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A STUDY OF g-LAGUERRE POLYNOMIALS THROUGH 

THE TM>x-OPERATOR 

M. A. KHAN, Aligarh 

(Received January 3, 1995) 

Abstract. The present paper deals with certain generating functions and recurrence 
relations for a-Laguerre polynomials through the use of the Tkq^x -operator introduced in 
an earlier paper [7]. 

1 . INTRODUCTION 

In [7], the present author introduced the Tjfc)9)X-operator by means of the relation 

(1.1) Tk^x = x(l - q){[k] + qkxDq,x), 

obtaining in [8] operational representations for various ^-polynomials. The opera­
tional representations for g-Laguerre polynomials will be used in the present paper to 
establish certain generating functions and recurrence relations for g-Laguerre poly­
nomials. The use of operational representations obtained in [8] for finding generating 
functions and recurrence relations of other important ^-polynomials will be dealt with 
elsewhere. For definitions and notation one is referred to W.Hahn [3], M. A. Khan 
[4-6] and L. J. Slater [12]. 

2. GENERATING FUNCTIONS 

In this section, some generating functions for g-Laguerre polynomials will be ob­
tained from the operational representations established in [7-8]. 

To start with, consider the identity 

eq(-x)Eq(-xt) = eq{ - [1 - t]x), 
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which we can write as 

oo 

(2.1) ~~ "''I',"1'xa+req(-x) = xaeq( - [1 - t]x). 
^ qhт(r-l)tr 

~ ~ r=0 

Now, operating on both sides of (2.1) with T™ and then replacing x by Xq
1~rn~a~k 

and t by t/x, we obtain the generating function 

(2.2) £ , ( - t V - m - " - V ^ 1 - * - 1 ^ . - - t], 1) 
_°° . r . l r ( r - l ) + r ( l - m - o - t ) 

= £ ——?»- ^*---\*-\ i). 
r=0 W " 

Similarly, considering the identity 

(2-3) E 7^"a;0+r-"*(a:) = ~aE"{[l ~t]x^ 
r = 0 ( )r 

and operating on both sides of (2.3) with T™ and finally replacing x by xq m and 
£ by t/x, we obtain the generating function 

0 0 4.r n—mr 

(2-4) e^t)^*- 1 1 (I* " *]) = £ -j-~-^r+k-l){xY 
r=0 W r 

We next consider the operational formula , 

00 tn 

eq(tTKq){x<~eq(-x)} = £ —T£q{xaeq(-x)}. 
n=0 W n 

Each term on the right hand side can be evaluated by means of [8, (4.9)] and on the 
left had side by means of [7, (3.18)]. This immediately yields the generating function 

(2-5) e" ( i r ~ 5 ~ " ) Eq{~x) = {1~t)k+a £ •L»a+~~1) (j-«B+a+*"1- 1)«n-
n=0 

Similarly, considering the expansion 

~ tn 

n=0 

one gets 

eq(tTkiq){xaEq(x)} = J2 -rr^q{xaEq(x)}, 
«=n W" 

/ \ °° y.n 

(2-6) eq(x)Eq ({1 _ X
tqk+a]j = (1 - t)>+. E ( ^ ^ ^ W 
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Another way of deriving (2.5) is by means of the relation 

(1 - Xt)a+k 

_ y W )nl xa+r] 

n = 0 («)« 

Operating on both sides with 0$i[—;qa+k;Tk,q], then evaluating the left hand 

side by means of [8, (4.7)] and the right hand side by means of [8, (4.17)] and finally 

replacing x by — x and t by — t/x, we get (2.5). 

Similarly, for another way of deriving (2.6), consider 

*a _ y (qh+a)nqnr xg+n 

(l-qxt)k+a ^ (q)n 

Operating on both sides with 

o $ i 
• • •; Tk}q 

qk+a; q 

then evaluating left had side by [8, (4.8)] and the right hand side by [8, (4.18)] and 

finally replacing x by — x/q and t by — t/q, we get (2.6). 

It may be remarked that formula [7, (3.2)], in particular, yields 

(2.7) oФi [ • • •; k+a; íTfc,,] {xaeq(-x)} 

= xaeq(-x)eq(xť) - 0Фl 
-xztq 2tnk+a-2 

\.q' 
k+a. 

which is equivalent to the generating function 

(2.8) e,(ť)0Фi 
-xtqa+k-2Л °° 

qk+a; q2 = Zj^*Pk-1Ч*<ľ*"k-1л) 

obtained by simplifying the left hand side of (2.7) and then replacing t by t/x. 

If in (2.8) we replace t by tTk}q}y and operate on yb, we get, by using [7, (3.21)], 

the operational relation 

l(tTк,Я,y) | V iФl 
-*+*; -xytqa+k~2 

_fc+o. „2 ]} 
=y" E K2nlfn Pn+k~1] N"+ 0 +*-M), 

n = 0 
(qk+a)n 
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which gives by virtue of [7, (3.18)] the generating function 

(2.9) 
A:+6\ j.n (qk+b)nt ľ^^-1'^"1.!) 

(1 " t)k+b 

For b = /3 - k, (2.9) becomes 

i Ф l 
qk+b; -xtqa+k-2/[l-tqk+b] 
r,k+a. 

(2.10) E V? ) n t , n T(a+k-l)(„nn+a+k-l -,\ 

„_„(«*+-)./n [ q ' ' n = 0 

- ! $ 
( i - * ) / Ҷ? f c + a ; 

qP; -xtqa+к-2/[l - tqP] 

We now put f(x) = eq(-x) in [7, (3A9)] and use [8, (4.9)] on the left hand side. 

We thus obtain the generating function 

(2.11) g r r 2 * n ( n + 1 ) ^ 0 + f c - 1 - n ) ( ^ 0 + f c - 1 , l ) = (I+ tq)a+k-1Eq(xtqk+a). 
n=0 

Putting k = 1, replacing t by tjq and a: by xq~a in (2.H), we obtain 

oo 

(2.12) Y, * B « - n ( n + 1 ) ^ 0 - n ) ( « . 1) = (1 + Oa-?«(a*). 
n=0 

Multiplying (2.11) by tbeq(xtqk+a) and operating on the variable t by Tҷ t , we get 

oo 
^ g * n ( n + l ) g L ( a + , - l - n ) ( a ; g a + f c - l ) l ) T ҷ t { < 6 + n e g ( : r ^ + a ) } 

n=0 

= T ^ > t { t 6 i $ o t e 1 - a - f c ; . . . ; - < 9 a + f c ] } , 

hence we obtain the following generalization of the generating function (2.11): 

oo 

(2.13) ^t» ( / l "(» + 1 )^(« + f c - 1 - ')(a; t 3 - + f c - 1 , l)^(J + n + f c - 1 ) 
n = 0 

x (-xtqa+b+m+n+2h-1,l) 
r,k+b\ 

= ÍS7LhLEq{xtqk+a)391 ft-*-1*; qk+b+m; qk+b; -tqk+a]]. 
\Q)m 
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Putting k = 1, replacing x by xq a and t by — t/q in (2.13), we get the following 
generalization of (2.12): 

oo 

(2.14) £H) W - - B ( n " 1 ) « Z 4°" n ) ( x . l ) ^ + n ) ( x ^ 6 + m + n , 1) 
n = 0 

__ (q )m — , a ,• r _ a i-f.6_j_m 14.6 . aT 

= —r-T Eq{-xt)2^i[q ',q~~ ,q \tq \. 
\q)m 

Also, for k = 1, (2.11) reduces to 

oo 

(2.15) ~l r 9 5 n ( n + 1 ) ^ ° - n ) (xg°) = (1 + tq)aEq(xtq1+a). 
n=0 

Now, multiplying (2.15) by xl+a~keq(-x), using [8, (4.9)] to express the g-Laguerre 

polynomial on the left hand side of (2.15) by its operational representation and then 

operating on both sides with T™q, we get by using [8, (4.11)]. 

(2.16) jt(m + n) *Mn(^ Vfcn W + m , 1) 

= (1 + tq^E^xtq1^)^^ + tql+a)xq™+a, l ) . 

Similarly, if we put f(x) = Eq(x) in [7, (3.19)] and use [8, (4.10)] on the left hand 
side, we get the following generating function for qLn (x): 

00 fnnin{n+l) 

(2-17) E ~7^ ^ a + f e - n _ 1 ) N n ) = (1 + tq)a+k-ieq(-xtqk+a). 
n = 0 ( « ) • 

If we multiply (2.17) by x 1 + a kEq(x) and operate with T™ , we get by replacing 
x by xq~m and £ by tq-1'0, that 

°° , n ± n ( n + l ) - n ( l + a ) / , \ 

= (1 + .,-).«,(-*),£,<•> ([1 + Iji) . 
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3. RECURRENCE RELATIONS 

Since T£qx = Tk^x(T
n~^x), we have by virtue of [8, (4.9)] and [8, (4.10)] the 

following results: 

(3.1) Tk,q{T£-l{x*eq(-x)}} = xa+n(q)neq(-x)^+k-^(xqn+a+k-\l) 

and 

(3.2) r * , , ^ - 1 ^ ^ ^ 

In view of [8, (4.9)] and [8, (4.10)], results (3.1) and (3.2) give the following 
recurrence relations: 

(3.3) {[„ + a + k - 1} - ^ ]
+ ° +

g
f c

) "
1 + x(l + x)qn+a+k-'Dq}qL

{-:^-1) 

x (xqn+a+k-\l) = [n]^f>
+fc-1)(a;g

n+0+fc-1,l) 

and 

(3.4) {[n + a + k-1]- ^ ^ + xq^+^D,}^^(xq^1) 

= [n}qLia+k-V(xqn). 

Now, putting k = 1 and replacing x by xq~n~a in (3.3) and x by xq~n in (3.4), 
one can obtain neat forms of (3.3) and (3.4). 

Further, since we can write 

Tlq{xaeq(-x)} = T£q{xk • xm • xa~m-keq(-x)} 

and 
T£q{xaEq(x)} = T£q{xk • xm • xa~m~kEq(x)}. 

we have by making use of [7, (3.8)] with u = xm and v = xa~rn~keq(—x) in the 
former case and v = xa~rn~kEq(x) in the latter case 

xa+n(q)neq(-x)qL^+k-^(xqn+a+k-\l) 

= * * ! , ( " I ^r+r(r~nKn^m}T]:-;xqr{(xqT-m-keq(-xqr)} 
r=0 V7"^ 9 
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and 

x°+" (?)„£, ( z g " ) ^ * - 1 ) {xqn) 

= xkfl ("ì qkr+rir-nKZяЛ(x ГГ-m-kEq{xqr)}{T£>qx
m}. 

r=0 x ' 9 

Hence, we have 

(3.5) Д в + f c - 1 >(x« n + в + f c - 1 , l ) 

- Z_ ivл ^ n - r ( 9 ' i 
<«>-

and 

(3.6) 
n tлAj-fmN .~r(a—m) 

д-+*-D(_í») ̂ E^Mй—Д-T^tør). 
,=o (?) 

Putting m = 0 and A; = 1 in (3.5), we get 

(3.7) ^«)(_g-+-, l) = __ g~(l +x)r^{°_-1)(a!«2-+«-1,l). 
r=0 

Replacing x by .r^~a in (3.7), we get 

(3.8) ^ a ) N n , l ) = _(qa +x)rqLia-T
1)(xqn-\l). 

r=0 

Similarly, putting k = 1, m = 0 and replacing x by a:g~n in (3.6), we get 

oo 

(3.9) ^'w-E^i1-;1 '!-)-
r = 0 
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