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Czechoslovak Mathematical Journal, 47 (122) (1997), Praha 

ANOTHER PERRON TYPE INTEGRATION IN n DIMENSIONS AS 

AN EXTENSION OF INTEGRATION OF STEPFUNCTIONS 

JIŘÍ JARNÍK and JAROSLAV KURZWEIL,1 Praha 

(Received September 18, 1995) 

Abstract. For a new Perron-type integral a concept of convergence is introduced such that 
the limit / of a sequence of integrable functions /*., k € N is integrable and any integrable 
/ is the limit of a sequence of stepfunctions g^, k £ N. 

0. INTRODUCTION 

The density of the set of stepfunctions in a convergence space of Perron-type 
integrable functions is proved for a new Perron-type integration on n-dimensional 
intervals. The integration involved is strong in the sense that the set of integrable 
functions is rather restricted; on the other hand partial derivatives of differentiable 
functions are integrable. 

In Section 1 the integration is introduced, its basic properties are presented (the 

proofs are standard and are omitted or indicated). Moreover, the *equiconvergence 

is introduced and the main result is stated. In Section 2 two lemmas are proved and 

in Section 3 the proof of the main result is given; with some modifications it runs 

along the same lines as the proof of an analogous result from the preceding paper of 

the authors. 

1 This paper was supported by grant No 201/94/1068 of the GA of the Czech Republic. 
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1. T H E INTEGRATION AND ITS PROPERTIES 

The notation and concepts used are analogous to those in [1], [2]. Let 

(1.1) / = [Oi,bi] x . . . x [an,bn] C Rn. 

A finite set S = {(s, K)} is an L-system (on J) if s e I, K is an interval of the form 

(1.2) K = [ci,d!] x . . . x [ c n , d n ] c I 

for every couple (s,K) e S and if the intervals K are nonoverlapping (i.e. IntKi n 
IntK2 = 0 provided (sx,Ki),(s2,K2) e S, (s i ,K i ) ^ (s2,K2), si = s2 being 
admitted). If in addition, \JK = I then S is an L-partition (of I). \\t\\ is the 

maximum norm of t eUn. For t eUn, v >0 put V(t, v) = {x e Un; ||a: - t\\ ^ v}. 

dK, Int K and m(K) respectively denote the boundary, the interior and the Lebesgue 
measure of an interval K. If s G (Rn and if K is an interval of the form (1.2), then the 
diameters d(K),d(s,K) and the regularities regK, *reg(s,K) are defined as follows: 

d(K) = m a x { | | x - u | | ; x,y G K}, 

d(s, K) = max {\\x - y\\', x,y e K U {s}} , 

regK = miri{di — a; i = 1,2,... ,n}/d(K), 

*reg(s, K) = miri{di - c»; i = 1, 2 , . . . , n}/d(s, K). 

Let S = {(s,K)} be an L-system or L-partition, g e (0,1), A C I. S is called g-

*regular (A-tagged) if *reg(s,J0 > g (s e A) for (s,K) e S. Let S: A -r (0,1]; S is 
called a gauge. Let S be ^-tagged; S is called S-fine if K C V(s, S(s)) for (5, K) e S. 

1.1 Definition. A function / : I —> U is *integrable (over J) if for every e > 0 
and every g e (0,1) there exists a gauge S: I —> (0,1] such that 

^f(t)m(J)-Y^f(s)m(K) <e 
A E 

provided A = {(t, J)},S = {(s,K)} are 5-fine g-regular L-partitions of I. 

1.2 Note . The concept of an *integrable function / does not change if g is 

replaced by e in Definition 1.1. 

1.3 No te . If / is *integrable over I then there exists a unique */7 / G IR such 
that for every e > 0, g G (0,1) there exists a gauge S: I —> (0,1] such that 

Y,nt)m{J)-*[f\<e 
A Jl I 

provided A = {(t, J)} is a J-fine g-regular L-partition of I. 
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1.4 Note. Let / be *integrable over I. Then for any interval J C I the restric­

tion f\j is *integrable over J; put F(J) =*fj f\j. F is an additive interval function 

on I; it is called the primitive of / . 

1.5 Note . Let h: I -> (Rn be differentiable at every t G I. Then dh/dti is 
*integrable. 

Observe that 

(1.3) Qd(u,L) < d(L), regL > Q, Qn~l(d(L))n < m(L) 

if *reg(u, L) > Q. The above result can be proved in the same way as the correspond­

ing result in [5] since for any O-regular L-partition 6 = {(u,L)} of I we have 

Y^K(dL)d(u,L) ^ ^2n(c1(L)) n- 1D- 1d(L) ^ 2 n D " n ^ m ( L ) ^ 2nO"nm(I), 
0 0 0 

T-L(dJ) denoting the (n — l)-dimensional measure of the boundary of J, ri(dJ) ^ 
2n(d(J))n-1 . 

On the other hand, let p: [0,1] x [0,1] -•> R, p(t) = (-1)4*/i for t G [2"%2-*+1) x 
[2~~\ 2"H_1), p(t) = 0 otherwise; it can be proved directly from the definitions that p 

is D-integrable for every Q G (0,1), but p is not *integrable. 

1.6 No te . The integration is an extension of the Lebesgue integration. This 
follows immediately from the fact that / : I —> (R is Lebesgue integrable iff for every 
e > 0 there exists a gauge 6: I —> (0,1] such that 

£/(*MЈ)-£/(*)"»(#-) ^ £ 

A E 

provided A = {(t,j)},E = {(s,K)} are S-nne L-partitions of I. 

This result goes back to E. J. McShane [4] (see also [3], Theorem 7.6 or [6], 
Chapter 4, Definition 1-1 and a comment before Corollary 6-5). 

1.7 Lemma. Let f: I —> (R be *integrable and let F be its primitive, N C I, 
m(N) = 0. Then 

(1.4) for every X > 0, Q G (0,1) there exists a gauge 7: IV —>• (0,1] such 
that 

E lIwi <A 

provided E = {(s, K)} is a j-hne Q-*regular N-tagged L-system. 
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Lemma 1.7 is a consequence of the Saks-Henstock Lemma for the integration and 
of [2], Lemma 1.8. 

For an additive interval function G on I let DG be the set of s G I such that G is 
regularly differentiate to G'(s) at s (cf. [2] Definition 2.6), NG = I\ DG. 

1.8 Note . Let Q G (0,1) and let g: I -> R be *integrable, F being its primitive. 
Then g is ^-integrable and F is its primitive with respect to the ^-integration as well 
(cf. [2], Definition 1.2). This is an immediate consequence of the definitions. 

1.9 Lemma. Let g be *integrable over I and let F be its primitive. Then 

m(JV>) = 0, F'(s) = g(s) at almost every s e I. 

Lemma 1.9 follows immediately from Note 1.8 and [2], Theorem 2.8. 

1.10 Theorem. Let f: I -> R and let F be an additive interval function on I. 
The function f is *integrable and F is its primitive iff there exists N C I such that 
NF C N, m(N) = 0,F'(t) = f(t) forteI\N and (1.4) holds. 

P r o o f . The only if part follows by Lemmas 1.7 and 1.9. The if part follows 

from Definition 1.1 and [2], Lemma 1.8. • 

1.11 Definition. Let /*.: I -> R be *integrable, Fk being its primitive for k G 
N , / : I —• R. The sequence fk is said to be *equiconvergent to / if there exists 
IV C I, m(N) = 0 such that 

(1.5) fk(t)->f(t) for k->co,rGI\N, 

(1.6) for every e, Q G (0,1) there exists a gauge 6"i: I \ N -> (0,1] such 

that 

Y,\Fk(J)-fk(t)m(J)\^e 
A 

for every system A = {(£, J)} which is o^-fine, D-*regular and I \ N 

tagged, and for every k G N, 

(1.7) for every e, Q G (0,1) there exists a gauge o*2 : 1V -> (0,1] such that 

DF*(J)i<£ 

A 

for every system A which is oVfine, o-*regular and IV-tagged, and 

for every k G N. 
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1.12 Theorem. Let fk: I -> IR be *integrable for k e N and *equiconvergent to 

f: I -> (R. Then / is *integrable. Moreover, if Fk is the primitive of fk and F is the 

primitive of f, then 

(1.8) Fk(L) -> F(L) for k -> oo and every interval L C I. 

P r o o f . Since the sequence /& is *equiconvergent to / it may be assumed without 

loss of generality that fk(t) = 0 for t G N, k G N. Let e > 0, Q G (0,1) and let Sx 

and u*2 fulfil respectively (1.6) and (1.7). Put 

(8i(t) for teI\N, 
S(t) = { 

\S2(t) for tGiV. 

Let A = {(t, J)},H = {(s,K)} be o"-fine D-*regular L-partitions of I. Since Ffc(I) = 
5^.F*( J) = ^ F^(I^) for jfe G N, we have 

J2h(t)m(J)-J2fk(s)m(K) ^ Y, \h(t)m(J)-Fk(J)\^ £ \Fk(J)\ 
A E A,teI\N A,t£N 

+ £ \Ms)m(K)-Fk(K)\+ £ |F,(/0| 
E,seI\N E,seN 

and the *integrability of / is obtained by passing to the limit for k -> oo. The proof 

of (1.8) is standard. • 

A function g: I —> (R is called a stepfunction, if there exists a partition 0 = 
{(u, L)} of I such that g is constant on Int L for any (u, L) G 0 . 

1.13 Theorem (Main Result). Let g: I -> (R be *integrable. Then there exists 

a sequence of stepfunctions gk, k G r>J which is *equiconvergeiifc to g. 
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2. AUXILIARY RESULTS 

2.1 Lemma. Let J, K C Rn be intervals, K being of the form (1.2), s G 
Q G (0,1), K C J, *reg(s,K) > Q, regJ > 1/2. Then 

(2.1) d ( s , J K ( i + l )d(J) , 

(2.2) *reg(5,J)> 
2 ( e + l ) ' 

P r o o f . Since *reg(s,K) > Q,K C J, we have Qd(s,K) < d(K) ^ d(J). Obvi­

ously d(s, J) ^ d(s,K) + d(J) ^ (^ + l)d(J) and (2.1) holds. Since regJ > \ we 

have *reg(s, J) > \d(J)/d(s, J) and (2.2) follows from (2.1). • 

For W C IRn let x(W): Un -> {0,1} be the characteristic function of W. Similarly 
for C C R let x(C): R -> {0,1} be the characteristic function of C. Let I and K C I 

be intervals of the form (1.1) and (1.2), respectively Put 

(K(i))0 = i[Ci'di) iidi<bh 

[ [ci,di] if di = bi, 

and 

(2.3) IY-° = ( . r r ( l ) ) 0 x . . . x (K(n))° 

(if L, M are nonoverlapping intervals then L° and M° are disjoint). 

2.2 Lemma. Let S, A be intervals, A C S C I, Q G (0,1), *reg(s,S) > Q. Let G 

be an additive interval function on I. Then there exist intervals Zj C I and numbers 

Q e {-1,0,1} forj G { l , 2 , . . . , 3 n } such that 

(2.4) * reg ( S ,Z j )>^ /2 , 

(2.5) x(A°)=J2CjX(Z°), 
3 = 1 

3 n 

(2.6) G(A) = ^ 0 C ( Z j ) . 
3 = 1 

P r o o f . Let S and A be of the forms 

5 = 5(1) x . . . x S(n) = [(7i,n] x . . . x [c/n,rn], 

>1 = .4(1) x . . . x A(n) = [ai,j8i] x . . . x [an,/3n]. 
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If a ^ on < \(ai + n) ^ /3i ^ n, put Qi = {1,2,3}, Yx(i) = [au fa]yY
2(i) = 

[ai,Ti], Y3(i) = [Gi,Ti], Q = 1,C? = 1, C? = - 1 , so that 

(2.7) x((^))°)= £ crx((^w)°). 

If r/, ^ CXi < ^ < \(Gi + Ti) put Q, = { 1 , 2 } , Yl(l) = [L^T,], Y2(i) = [ f t , ^ , 

£ = l, (2 = - l . Then (2.7) holds. 

If \(<Ji + n) ^a{< fc^ TU put Qi = {1,2}, Yl(i) - [oi,0i], Y2(i) = [ai,a{], 

$ = 1, £? = - 1 , z e {1 ,2 , . . . , n } . Then (2.7) holds again. 

For q = (g i , . . . ,g n ) G Q = Qi x . . . x Q n put y = Y « ( l ) x . . . x y ^ ( n ) , 

(9 = («x • C|2 • •. • • Cn
n • It follows from (2.7) that 

x(A°) = £ c M ( ^ ) 0 ) -
qeQ 

Put 7 = # Q . Let <p be a bijection of Q onto {1,2, ...,7} and put Z^q) = y 9 , 
Cv>(9) = C9- For j G {7 + 1,7 + 2 , . . . , 3n} put Q = 0, Zj = 5 . Then (2.5) holds and 
(2.6) follows from (2.5). 

Finally, 

* , v < n _ min{d(y^( i ) ) ; i = l , 2 , . . . , n } ^min{r{ - c/i; i = 1,2,... ,n} 
reg( 5 , r ; - d ( ^ y g ) ^ rf(^5) 

^ 2^ 

It follows that (2.4) holds. • 

3. PROOF OF MAIN RESULT 

Let g: I —» U be *integrable and let F be its primitive. F is regularly differentiate 
almost everywhere and (1.4) holds. Let Q G (0,1). Since g is £-integrable and F is 
its primitive with respect to the ^-integration (cf. Note 1.8), F is continuous at any 
interval L C Int I, i.e. for every a > 0 there is a r > 0 such that \F(K) — F(L)\ < a 
for every interval K C I satisfying m(K\L) -\-m(L\K) ^ r (cf. [2], Theorem 2.1 and 
the comment at the beginning of Section 3 of [1]). All assumptions of [1], Lemma 2.6 
being fulfilled (cf. (1.4)) it may be concluded that g is measurable and there exist 

NCІ, NDNғUдІ, ţЄ (oĄ), 
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V- [0,f] -> [0,1) increasing, r]{a) > a for a e ( 0 ,0 , -im r\{o) = 0, 
tr—•()+ 

CJ: I \ IV -> (0, f] measurable, K(*,a;(0) C I for t e I \ N such that 

(3.1) \F(K)-g(t)m(K)\^ri(v)vn 

for every teI\N,i>e (0,a;(*)], Iv" C IntV(J,i/) (K being an interval). 
Observe that (3.1) implies that 

F'{t)=g{t) for teI\N. 

Moreover, (1.3) holds. Let us choose sequences 

(3.2) - > n > r2 > . . . > 0, 0 < Ti+i < _ , / ' , for i e N, 
z z(l + r;) 

(3.3) £ ̂  £i > 6 > • • •, lim £ = 0, ([0, £] being the domain of 77). 
t—>oo 

There is a measurable CJI : I\N -> (0,1] such that 

(3.4) IsWI < W-WiW)]"* 

for t e I\N. Let us set 

(3.5) 4 W = m i n { i a , ^ i ( r ) , u ; ( 0 } 

for £ E I \ IV, k e M. Referring to (1.4) let us choose Sk{t) for t E IV such that 

(3.6) Sk{t) < ^ 

and 

(3-7) £ |F(i^) | ^ £fc 

provided S = {(s , I0} is a oVfine TA:+i-*regular N-tagged L-system, k e M. The 
desired sequence of stepfunctions gk is defined as follows: For k E N let us choose 
a 5fc-fine |-*regular partition Ak = {(r, J)} of I with t E J for (*, J) E A* (cf. [2], 
Lemma 1.1) and for 5 E I let us set 

/ x / x F(J) 

(3.8) 9k(s) = -±± 

564 



where J is such that (t, J) G A^ for some t G I and s £ J° (cf. (2.3)); evidently 
there is a unique J with the property. The function gk is *integrable (see Note 1.6); 
let Gk be its primitive function, k EN. For any interval M C I we have 

(3.9) G*(M)= ^ ^ m ( J H M ) . 

The result to be established can be formulated as follows. 

3.1 . Theorem. The sequence {gk} is *equiconvergent to g. 

It is a consequence of the following two propositions. 

3.2. Proposition. For every e > 0 and g G (0,1) there are l\ G N and di: 
N -> (0,1] such that 

(3.10) Ei=£|G*(L)|^ 
e 

for every d\-Rne g-*regular N-tagged L-system 0 = {(u, L)} and every k^l\. 

3.3. Proposition. For every e > 0 and g G (0,1) there are /2 G N and i?2: 
I \ N -> (0,1] such that 

(3.11) E2 = ̂  \Gk(L) - gk(u)m(L)\ ^ e 
e 

for every $2-fine g-*regular I \ N-tagged L-system 0 = {(u,L)} and every k ̂  /2. 
Moreover, 

(3.12) #*.($) -> g(s) for s e I\N, k -> oo. 

3.4. Convention. To simplify the formulas we will assume (without loss of 
generality) that m(I) ^ 1. 

3.5. Lemma. Let j G N, and let 0 = {(u,L)} be a Sj-hne Tj-*regulai N-tagged 
L-system. Then 

(3.13) 5 > u p { | F ( / 0 | ; K c L K 3 % - ; 
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for the partition Ak we have 

(3.14) ] £ 8up{\F(K)\;KcJ}^3nZk 

Afc,tGiV 

(K denoting an interval in (3.13) and (3.14) and the summation in (3.14) being 

restricted to (t, J) such that t G N). 

P r o o f . For every (u,L) G 0 let X(u,L) C L be an interval. By Lemma 2.2 
there exist intervals Z{(u, L) C L and numbers 0(u,L) G {-1,0,1}, i G {1 ,2 , . . . , 3n} 
such that *reg(u,Zi(u,L)) > r^+i and 

3" 

(3.15) F(X(u,L)) = Y,Ci(u,L)F(Zi(u,L)). 
i=l 

Now 3>i = {(u,Zi(u,L)\ (u,L) G 0 } is a oj-fine r^+i-regular jY-tagged L-system so 
that 

^\F(Zi(u,L))\^Zj 

(cf. (3.7)) and (3.13) holds by (3.15). The proof of (3.14) is quite analogous since 
AA: is ^-regular and Tk+1 ^ \ (cf. (3.2) and (3.7)). • 

P r o o f of P r o p o s i t i o n 3.2. Given e > 0 and Q G (0,1), let us choose 
j G N such that 

(3.16) T j < A (3 + 2 -18" )^ < -

(cf. (3.2) and (3.3)) and denote 

(3.17) r(u) = min{k G N ; & < TJ+15J(U)} for u G IV. 

For every k G N there is an open set Uk C Un such that N cUk and 

^ isn ™lI/ \*c R R - niin{m(J); (*, J) G Afc} 
(3.18) m ( % ) < 6 A , ^ - m a x { i + | F ( J ) | ; ( , , J ) G A f c } -

For every k G N there is a gauge uk: N -± (0,1] such that 

(3.19) ^(l i , jLifc(ti)) C Uk for i/ G N. 

We choose a gauge t?i: 1V -> (0,1] satisfying the condition 

(3.20) i M u ) < f i * M f o r k < r ( u ) , 

i?i(u) ^SJ(U) fort/G iV. 
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Now we seek estimates leading to (3.10). Let 0 = {(u,L)} be a t?i-fine o-*regular 

IV-tagged L-system. For k EN we have 

£ i < r i + r 2 = £ \Gk(L)\+ Yl lGfe(L)l-
3(t,J)GA f c ,LCJ L\J#0,V(t,J)GAfc 

By virtue of (3.9) we obtain 

r 1 < r . + r . - - ; £ H W I 2 ^ 
Afc e 

3(t ,J)€A f c ,LCJ 
k<r(u) 

+ £ £ iадi 
ra(L П J) 

m(J) 
AA. e 

3(t,J)€A|L.,LCJ 
fc^r(-u) 

If (£,J) G Afc, (w,i) G 0 , fc < r(ix), L C J then L C Uk since u G IV (cf. (3.19), 
(3.20)), and consequently (cf. (3.18)) 

(3.21) T3 ̂  /3"1 Y, E m W < Kl E m ( j n ^ ) < &• 
Afc e Afc 

3(t,J)6Afc,LCJ 
k<r(u) 

We proceed to T4. For (t, J) G Afc let Q,(t, J) be the set of (u,L) G 0 such that 
L C J, k ^ r(w). We have 

(3.22) r4 < x: rai £ ^ S r * E |F(j)|-
Afc n ( t , j ) v ;

 Ak 

3(u ,L )€6 ,LCJ 
fc^r(u) 

Since L C J, *reg(u,L) ^ Q ^ Tj,regJ ^ | , we have by (2.1) and (3.2) 

d(u, J) ^ (— + l)d(J) < — d ( J ) . 
\ T j / Tj+i 

Moreover, for (t, J) G A^ and k ^ r(u) we have (see (3.6), (3.17)) 

d(u,J) <*£k< Tj+\8j(u) 

so that 
d(u, J) < ôj(u), J C V(u, Sj(u)) 
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and by (2.2) and (3.2) 
*reg(u,J) ^ Tj+x. 

Since u G N, we obtain from (3.22) and (3.7) 

(3.23) r 4 ^ 0 -

Now we shall estimate V2- Using (3.9) we obtain 

r 2 ^ r 5 + r 6 = ^IFXL)l 

'F(J) +E E (.úł)m<-LnJ)-F{LnJ)) 
L\Ј#0,V(t,Ј)ЄA f c 

0 is <$rfine and r r *regular (cf. (3.20) and (3A6)). Therefore (cf. (3.7)) 

(3.24) r 5 ^ ^ . 

Further, we can write 

r 6 ^ r 7 + r 8 = £ | ^ ( ^ m ( L n J ) - F ( L n J ) ) 
e A*.-

L\J^0,V(t,J)6A f c 

teN 

+ E |EQ»<-"fl-'(-"fl)|-
0 Afc 

L\J-^0,V(t,J)GAA; 
tG1\N 

The first sum can be divided into three terms: 

r 7 <r 9 + rio + r11 = E ^ r r v E m ( L n J ) 
tT m(J) e 

+ E E l^nJ ) | + ]T £ iF(LnJ)i-
e AA. Afc e 

d{J)^d{L) teN d{L)>d{J) 

By (3.7) we obtain 

(3.25) T9 ^ & 
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since the inner sum does not exceed m(J) . Further, 

r 1 0 ^ J2max{\F(K)\; K C L} • #{(«, J) <E Afc; JnL 7- 0,d(J) ^ d(L)}. 
e 

By [1], Lemma 2.5 the number of elements of A^ in the summands on the righthand 

side of the inequality has the upper bound 3 n 2 n - 1 which together with (3.13) yields 

(3.26) r 1 0 < ( 1 8 ) n & . 

In a similar manner, with the role of A* and 0 interchanged, taking into account 
that regL ^ g for (u, L) G 0 and making use of (3.14) and of [1], Lemma 2.5 again, 
we obtain 

(3.27) Vn ^ ] £ sup{|F(H); H C J} • #{(u,L) € 0 ; L n J ?- 0,d(L) > d(J)} 
Afc;tGN 

Returning to r 8 , note that t £ J and reg J ^ | for (£, J) £ A*;, fc € N so that (3.1) 
and (3.5) yield 

(3.28) \F(J) - g(t)m(J)\ < r,(d(J)) (d(J))n ^ 2 n -y<Z(J)) ro(J) , 

\F(L n J) - s(t)m(L n 7)| ^ 2n-1j7(d( j))ro( J) 

provided t £ I\N,L being any interval. Hence 

(3.29) ^ T S - W L n J) - F(L n j ) | < 2n*7 (d(j))m(j). 
ro(j) I 

Now we can write 

ro(J) 
Г 8 ^Г 1 2 + Г 1 3= £ £ \ÿ±m(LnJ)-F(LnJ) 

д k  tei\N LnJ?-0 
d(L)ž[v(d(J))]&d(J) 

ғџ). 

d(L)<[V(d(J))]&d(J) 

+ £ £ \7zmm(Lnr>-F(LnJ) 
0 Afc;ť61\N 

ro(Ј) 

Estimating Ti 2 with help of (3.29) and [1], Lemma 2.5 we arrive at 

r i 2 ^ 2 2Md(J))™(J) ' #{(",£) € ©; i n J # 0,d(L) ̂  [f?(d(J))]*d(J)} 
Afc;t61\IV 

< 53 2n77(d(J))m(J)3n^1-n[77(d(J))]-". 
Afc;t<=/\/V 
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By (3.5) and Convention 3.4 we obtain 

(3.30) r ^ e V " " ^ * ) ] 1 . 

In order to estimate Ti3 we use the first inequality (3.28): 

r i 3 ^ r u + r ^ + Vi6 = J2 IffWI E m{Lnj) 
Afc 0 

tei\N L\J^0?-LnJ 
d(L)<h(d(J))]-fird(J) 

+ 2 n _ 1EE^WJ))m(L n J) + E E i^(LnJ)i-
A*., e e AjL. 

d(J)>d(L) 

Now (3.4), (3.5) imply 

r-4 < E [^(J))] '* E m(LnJ). 
Afc 0 

LHJ-^0^L\J 
d(LK[T,(d(J))]-&d(J) 

Taking into account that reg J ^ | and assuming 

(3-31) [-(&)]* < f 

we conclude by (3.5) and [1], Lemma 2.4 (cf. Convention 3.4) that 

(3.32) T14 ^ J " [V(d(J))]-^K2n-1m(J)[V(d(J))]^ 

Evidently, 

(3.33) Vis ^ 2n~1J2ri{d(J))m(J) <: 2n~lr1^k) 

and finally, by [1], Lemma 2.5 and by (3.13), 

(3.34) Ti6 ^ ^sup{ |F ( Iv-) | ; K C L} • #{(*, J) € A, ; J n L # 0,d(J) > d(L)} 
0 

^ 3 n 2 n ~ 1 3 % - ^ (18)%-. 
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Putting together the estimates (3.21), (3.23)-(3.27), (3.30), (3.32)-(3.34) we obtain 

Sj < (3 + 2 • (18)*% + (1 + 9 V ~ n ) f c + 6nQ1-n[r,(^)]i 

+ K2n-1[r,(tk)]&+2n-1r1(Zk). 

This together with (3.16) implies that Proposition 3.2 holds for k ^ h where h is 
such that (3.31) and 

(1 + 9 V " B ) & + 6 V _ n [ » j ( & ) ] i +«2"-1[i/(&)]-V + 2 " - 1
J ? ( 6 ) < | 

hold for every k ^ l\. D 

P r o o f of P r o p o s i t i o n 3.3. Given e > 0 and g G (0,1), let us choose 
h G N such that 

(3.35) a + (1 + 6n)^-2 nr7(&) < | , r^ < <? 

and denote 

(3.36) I?(s)=min{fcGN; ( l + - ) & < o\(s)}. 

For k G N let a gauge 7*.: I \ IV —> (0,1] be such that 

(3.37) Yl lG*(*) " S*(*M*)I < & 

is satisfied provided S = {(s, If)} is a 7fc-fine .O-*regular (I \ N)-tagged L-system 
(cf. Note 1.6). We choose a gauge ti2 : I \ IV -> (0,1] satisfying the condition 

(3.38) 02(s) ^ ik(s) for k < R(s), 

02(s) < W s ) f o r s G I \ N . 

According to the definition of the functions gk we have gk(s) = F(K)/m(K) where 
(z,K) e Ak, s e K°. If, moreover, s 6 I\N, k ^ R(s), then IT C V(z,Sk(z)), 
d(K) ^ 26k(z) ^ & ^ ^ ( s ) ^ w(s) (see (3.5) and (3.36)), hence K C \ 7 ( s A 0 0 ) C 
V(5,u;(s)), and putting t = s,v = d(K) in (3.1) and taking into account that 
regIf ^ \, m(K) > 2 1" n [d( I0] n we obtain 

F(K) - g(s)m(K)\ ^ 2n-177(d(If))m(IO 

and consequently, 
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(3.39) \gk(s)-g(s)\^2n-1
v((;k). 

Now we start estimates leading to (3.11). Let 0 = {(u, L)} be a t?2-fine £-*regular 
(/ \ At)-tagged L-system. For k € M we have 

S 2 < r 1 7 + r 1 8 = £ \Gk(L)-gk(u)m(L)\+ £ \Gk(L) - gk(u)m(L)\. 
6 © 

k<R(u) k^R(u) 

By (3.38) and (3.37) we have 

(3.40) TIT ^ &. 

Further, we can write 

r i 8 ^ r 1 9 + r 2 0 = £ \g(u) - gk(u)\m(L) + £ |G*(L)-0(tx)ro(L)| 
© 0 

fc^R(ii) k^R(u) 

and by virtue of (3.39) we have 

(3.41) Vi9 ^ 2n"1f,(&) 

(cf. Convention 3.4). Proceeding to T20 we estimate it as 

r20 < r2i + r22 = £ \F(L) - g(u)m(L)\ 
© 

+ E E |£$™(LnJ)-F<LnJ)-
6 A* 

A^R(u) 

To estimate r 2 i observe that (cf. (1.3)) 

(3.42) m(L) > Q
n~l(d(L))n > Q2^1 (d(u,L))n. 

Moreover, L C V(u,i92(u)) so that (cf. (3.5) and (3.38)) 

(3.43) d(u, L) ^ 2d2(u) < 2u(u). 

Obviously L C V(u,d(u,L)). Applying (3.1), (3.42) and (3.43) we have 

(3.44) \F(L) - g(u)m(L)\ ^ rj(d(u, L))(d(u, L))n ^ 77(2^(n))^-2 nm(L) 
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and (cf. (3.38), (3.5) and Convention 3.4) 

(3.45) r 2 i ^ Ql-2n<n(Zh)-

The term T22 is divided into three sums: 

Г22 ^ Г23 + Г24 + Г25 = 2 ^ 2 ^ 

d(J)> 

\F(J) 

Afc;fc^R(u) 
dЏ)^d(L) 

\F(J) 
\m(J) m(LnJ)-F(LnJ)\ 

Ak\k>R(u) 
t£І\NҖL)>d(J) 

Ak;k>.R(u) 
teN,d(L)>d(J) 

m(J) 

F(J) 

m(LnJ)-F(LnJ)\ 

m(J) 
m(L П J) - F(L П J) 

where 

Г23 ^ Г26 + Г27 

-E Ľ \F(J) 
\m(J) 

- g(u)\m(LГ\ J) 
e Ak]k^R(u) 

d(J)>d(L) 

+ E E lg(̂ MLnJ)-F(FnJ)|. 
e Afc 

d(J)>,d(L) 

Let us estimate T26- The partition A& is ^-fine so that d(J) ^ 25k(t) ^ & by 
(3.5). If a summand in T26 is nonzero then necessarily L D J 7-: 0, which implies 
J C V ^ d ^ Z O + dtJ)). Taking into account (1.3) and (3.36) together with d(L) ^ 
d(J) and k ^ R(u) we get d(u, L) + d(J) ^ (l + ±)d(J) ^ (l 4- ±)& < ^(u) < a;(ii) 
so that by (3.1) 

F(J) - g(u)m(J)\ š v((l + ^)d(J)) [(l + ^ ( - l ) ] " 

<2-(l + I)n,((l + i)&)m(J) 

QJ / I A £ 

£/" VV Q 

since regJ ^ |,m(J) > 21~n(d(J))n. It follows that 

(3.46) г.o-ючюь)-
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For the nonvanishing summands of V27 we have by (3.1) and (3.43) 

\F(LnJ)-g(u)m(LnJ)\ ^ri(d(u,L))gl-n(d(u,L))n. 

Moreover, d(u,L) ^ 2d2(u) ^ 8h(u) ^ §& (cf. (3.38) and (3.5)) so that (cf. (1.3)) 

T27 < Ql~2n Y, ri(tih)m(L)#{(t, J) G Ak ; J n L ± 0, d(J) > d(L)}. 

Observe that regJ > | . By [1], Lemma 2.5 for every (u,L) G O the number of 

elements of A* on the righthand side of the inequality does not exceed 3 n 2 n _ 1 and 

so 

(3.47) Г27 < 6V_Л*»?(6.)-

Returning to T24 and taking into account that reg J > \,m(J) > 21 n(d(J))n we 

get by (3.1) 

\F(J) - g(t)m(J)\ ^ 2n-lr,(d(J))m(J), 

\F(L n J) - g(t)m(L n J)\ ^ 2n~1ri(d(J))m(J), 

which yields 

F(J) 

m(J) 
m(LПj)-F(LnJ)\ sj 2ní?(d(Ј))m(Ј) 

and 

r 2 4 ^ 2 n ^ r ? ( d ( J ) ) m ( J ) • #{(tx,L) G 6 ; L n J # 0,d(L) > d(J)}. 

By [1], Lemma 2.5 for every (£, J) G A* the number of the elements of 0 on the 

righthand side of the inequality does not exceed 3nD1_n. It follows that 

(3.48) 

Finally, we write 

Г 2 4 < 6 V Л ( 6 ) -

V25 ^ V28 + V29 = 2_^ Z^Ѓ 

Ak;tЄN 

\ПJ)\t 

m(J) 
г(LnJ) + Y £ \F(LПJ)\. 

Лk;teN 
d(L)>d(J) 

By (3.7) 

(3.49) г28< E iВДiĽ^Sг^ E ra<û. 
Ak,tЄN V ' AA;;tЄN 
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Finally, 

r29 ^ 5Z msx{\F(K)\\K C J} • #{(u,L) G 0 ; Ln J / <b,d(L) > d(J)}. 
Ak;teN 

As above, for every (£, J) G A/- the number of elements of 0 on the righthand side 

of the inequality does not exceed 3 V " n , which combined with (3.14) yields 

(3.50) r 2 9 ^ V " n & . 

Putting together the estimates (3.40), (3.41), (3.45)-(3.50) we obtain that 

2 2 < & + 2n-1iy(&) + ff1-2niy(&) 

+ 2n~l (l + j ) \ ( ( l + j)&) + 6V-2n!j(&) 

+ 6 n ^ 1 - n 7 ? ( a ) + a + 9 n D 1 - n a . 

It follows by (3.35) that Proposition 3.3 holds provided /2 is so large that 

(2"-1 + e V 1 - " ) ^ ) + (1 + 9 V - n ) & + 2"-1 ( l + - ) % ( ( - + i ) & ) < | -

• 
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