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p

Abstract. For a new Perron-type integral a concept of convergence is introduced such that
the limit f of a sequence of integrable functions fi, k € N is integrable and any integrable
f is the limit of a sequence of stepfunctions gx, k € N.

0. INTRODUCTION

The density of the set of stepfunctions in a convergence space of Perron-type
integrable functions is proved for a new Perron-type integration on n-dimensional
intervals. The integration involved is strong in the sense that the set of integrable
functions is rather restricted; on the other hand partial derivatives of differentiable
functions are integrable.

In Section 1 the integration is introduced, its basic properties are presented (the
proofs are standard and are omitted or indicated). Moreover, the *equiconvergence
is introduced and the main result is stated. In Section 2 two lemmas are proved and
in Section 3 the proof of the main result is given; with some modifications it runs

along the same lines as the proof of an analogous result from the preceding paper of
the authors.

! This paper was supported by grant No 201/94/1068 of the GA of the Czech Republic.
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1. THE *INTEGRATION AND ITS PROPERTIES

The notation and concepts used are analogous to those in [1], [2]. Let
(1.1) I =Ja1,b1] X ... X [an,bn] C R™.
A finite set = = {(s, K)} is an L-system (on I) if s € I, K is an interval of the form
(1.2) K =[ci,di] X ... X [cn,dn] C I

for every couple (s, K) € E and if the intervals K are nonoverlapping (i.e. Int K; N
Int Ko = @ provided (s1,K1),(s2,K2) € E, (s1,K1) # (s2,K2), s1 = sz being
admitted). If in addition, |JIK = I then Z is an L-partition (of I). ||t|| is the
maximum norm of ¢ € R™. For t € R*, v > 0 put V(t,v) = {z € R"; ||z — t|| < v}.
0K, Int K and m(K) respectively denote the boundary, the interior and the Lebesgue
measure of an interval K. If s € R™ and if K is an interval of the form (1.2), then the
diameters d(K), d(s, K) and the regularities reg K, *reg(s, K) are defined as follows:

d(K) = max{||z - y||; z,y € K},
d(s, K) = max {llz — yll; 2, € K U {s}},
reg K =min{d; —¢;; i1 =1,2,...,n}/d(K),
*reg(s, K) =min{d; — ¢;; 1 =1,2,...,n}/d(s, K).
Let 2 = {(s,K)} be an L-system or L-partition, ¢ € (0,1),A C I. E is called o-
*reqular (A-tagged) if *reg(s,K) > o (s € A) for (s,I{) € Z. Let §: A — (0,1]; 0 is
called a gauge. Let E be A-tagged; Z is called d-fine if K C V' (s,4(s)) for (s,K) € Z.

1.1 Definition. A function f: I — R is *integrable (over I) if for every € > 0
and every g € (0,1) there exists a gauge §: I — (0, 1] such that

INIOLICEDD f(s)m(K)‘ <e
A =

provided A = {(¢,J)},Z = {(s, K)} are é-fine p-regular L-partitions of I.

1.2 Note. The concept of an *integrable function f does not change if g is
replaced by € in Definition 1.1.

1.3 Note. If f is *integrable over I then there exists a unique *[, f € R such
that for every € > 0,0 € (0,1) there exists a gauge §: I — (0, 1] such that

5 som) —f f‘ <e

provided A = {(¢,J)} is a d-fine p-regular L-partition of I.
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1.4 Note. Let f be *integrablé over I. Then for any interval J C I the restric-
tion f | ; 1s *integrable over J; put F(J) =* [, f| ;- F is an additive interval function
on I; it is called the primitive of f.

1.5 Note. Let h: I — R™ be differentiable at every ¢t € I. Then Oh/dt; is
*integrable.

Observe that
(1.3) od(u,L) <d(L), regL>p, ¢" '(d(L))" <m(L)

if *reg(u, L) > p. The above result can be proved in the same way as the correspond-
ing result in [5] since for any p-regular L-partition 8 = {(u, L)} of I we have

Y _H(OL)d(u,L) < Y 2n(d(L))" o7 d(L) < 2n07" Y m(L) < 2ne~"m(I),
4 [ [

H(8J) denoting the (n — 1)-dimensional measure of the boundary of J, H(8J) <
2n(d(J))™1.

On the other hand, let p: [0,1] x [0,1] = R, p(t) = (-1)*4%/i for t € [27%,27"+1) x
[27%,27*1), p(t) = 0 otherwise; it can be proved directly from the definitions that p
is p-integrable for every g € (0,1), but p is not *integrable.

1.6 Note. The *integration is an extension of the Lebesgue integration. This
follows immediately from the fact that f: I — R is Lebesgue integrable iff for every
€ > 0 there exists a gauge 6: I — (0,1] such that

<e

S fOmI) = 3 fls)m(E)
A =

provided A = {(¢,4)},E = {(s, I{)} are é-fine L-partitions of I.

This result goes back to E. J. McShane [4] (see also [3], Theorem 7.6 or [6],
Chapter 4, Definition 1-1 and a comment before Corollary 6-5).

1.7 Lemma. Let f: I — R be *integrable and let F be its primitive, N C I,
m(N) =0. Then

(1.4) for every A > 0, ¢ € (0,1) there exists a gauge v: N — (0,1] such
that

d_IFE)I<A
provided E = {(s, K)} is a y-fine p-*regular N-tagged L-system.
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Lemma 1.7 is a consequence of the Saks-Henstock Lemma for the *integration and
of [2], Lemma 1.8.

For an additive interval function G on I let Dg be the set of s € I such that G is
regularly differentiable to G'(s) at s (cf. [2] Definition 2.6), Ng = I\ Dg.

1.8 Note. Let p € (0,1).-and let g: I — R be *integrable, F being its primitive.
Then g is g-integrable and F' is its primitive with respect to the g-integration as well
(cf. [2], Definition 1.2). This is an immediate consequence of the definitions.

1.9 Lemma. Let g be *integrable over I and let F' be its primitive. Then

m(Np) =0, F'(s) = g(s) at almost every s € I.

Lemma 1.9 follows immediately from Note 1.8 and [2], Theorem 2.8.

1.10 Theorem. Let f: I — R and let F be an additive interval function on I.
The function f is *integrable and F is its primitive iff there exists N C I such that
Nrp CN,m(N)=0,F'(t) = f(t) fort € I \ N and (1.4) holds.

Proof. The only if part follows by Lemmas 1.7 and 1.9. The if part follows
from Definition 1.1 and [2], Lemma 1.8. O

1.11 Definition. Let fr: I — R be *integrable, Fy being its primitive for k €
N, f: I = R. The sequence fi is said to be *equiconvergent to f if there exists
N c I,m(N) = 0 such that

(1.5) fe(t) = f(t) for k— oco,t € I\ N,

(1.6) for every €,0 € (0,1) there exists a gauge é;: I \ N — (0,1] such
that
SOIF) - fem()| < €

A

for every system A = {(t,J)} which is é;-fine, p-*regular and I \ N
tagged, and for every k € N,

(1.7) for every ¢, 0 € (0,1) there exists a gauge d: N — (0, 1] such that

S IF(D)] <€

A

for every system A which is d-fine, p-*regular and N-tagged, and
for every k € N.
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1.12 Theorem. Let fi: I — R be *integrable for k € N and *equiconvergent to
f: I — R. Then f is *integrable. Moreover, if F}, is the primitive of fi and F is the
primitive of f, then

(1.8) Fy(L) —» F(L) for k — oo and every interval L C I.

Proof. Sincethe sequence fi is *equiconvergent to f it may be assumed without
loss of generality that fx(t) = 0fort € N, k € N. Let € > 0, ¢ € (0,1) and let §;
and 9, fulfil respectively (1.6) and (1.7). Put

(51(t) for tGI\N,
o) = {62(t) for te N.

Let A = {(t,J)},E = {(s, K)} be d-fine g-*regular L-partitions of I. Since Fi(I) =
> Fi(J) =) Fu(K) for k € N, we have
a g

ka<t)m(J)—2fk(s)m(K>‘< T 1fm) - B+ Y 1R
A

= AteI\N AteN

+ Y fe(s)m(E) — F(K)| + Y |Fe(K))

E,s€I\N E,5€N
< d4e

and the *integrability of f is obtained by passing to the limit for kK = co. The proof
of (1.8) is standard. O

A function g: I — R is called a stepfunction, if there exists a partition ®@ =
{(u, L)} of I such that g is constant on Int L for any (u,L) € ©.

1.13 Theorem (Main Result). Let g: I — R be *integrable. Then there exists
a sequence of stepfunctions gi, k € N which is *equiconvergent to g.
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2. AUXILIARY RESULTS

2.1 Lemma. Let J,K C R™ be intervals, K being of the form (1.2), s € R™
0€(0,1), K CJ, *reg(s,K) > o, reg J > 1/2. Then

)

1
2.1) d(s, J) < (E +1)d(J),
(2.2) *reg(s, J) > 2(gﬁ— o

Proof. Since *reg(s,K) > o, K C J, we have od(s, K) < d(K) < d(J). Obvi-
ously d(s, J) < d(s, K) + d(J) < (% + l)d(J) and (2.1) holds. Since regJ > L we
have *reg(s, J) > 3d(J)/d(s,J) and (2.2) follows from (2.1). 0

For W C R™ let x(W): R™ — {0, 1} be the characteristic function of W. Similarly

for C C Rlet x(C): R — {0,1} be the characteristic function of C. Let  and K C I
be intervals of the form (1.1) and (1.2), respectively. Put

o _ [ leinds) if di <bi
(K(Z)) B { [Ci,di] if di = bi,

and
(2:3) K°= (K1)’ x...x (K(n))°

(if L, M are nonoverlapping intervals then L° and M? are disjoint).

2.2 Lemma. Let S, A be intervals, AC S C I, g € (0,1), *reg(s,S) > 0. Let G
be an additive interval function on I. Then there exist intervals Z; C I and numbers
¢; € {-1,0,1} for j € {1,2,...,3"} such that

(2.4) *reg(s, Z;) > 0/2,
-
(2.5) X(4%) =" ¢x(2Y),
i=1
-
(2.6) G(A) = ¢G(2;).
j=1

Proof. Let S and A be of the forms

S=8(1)%x...x8(n)=[o1,n1] X ... X [0n,Tn],
A=AQ1) x...x A(n) = [a1,B1] X ... X [an, Bn].
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Ifo; <o < (oi+7) < Bi <, put Qi = {1,2,3}, Y(i) = [0, 8:],Y?(5) =
[, 7], Y3(i) = [o:, 73], ¢Gd=1=1, ¢ = -1, so that

(2.7) X((AGE)°) = Y ¢Fx((Y(@)°).

6€Q;

Ifo,<ai<fBi< %(O'i + 7;) put Q; = {1,2}, Yl(l) = [ai,'r,-], Yz(l) = [ﬂi,‘r,-],
¢} =1, ¢¢2 = —1. Then (2.7) holds.

If —;-(U,' 4+ 7)) So < Bi €T, put Qi = {1,2}, Yl("f) = [0’,‘,;6,'], Y2("’) = [oivai]’
¢ =1¢¢=-1,i€{,2,...,n}. Then (2.7) holds again.

For ¢ = (q1,-.-,qn) € @ = Q1 X ... X Qpn put Y? = Y9(1) x ... x Y% (n),
CI=¢({"-¢3% ... (2. It follows from (2.7) that

X(4%) =" ¢rx((¥9)°).

q9€Q

Put v = #Q. Let ¢ be a bijection of Q onto {1,2,...,7} and put Z,, = Y9,
Co(q) =¢% Forje {y+1,v+2,...,3"} put (; =0, Z; = S. Then (2.5) holds and
(2.6) follows from (2.5).

Finally,
. L. . 1 .. .
. @ — min{d(Y%(7));i=1,2,...,n} S gmin{m; —0;;i=1,2,...,n}
reg(sa Y ) d(s, Yq) z d(s, S)
1
2 —0.
2 20
It follows that (2.4) holds. O

3. PROOF OF MAIN RESULT

Let g: I — R be *integrable and let F be its primitive. F is regularly differentiable
almost everywhere and (1.4) holds. Let g € (0,1). Since g is g-integrable and F is
its primitive with respect to the g-integration (cf. Note 1.8), F' is continuous at any
interval L C Int I, i.e. for every o > 0 there is a 7 > 0 such that |F(K) - F(L)|< o
for every interval K C I satisfying m(K \L)+m(L\K) < 7 (cf. [2], Theorem 2.1 and
the comment at the beginning of Section 3 of [1]). All assumptions of [1], Lemma 2.6
being fulfilled (cf. (1.4)) it may be concluded that g is measurable and there exist

NcI, NONpUdI, €€ (o,%),
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n: [0,£] = [0,1) increasing, n(o) > o for o € (0,§), 1i%1+ n(e) =0,
o—
w: I'\ N = (0,€] measurable, V(t,w(t)) C I for t € I \ N such that

(3.1) |F(K) — g(tym(K)| < n(v)v™

for everyt € I\ N, v € (0,w(t)], K C Int V(¢,v) (K being an interval).
Observe that (3.1) implies that

F'(t)=g(t) fortelI\N.
Moreover, (1.3) holds. Let us choose sequences

1
(3.2) §>7'1>T2>...>0, 0<Tit1 < fori €N,

7
2(1 + Ti)

(3.3) E26H>86> ..., 11_1{{.10 & =0, ([0,€] being the domain of 7).
There is a measurable wy: I\ N — (0,1] such that

(34) l9(8) < [n(200(8))]

fort € I'\ N. Let us set

(35) 3u(0) = min { 36n,1(0), (1)}

for t € I\ N, k € N. Referring to (1.4) let us choose Jx(t) for t € N such that

1

(3.6) 0k(t) < §£k
and
(3.7) S IF(K)| < &

provided £ = {(s,K)} is a dx-fine 7x41-*regular N-tagged L-system, k € N. The
desired sequence of stepfunctions g is defined as follows: For k& € N let us choose
a Ok-fine 1-*regular partition Ay = {(t,J)} of I with t € J for (¢,J) € Ax (cf. [2],
Lemma 1.1) and for s € I let us set

(3.8) a(o) = 25
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where J is such that (t,J) € Ay for some t € I and s € JO (cf. (2.3)); evidently
there is a unique J with the property. The function g is *integrable (see Note 1.6);
let G be its primitive function, £ € N. For any interval M C I we have

(3.9) Ge(M)= Y ;I;—%m(JOM).
(t,J)EAL

The result to be established can be formulated as follows.

3.1. Theorem. The sequence {gx} is *equiconvergent to g.

It is a consequence of the following two propositions.

3.2. Proposition. For every ¢ > 0 and ¢ € (0,1) there are l; € N and V;:
N — (0,1] such that

(3.10) T =Y |Gk(L)|<e
(5]

for every ¥:-fine p-*regular N-tagged L-system © = {(u, L)} and every k > ;.

3.3. Proposition. For every € > 0 and ¢ € (0,1) there are l; € N and 95:
I\ N — (0,1] such that

(3.11) Sy = |Gk(L) — ge(wym(L)| < €
(S}

for every ¥2-fine g-*regular I \ N-tagged L-system © = {(u, L)} and every k > Is.
Moreover,

(3.12) gk(s) = g(s) forse I\ N, k— oo.

3.4. Convention. To simplify the formulas we will assume (without loss of
generality) that m(I) < 1.

3.5. Lemma. Let j € N, and let © = {(u, L)} be a é;-fine 7;-*regular N-tagged
L-system. Then

(3.13) > sup{|F(K)|; K C L} < 3"¢;;
[S)
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for the partition Ay we have

(3.14) > sup{|F(K)|; K C J} < 3"
Ay, tEN

(K denoting an interval in (3.13) and (3.14) and the summation in (3.14) being
restricted to (t,J) such thatt € N).

Proof. For every (u,L) € O let X(u,L) C L be an interval. By Lemma, 2.2
there exist intervals Z;(u, L) C L and numbers {;(u, L) € {-1,0,1},i € {1,2,...,3"}
such that *reg(u, Z;(u, L)) > 7j4+1 and

(3.15) F(X(u,L)) ZC,(U L)F(Zi(u, L)).
=1

Now ®; = {(u, Zi(y,L); (u,L) € ©} is a é;-fine 7;4,-regular N-tagged L-system so
that

> IF(Zi(u, L) < &
®;

(cf. (3.7)) and (3.13) holds by (3.15). The proof of (3.14) is quite analogous since
Ay is 3-regular and Te41 < 1 (cf. (3.2) and (3.7)). O

Proof of Proposition 3.2. Given € > 0 and ¢ € (0,1), let us choose
J € N such that

(3.16) <o (3+2-187) < %
(cf. (3.2) and (3.3)) and denote
(3.17) r(u) = min{k € N; & < 7j410;(u)} for u € N.

For every k € N there is an open set Uy C R™ such that N C Uy and

min{m(J); (¢, J) € Ay}
max{1+ |F(J)|; (¢t,7) € A}’

(3.18) m(Uk) < &bk, Br =
For every k € N there is a gauge px: N — (0, 1] such that
(3.19) V(u,pux(u)) CUx forue N.

We choose a gauge 9;: N — (0, 1] satisfying the condition

(3.20) 91 (u) < pe(u) for k < r(u),
Y1(u) € 0j(u) forue N.
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Now we seek estimates leading to (3.10). Let © = {(u, L)} be a 9;-fine p-*regular
N-tagged L-system. For k € N we have

Ligh+Te = Z IGk(L)| + Z |Gk (L)]-
a(tyJ)E%k,LCJ L\J;é(b,\"?t,J)eAk

By virtue of (3.9) we obtain

NEh+h=Y % |F(J)l%)]—)

k 5]
3(t,J)eAx,LCJ
k<r(u)

+S % |F(J)|-(L—r})J—).

k e
3(t,J)eA,LCJI
k2r(u)

If (¢,J) € Ag, (u,L) € ©, k < r(u), L C J then L C Uy, since u € N (cf. (3.19),
(3.20)), and consequently (cf. (3.18))

(3.21) < Bt Z E m(L) < Bt Y _m(INUk) <&
3(: J)eAL LcJ B
k<r(u)

We proceed to I'y. For (t,J) € Ay let Q(t, J) be the set of (u,L) € © such that
LcJ,k>r(u). We have

(3.22) <TIFO) 3 "‘“ ”L SR

Q(t,J) Ax
3(u,L)€6,LCJ
k>r(u)

Since L C J, *reg(u, L) > ¢ > 7j,reg J > 1, we have by (2.1) and (3.2)

d(u, J) < ( + l)d(J) < —-d(J)

Ti+1

Moreover, for (¢,J) € Ag and k > r(u) we have (see (3.6), (3.17))
d(u,J) < & < Tj4105(u)

so that
d(u’ J) < 6.1'(“)) JC V(ua 6](”))
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and by (2.2) and (3.2)

“reg(u, J) > 741

Since u € N, we obtain from (3.22) and (3.7)
(3.23) <&
Now we shall estimate I';. Using (3.9) we obtain

F2<P5+F6=Z|F(L)

S (%m(L nJ)-F(Ln J)) .
Ay

L\J#0,¥(t,J)€AL

© is ¢;-fine and 7;-*regular (cf. (3.20) and (3.16)). Therefore (cf. (3.7))
(3.24) Ts <&
Further, we can write

e <I'7+Is= Z ’Z(

©
L\J¢0,V(t,J)€Ak

+ 3 ‘Z( (J) m(LNJ) - F(LnJ))‘.

(5]
L\J#0,V(t,J) €A,
teI\N

1 n(LnJ) - F(LnJ))I

The first sum can be divided into three terms:

F(J
1—‘7SF9+1—‘10+1—‘11=z:| ( )IZ (LNJ)
Ay

teN
+Z Z |F(LnJ)|+Z Z |F(LNJ).

J)>d(1) teN d(L )>d(J)
By (3.7) we obtain

(3.25) Po < &k
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since the inner sum does not exceed m(J). Further,

Tio < Y max{|F(K)|; K C L} - #{(t,J) € Ai; TN L #0,d(J) > d(L)}.
)
By [1], Lemma 2.5 the number of elements of Ay in the summands on the righthand
side of the inequality has the upper bound 3"2"~! which together with (3.13) yields

(3.26) F10 < (18)™¢

In a similar manner, with the role of Ay and © interchanged, taking into account
that reg L > o for (u,L) € © and making use of (3.14) and of [1], Lemma 2.5 again,
we obtain

(327) T < Y, sup{|F(H); HCJ} - #{(u,L) € ©; LNJ #0,d(L) > d(J)}
Ap;tEN

< 3% 376 < 970 Tk

Returning to I's, note that t € J and reg J > % for (t,J) € Ay, k € N so that (3.1)
and (3.5) yield

(3.28) [F(J) — g(&)m(1)] < n(d(])) (d())" < 2" n(d(]))m(J),
|F(LNJ) = g(tym(L N J)| < 2" 'n(d(J))m(J)
provided ¢t € I \ N, L being any interval. Hence
(3.29) | F g; m(LNJ) - F(LN J)| < 2"n(d(J))m(J).
Now we can write
Tg<Tip+Tiz= Yy > F((J; (LNnJ) - F(LnJ)|
selN LNT#0
d(L)2[n(d(J))] 3 d(J)
s ) F((‘;)) (LnJ)-FEng)|
© Ag;tel\N

d(L)<[n(d(J))) % d(J)

Estimating I'y2 with help of (3.29) and [1], Lemma 2.5 we arrive at

Tie< Y 2(dW)m(J) - #{(u,L) € ©; LN J # 8,d(L) > [n(d(J))] = d(J)}

Ap;teI\N

< S 2m(Ad)m(d)se " [n(d()] L.

Ap;teI\N
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By (3.5) and Convention 3.4 we obtain
(3.30) T12 < 670" ™ [n(&)]7.

In order to estimate I';3 we use the first inequality (3.28):

Tis<Ti+Tis+Tie= Y lg(t)| > m(LNJ)
Ax o
teI\N L\J#0#LNJ

d(L)<[n(d(J))] T d(J)

+2m71 S > " (d())m(L N J) +Z Z |F(LNJ)I.

A ©
d(J)>d(L)

Now (3.4), (3.5) imply

Lu< Y @)™ 3 mEnd.

Ak €]
LOJ#0£L\J

(L)<In(d(J))) T d(J)

Taking into account that reg J > % and assuming

(3:31) (&)™ < 3

we conclude by (3.5) and [1], Lemma 2.4 (cf. Convention 3.4) that

3
1

(3.32) Ia<y. [n(d(J))] ™% k2" 'm(J) [n(d(J))] *
Ay
< K27 (&))"

Evidently,

(3.33) T15 <2771 n(d(D))m(J) < 2" 'n(&)

and finally, by [1], Lemma 2.5 and by (3.13),
(3.34) Ty < Zsup{lF K)|; K C L} - #{(t,J) € A; TN L #0,d(J) > d(L)}
< 3"2" 137¢; < (18)™¢;.
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Putting together the estimates (3.21), (3.23)-(3.27), (3.30), (3.32)—(3.34) we obtain

T1 < (342 (18)")& + (1 + 970 )& + 670 " [n(&x)]*
+ K2V (6] + 27 (k).

This together with (3.16) implies that Proposition 3.2 holds for k¥ > I; where [; is
such that (3.31) and

(14970 ™€k + 6™ 0" " [n(€x)]F + k2" (&) + 27 (&) < g

hold for every k > I;. O

Proof of Proposition 3.3. Given e > 0 and p € (0,1), let us choose
h € N such that

(3.35) 6+ (1+6M0 2 n(6) <5, ™ <o
and denote
(3.36) R(s) = min {k eN; (1 + %)ek < 5h(s)}.

For k € N let a gauge v: I \ N — (0,1] be such that

(337) D IGk(K) = gk (s)m(K)| < &

is satisfied provided = = {(s, K)} is a ~yk-fine p-*regular (I \ N)-tagged L-system
(cf. Note 1.6). We choose a gauge ¥: I\ N — (0, 1] satisfying the condition
(3.38) 92(s) < w(s) for k < R(s),
9a(s) < iéh(s) for s € I\ N.

According to the definition of the functions gx we have gi(s) = F(K)/m(K) where
(2,K) € A, s € K°. If, moreover, s € I \ N, k > R(s), then K C V(z,6(2)),
d(K) < 20k(2) < & < 30n(s) < w(s) (see (3.5) and (3.36)), hence K C V (s,6(s)) C
V(s,w(s)), and putting ¢t = s,v = d(K) in (3.1) and taking into account that
reg K > %, m(K) > 2'~"[d(K)]" we obtain

|[FE) = g(s)m(K)| < 2 (d(E))m(K)

and consequently,
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(3.39) lgk(s) — g(s)| < 2" 'n(&).

Now we start estimates leading to (3.11). Let © = {(u, L)} be a YJ,-fine p-*regular
(I'\ N)-tagged L-system. For k € N we have

L2 <Tir+Tis= ) [Gh(L) - gr(wm(L)|+ Y |Gk(L) - gr(w)m(L)|.

) e
k<R(u) k>R(u)

By (3.38) and (3.37) we have
(3.40) 17 <&
Further, we can write

Tis <Tiw+T20= D lg(u)—ge(w)lm(L)+ Y [Gx(L) - g(w)m(L)]

k>R k> R(w)
and by virtue of (3.39) we have
(3.41) 19 < 2" (&)
(cf. Convention 3.4). Proceeding to I'yp we estimate it as

Poo S T21 + T2 = Z |F(L) — g(uw)m(L)]
+Z Z | (J) m(LNJ) - F(LNJ)|.
k>R(u)

To estimate I'y; observe that (cf. (1.3))
(3.42) m(L) > o™ *(d(L))" > ¢*"* (d(u, L))"
Moreover, L C V(u,92(u)) so that (cf. (3.5) and (3.38))
(3.43) d(u, L) € 292(u) < 2w(u).
Obviously L C V(u,d(u, L)). Applying (3.1), (3.42) and (3.43) we have
(3.44) |F(L) — g(w)ym(L)| < n(d(u, L))(d(u, L))" < n(202(u))e' ~*"m(L)
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and (cf. (3.38), (3.5) and Convention 3.4)
(3.45) T21 < 0" 7"n(£n)-

The term I'ys is divided into three sums:

P22$F23+F24+F25=E Z ‘Mm(LﬂJ)—F(LnJ)l

J
© Auk>R(u) ()
d(J)2d(L)

+Z ) I;F’;—%m(LnJ)—F(LnJ)‘

Arik>R(u)
teI\N,d(L)>d(J)
F(J)
+Z 3 | FmEn D) - (LnJ)I,
Axik>R(u)

teN,d(L)>d(J)

where
[a3 < T26 + a7
_Z Z |m(J) g(u)im(L N J)

Ar;k>R(u)
d(J)2d(L)

+ Z Z lg(wym(L N J) = F(LNJ)|.

d(J)>d(L)

Let us estimate I';s. The partition Ay is dx-fine so that d(J) < 26k(t) < & by
(3.5). If a summand in I'ss is nonzero then necessarily L N J # @, which implies
J € V(u,d(u, L) +d(J)). Taking into account (1.3) and (3.36) together with d(L) <
d(J) and k > R(u) we get d(u, L) +d(J) < (1+3)d(J) < (1+1)& < dn(u) <w(u)
so that by (3.1)

|F(7) - gwym(n| <n((1+ é)d(J)) [(1+ %)d(J)]n
<ol (1 + é)nn((l + %){k)m(J)

since reg J > 3,m(J) > 2'~™(d(J))™. It follows that

(3.46) Tas <2771 (14 ﬁ)"n((l + %)fk).
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For the nonvanishing summands of I';; we have by (3.1) and (3.43)
|F(LNJ) = gwym(LN J)| < n(d(u, L)) o'~ (d(u, L))"
Moreover, d(u, L) < 292(u) < 6x(u) < 36 (cf. (3.38) and (3.5)) so that (cf. (1.3))

Tyr < 072" Y n(e)m(L)#{(t, J) € A TN L #0,d(J) > d(L)}.
(]

Observe that regJ > 1. By [1], Lemma 2.5 for every (u,L) € © the number of
elements of A, on the righthand side of the inequality does not exceed 3"2"~! and
so

(3.47) Ty7 < 6™ 2 n(&s).

Returning to I'z4 and taking into account that regJ > -;—,m(J ) > 2177(d(J))™ we
get by (3.1)

|F(J) = g(t)ym(J)
IF(LNJ) - gt)ym(LNJ)

2"~ (d(J))m(J),

<2 (J
| < 2" In(d()m(7),

which yields
m(LNJ) - F(LN J)| < 2"n(d(J))m(J)

and
[os < 2"27, (1))m(J) - #{(u,L) € ©; LN J #0,d(L) > d(J)}.

By [1], Lemma 2.5 for every (t,J) € Ay the number of the elements of © on the
righthand side of the inequality does not exceed 3™p'~™. It follows that

(3.48) T24 < 6™0""n(&).

Finally, we write

a5 < T2g + T2 —Z Z —(—) (LnJ)+Z Z |[F(LNJ)].
© AyiteN ©  AuiteN
d(L)>d(J)
y (3.7)
64 Tme X FOID™ETD < T FO)<a

A,tEN (S} AL tEN
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Finally,

Toe < Y., max{|F(K)|; K C J}-#{(u,L) € ©; LN J # 0,d(L) > d(J)}.
AL;tEN

As above, for every (t,J) € Ay the number of elements of © on the righthand side
of the inequality does not exceed 3"9!~", which combined with (3.14) yields

(3.50) T'29 < 90" "¢k
Putting together the estimates (3.40), (3.41), (3.45)—(3.50) we obtain that

B < & + 27 In(&) + o' P n(€n)
n— 1\» 1 n 1—2n
+2 1(1 + E) n((l + E)Ek) +6™0' 2" (&)
+6™0 T (Ex) + & +9™0 "k

It follows by (3.35) that Proposition 3.3 holds provided [; is so large that

(2771 + 6% () + (1+ 970 ) + 2771 (14 %)nn((l + é)@c) <:.
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