed that these are precisely
the finitely A-generated A-solvable groups, i. e. images of A-projective groups of
finite A-rank. In this discussion we considered almost A-balanced sequences 0 →
B → C

β→ G → 0 of abelian groups, i. e. sequences for which HA(G)/ ImHA(β) is a

torsion group. We showed that an almost A-balanced exact sequence is A-balanced,
i. e. HA(β) is onto, if A ∈ G has homogeneous p-components. Particular attention

was given to GA-presented groups, i. e. those G ∈ G admitting an almost A-balanced
sequence 0 → U → ⊕nA → G → 0 in which U is A-generated and in G. Our first
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result investigates what happens if we remove the assumption that the sequence is

almost A-balanced.

Since a reduced A-generated group G is finitely A-generated if and only if G ∈ G
[4, Theorem 2.2], a group G admits a sequence of the desired form exactly if it is the
cokernel of a map An → Am for some m, n < ω.

Theorem 3.1. Let A ∈ G. The following conditions are equivalent for a group G:

a) G admits an exact sequence 0 → U
α→ An β→ G → 0 in which U is a finitely

A-generated group.

b) G ∼= TA(M) for some finitely presented right E(A)-module M .

�����. a)⇒ b): By [3, Lemma 2.1], the submodule M = ImHA(β) of HA(G)
satisfies G ∼= TA(M). Moreover, since U ∈ G, there is an exact sequence Am σ→ U →
0 for some m < ω. While this sequence need not be almost A-balanced in general, we
can find a finitely generated submodule V of HA(U) such that HA(U)/V is torsion

as an abelian group. This is possible since HA(U) has finite torsion-free rank as an
abelian group. Let ϕ1, . . . , ϕ� be generators of V , and define a map λ : Am⊕A� → U

by λ
(
x, (a1, . . . , a�)

)
= σ(x)+Σ�

i=1ϕi(ai) for all x ∈ Am and a1, . . . , a� ∈ A. Clearly,

λ is onto. Since ϕ1, . . . , ϕ� ∈ ImHA(λ), the sequence Am⊕A� λ→ U → 0 is almost A-
balanced. Therefore, we may assume that σ induces an almost A-balanced sequence.

The finitely generated submodule N = ImHA(σ) ofHA(An) satisfies the condition
TA

(
HA(U)/N

)
= 0. To see this, it is enough to show TA

(
(HA(U)/N)p

)
= 0 for all

primes p of � since HA(U)/N is torsion. We write A = Ap ⊕ Ap where Ap is a
fully invariant subgroup of A for which multiplication by p is an automorphism.
Since E(A) = E(Ap) × E(Ap), we can write N = Np ⊕ Np where Np is an E(Ap)-

module and Np is an E(Ap)-module. Furthermore, since U ∈ G, we can find find
a similar decomposition for U , say U = Up ⊕ Up. Then, HA(Up) is an E(Ap)-

module, while HA(Up) is an E(Ap)-module. Therefore Np ⊆ HA(Ap) and Np ⊆
HA(Up), from which we obtain that HA(U)/N = HA(Up)/Np ⊕HA(Up)/Np. Since

(HA(U)/N)p is bounded as an abelian group, and HA(Up)/Np is p-divisible, we
have HA(Up)/Np

∼= (HA(U)/N)p. Moreover, if σp denotes the restriction of σ to

Am
p , then Np = ImHA(σp). Since kerσp is A-generated as a subgroup of Am

p , the
evaluation map θ : TA(Np) → Up is an isomorphism by [3, Lemma 2.1]. It fits into

the commutative diagram

0 −−−−→ TA(Np)
TA(ι)−−−−→ TAHA(Up) −−−−→ TA

(
HA(Up)/Np

)
−−−−→ 0

θ

�� θUp

�

Up

1Up−−−−→ Up
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whose top-row is induced by the inclusion map ι : Np → HA(Up) and is exact by

[4, Lemma 2.1]. By the same result, Up is an A-solvable group, and TA(ι) is an
isomorphism. Therefore, TA

(
(HA(U)/N)p

)
= 0. Now observe that the exact se-

quence 0 → HA(U)/N → HA(An)/N → M → 0 induces 0 = TA

(
HA(U)/N

)
→

TA

(
HA(An)/N

)
→ TA(M) → 0. Hence G is isomorphic to TA

(
HA(An)/N

)
, and

HA(An)/N is finitely presented.

b) ⇒ a): We consider a projective resolution 0 → U → E(A)n
β→ M → 0

in which U is finitely generated. It induces the exact sequence TA

(
E(A)n

) TA(β)−→
TA(M) → 0 in which kerTA(β) is A-generated as an image of TA(U). Since U is a
finitely generated E(A)-module, TA(U) is finitely A-generated, and the same holds

for kerTA(β). By [3, Theorem 2.2], kerTA(β) ∈ G. �

Clearly, the arguments used in the proof of b) implies a) apply to show that any
group G ∼= TA(M) withM finitely presented arises as a cokernel of a map An → Am

regardless of what the actual structure of A is.

Corollary 3.2. Let A in G have homogeneous p-components. The following con-

ditions are equivalent for a group G:

a) G is GA-presented.

b) G is an A-solvable group for which HA(G) is finitely presented.

�����. a) ⇒ b): By [4], G is A-solvable and admits an A-balanced exact

sequence 0→ U → An β→ G → 0 in which U ∈ G is A-generated. Using the notation
of the proof of Theorem 3.1, we have thatM = HA(G). Moreover, N is a submodule

of HA(U) for which HA(U)/N is torsion and satisfies TA

(
HA(U)/N

)
= 0. Since A

has homogeneous p-components, HA(U) = N as in [4]. This shows that HA(G) is

finitely presented.

b) ⇒ a): We can find an exact sequence 0 → W → E(A)m
β→ HA(G) → 0 for

some m < ω in which W is finitely generated. Tensoring with TA induces an exact

sequence as in Theorem 3.1a. It remains to show that this sequence is A-balanced.
However, this is an immediate consequence of the commutative diagram

HA TA(E(A)m)
HA TA(β)−−−−−−→ HA TAHA(G)

ϕE(A)m

�� ϕHA(G)

�

E(A)m
β−−−−→ HA(G) −−−−→ 0

in which the last vertical map is an isomorphism since G is A-solvable. �

We now turn to the question how the group-structure of a group G of the form
G ∼= TA(M) such that M is finitely presented is related to the module structure of
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M . We begin our discussion with a result which is stated for the sake of an easier

reference.

Lemma 3.3. Let A ∈ G.
a) If 0 → N

α→ M
β→ W → 0 is an exact sequence of right E(A)-modules, then

the induced sequence 0 → N
α→ M

β→ W → 0 of E(A)/tE(A)-modules is
exact.

b) If M is a right E(A)-module, then

proj. dim. E(A)/tE(A) M � proj. dim. E(A)M

for all right E(A)-modules M .

�����. a) To see that the induced sequence is exact, we suppose that β(x) = 0

for some x ∈ M . Then, β(x) ∈ tW , say β(�x) = 0 for some non-zero integer �.
Then, �x = α(u) for some u ∈ N . Since N/tN is divisible as an abelian group, we

can find v ∈ N and t ∈ tN such that u = �v + t. Then, �(u − α(v)) ∈ tM from
which x = α(v) + t1 for some t1 ∈ tM follows. Hence x = α(v). b) There is nothing

to show if M has infinite projective dimension. If M is projective, then so is M .
Thus assume that 0 < n = proj. dim. E(A)M < ∞. Consider an exact sequence
0 → U → ⊕

I

E(A) → M → 0 for some index-set I which induces the commutative

diagram

0 −−−−→ U
α−−−−→ ⊕

I

E(A)
β−−−−→ M −−−−→ 0

π1

� π2

� π3

�

0 −−−−→ U
α−−−−→ ⊕

I

E(A)
β−−−−→ M −−−−→ 0.

By induction, proj. dim. E(A)/tE(A) U � proj. dim. E(A) U = n−1, which implies that
proj. dim. E(A)/tE(A) M � n = proj. dim. E(A)M . �

Theorem 3.4. Let A be in G. The following conditions are equivalent for a
group G:

a) G = T ⊕ P with T a finite A-generated group and P A-projective of finite

A-rank.

b) G ∼= TA(M) for some finitely presented E(A)-module such that M/tM is a

projective E(A)/tE(A)-module.
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�����. a) ⇒ b): Observe that G is A-solvable by [4, Lemma 2.1] and HA(P )

is a finitely generated projective right E(A)-module such that HA(G) = HA(P ) is
projective.

b) ⇒ a): We consider an exact sequence 0 → U
α→ E(A)n

β→ M → 0 in which U

is finitely generated. It induces the commutative diagram

0 −−−−→ U
α−−−−→ E(A)n

β−−−−→ M −−−−→ 0

π1

� π2

� π3

�

0 −−−−→ U
α−−−−→ E(A)n

β−−−−→ M −−−−→ 0

in which the vertical maps are the obvious projections, and the bottom-row is ex-

act as in the proof of Lemma 3.3a. Since M is projective, we can find a split-
ting map δ : M → E(A)n for β. Since M is finitely presented, it is projective

with respect to the sequence 0 → tE(A)n → E(A)n → E(A)n → 0 by [5], and
we can find a map γ : M → E(A)n with π2γ = δπ3. We have that π3βγ =

βπ2γ = π3. Thus, βγ − idM ∈ HomE(A)(M, tM). Consider the exact sequence

0 → HomE(A)(M, tM)
Hom(β,tM)−−−−−−→HomE(A)

(
E(A)n, tM

)
. Since the last module in

this sequence is torsion, k(βδ − idM ) = 0 for some non-zero integer k.

An application of the functor TA gives the exact sequence TA

(
E(A)m

) TA(β)−−−→TA(M)→
0 in which TA(β)TA(kδ) = k 1TA(M). If p1, . . . , pm are the primes dividing k, then
A = B⊕C where B = Ap1 ⊕ . . .⊕Apm and multiplication by k is an automorphism

of C. As in the proof of Theorem 2.1, the map TA(β) : TC

(
E(A)m

)
→ TC(M) splits.

Thus, TC(M) is A-projective. On the other hand, TB(M) is a finite group with

G ∼= TA(M) = TB(M)⊕ TC(M). �

Corollary 3.5. Let A ∈ G have homogeneous p-components. If E(A)/tE(A) is a
left Kasch-ring, and G is a GA-presented group such that HA(G) has finite projective

dimension, then G is A-projective.

�����. By Corollary 3.2, HA(G) is a finitely presented module of finite pro-
jective dimension with G ∼= TAHA(G). Because of Lemma 3.3b, the E(A)/tE(A)-

module HA(G) has finite projective dimension. Since E(A)/tE(A) is a left Kasch-
ring, the latter module is projective. By Theorem 3.4, G = P ⊕ T for some

A-projective group P and some finite T . �

Example 3.6. There exists a group A in G such that E(A)/tE(A) is right hered-

itary, but not a left Kasch-ring.

�����. Let R be the ring of upper triangular matrices over �. Then R is a right
semi-hereditary ring. In particular, N(R), the nilradical of R, is a projective ideal
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of R such that R/N(R) is not projective. By [6], we can find a group A ∈ G with
pAp = 0 for all primes p such that R = E(A)/tE(A). Observe that E(A) is a right
semi-hereditary ring by [6, Theorem 5.2]. We choose a cyclic right ideal I of E(A)
such that [I + tE(A)]/tE(A) = N(R). Since I is projective, TA(I) is A-projective,

and hence reduced. Therefore, the sequence 0 → TA(I) → TA

(
E(A)

)
is exact since

Tor1E(A)
(
E(A)/I, A

)
is divisible by [4]. If the last sequence were to quasi-split, then

I were isomorphic to a quasi-summand of E(A) from which it would follow that
R/N(R) is projective. Therefore, E(A)/tE(A) is not a left Kasch-ring. �

We conclude this paper with a short discussion of the structure of the kernels
of maps An → Am. In particular, we are interested in the question when such a

kernel is A-generated and in G. Clearly, the fact that the kernel of each such map is
A-generated immediately restricts our discussion to groups that are flat as modules

over their endomorphism ring.

Proposition 3.7. Consider the following conditions for a group A ∈ G:
a) A is an E(A)-flat group whose endomorphism ring is right coherent.

b) If ϕ : An → Am for some m < ω, then ker ϕ is A-generated and in G.
Then, a) implies b), and the converse holds if A has homogeneous p-components.

�����. a) ⇒ b): Consider an exact sequence 0 → U→An β→ Am for some

n, m < ω. It induces 0 → HA(U) → HA(An)
HA(β)→ HA(Am). Since ImHA(β) is

a finitely generated submodule of HA(Am) and E(A) is right coherent, HA(U) is

finitely generated. Thus, we can find an epimorphism E(A)� → HA(U) → 0 for
some � < ω, which induces an epimorphism TA

(
E(A)�

)
→ TA(U) → 0. Since A is

flat as an E(A)-module, U is A-solvable. Therefore, U is finitely A-generated, and
so U ∈ G by [4, Theorem 2.2].
b) ⇒ a): Since A is flat as an E(A)-module by Ulmer’s Theorem [13], every

exact sequence 0→ U → E(A)n → E(A)m of right E(A)-modules induces an exact
sequence 0 → TA(U) → TA

(
E(A)n

)
→ TA

(
E(A)m

)
from which it follows that

TA(U) is finitely A-generated. Furthermore, an application of the functor HA yields
the commutative diagram

0 −−−−→ HA TA(U) −−−−→ HA TA

(
E(A)n

)
−−−−→ HA TA

(
E(A)m

)
�ϕU �

�ϕE(A)n �
�ϕE(A)m

0 −−−−→ U −−−−→ E(A)n −−−−→ E(A)m

which gives that ϕU is an isomorphism. Consequently, TA(U) is A-solvable, and there
exists an A-balanced exact sequence A� → TA(U) → 0 by [4, Corollary 3.5] since
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A has homogeneous p-components. But this gives that U ∼= HA TA(U) is finitely

generated. �

References

[1] U. Albrecht: Bewertete p-Gruppen und ein Satz von Szele. J. of Alg. 97 (1985), 201–220.
[2] U. Albrecht: On the quasi-splitting of exact sequences. J. of Alg. 144 (1991), 344–358.
[3] U. Albrecht: Endomorphism rings of faithfully flat abelian groups of infinite rank. Results
in Mathematics 17 (1990), 179–201.

[4] U. Albrecht: An Azumaya Theorem for a class of mixed abelian groups. Preprint.
[5] U. Albrecht: Mixed groups projective as modules over their endomorphism ring. Preprint.
[6] U. Albrecht, H. P. Goeters and W. Wickless: The flat dimension of mixed abelian groups
as E-modules. Preprint.

[7] F. Anderson and K. Fuller: Rings and Categories of Modules. Springer Verlag, Berlin,
Heidelberg, New York, 1992.

[8] H. Bass: Finistic dimension and a generalization of semi-primary rings. Trans. Amer.
Math. Soc. 95 (1960), 466–488.

[9] L. Fuchs: Infinite Abelian Groups. Academic Press, New York, London, 1970/73.
[10] S. Glaz and W. Wickless: Regular and principal projective endomorphism rings of mixed

abelian groups. To appear.
[11] R. Hunter, F. Richman and E. Walker: Subgroups of bounded abelian groups. Abelian

Groups and Modules, Udine 1984. Springer Verlag, Berlin, Heidelberg, New York, 1984,
pp. 17–36.

[12] Bo Stenström: Rings of Quotients. Springer Verlag, Berlin, Heidelberg, New York, 1975.
[13] F. Ulmer: A flatness criterion in Grothendick categories. Inv. Math. 19 (1973), 331–336.

Authors’ addresses: ������ �������	, Department of Mathematics, Auburn Univer-
sity, AL 36849 Auburn, USA; 
��
���� 
���
, Department of Mathematics, Chonbuk
National University, Chonju, Chonbuk 560-756, Korea.

43


		webmaster@dml.cz
	2020-07-03T11:27:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




