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THE CONDUCTOR OF A CYCLIC QUARTIC 

FIELD USING GAUSS SUMS 

BLAIR K. SPEARMAN, Kelowna and KENNETH S. WILLIAMS 1 , Ottawa 

(Received December 12, 1994) 

Abstract. Let Q denote the field of rational numbers. Let K be a cyclic quartic extension 
of Q. It is known that there are unique integers A, B, C, D such that 

K = Q^A(D + B^D)), 

where 

A is squarefree and odd, 

D = B2 + C2 is squarefree, B > 0, C > 0, 

C7CD(A,D) = 1. 

The conductor f(K) of K is f(K) = 2l\A\D, where 

r 3, if D = 2 (mod 4) or D = 1 (mod 4), B = 1 (mod 2), 

1=1 2, if D = 1 (mod 4), B = 0 (mod 2), A + B = 3 (mod 4), 

k 0, if D = 1 (mod 4), B = 0 (mod 2), A + B = 1 (mod 4). 

A simple proof of this formula for f(K) is given, which uses the basic properties of quartic 
Gauss sums. 

Let Q denote the field of rational numbers. Let K be a cyclic extension of Q of 
degree 4. It is known [1, Theorem 1] that there exist unique integers A, B, C, D 
such that 

(1) K = Q(yfA(D + BVD)}, 
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where 

(2) 

(3) 

(4) 

A is squarefree and odd, 

D = B2 + C2 is squarefree, B > 0, C > 0, 

GCD(A,D) = 1. 

The minimal polynomial of ^-4(L> + ByfD) is X4 - 2AL>X2 + A2C2D whose roots 

are ±\JA(D + ByfB) and ±\lA(D - ByfD). It is convenient to consider three cases 

as follows: 

(5)i 

L> = 2 (mod4), 

D = 1 (mod 4), B = 1 (mod 2), 

L> = 1 (mod 4), Б = 0 (mod 2). 

We also divide case 3 into two subcases according as 

(5)2 
(a) Л + H = 3 ( m o d 4 ) , 

(b) A + H = l ( m o d 4 ) . 

We note that 

(6) 

and 

(7) 

We set 

( B = C = 1 (mod 2), L> = 2 (mod 8), in case 1, 

C = 0 (mod 2), in case 2, 

L C = 1 (mod 2), in case 3, 

( D = 1 + 2C (mod 8), in case 2, 

L> = - 1 - 2A = 1 + 2B (mod 8), in case 3(a), 

lL> = 3-2_4 = l + 2£ (mod 8), in case 3(b). 

(8) I = ҚK) = { 

( 3, in cases 1 and 2, 

2, in case 3(a), 

[ 0, in case 3(b). 

In [1, Theorem 5] the conductor of the field K was determined using p-adic arith­

metic. 
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Theorem* The conductor f(K) of the cyclic quartic field K, as given in (l)-(4) . is 

(9) f{K) = 2l\A\D, 

where I is defined in (8) . 

In this paper we give a simpler proof of this theorem than the one given in [1]. 
Instead of p-adic arithmetic, we use the basic properties of quartic Gauss sums, as 
given for example in [2]. 

Since D = (±B)2 + (±C)2 and K = QUA(D ± By/D)Y we are at liberty to 

change the signs of B and C without changing the field K. We do this as follows: 

r Case 1: replace B by — B if necessary and C by — C if necessary so that 

B = C= 1 (mod 4); 

Case 2: replace B by — B if necessary so that 

B _ f 1 (mod 4), if " = 1 (mod 8), 

~ J 3 (mod 4), if ~ = 5 (mod 8); 

Case 3: replace C by — C if necessary so that 

_ J 1 (mod 4), if D = 1 (mod 8), 

" \ 3 (mod 4), if D = 5 (mod 8). 

The choices of B and C in (10) will always be assumed from this point on. 
Next we define a Gaussian integer K (that is, an integer of the field Q(i)) as follows: 

K=\(B + C)+Í\(C-B), 

K = B + iC, 

K = C + iB. 

f Case 1 

(11) \ Case 2 

, Case 3 

It is easy to check using (7) and (10) that 

K= l ( m o d ( l + i ) 3 ) , 

that is, K is primary. From (3) and (11) we deduce 

{ \D, in case 1, 

D, in cases 2 and 3. 

As N(K) is squarefree and odd, and K is primary, K is the (possibly empty) product 
7Ti . . . 7Tk of primary Gaussian primes whose norms p\,..., pk are distinct rational 
primes = 1 (mod 4). Note that 

(13) N(K)=Pl...Pk. 
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The empty product is understood to be 1. This occurs only when D = 2 in which 

case B = C = 1, K = 1. The Gauss sum G(TTJ) (j = 1 , . . . , k) is defined by 

Pj-i 

(14) G(nj)= J2\~] e27ti*/P;' 

where M7 is the fourth root of unity given by 

[—] H X ^ - 1 ) / 4 (modTr),-. 

We set 

k 

(15) G = G(K) = TJ G ^)< 
j = i 

it being understood that G = 1 when fc = 0 <=> /t = 1 <=>- £> = 2. As each Gauss 
sum G(itj) (j = 1 , . . . , k) has the following properties: 

G(7rj)G(7rj) = pj, [2, Prop. 8.2.2] 

G^~) = (-l)^-1)/iG(Wj), [2, p. 92] 

o(Tj)2 = - ( - l ) ( w - 1 ) / 4 V $ 7 * i . [2, Prop. 9.10.1] 

G(nj) € Q(e2 , t i / 4 ,e2 ' t i / p0 = Q(e2Ki/4pi), 

we see from (13) and (15) that 

(16) G(K)G(K) = N(K), 

(17) G{K) = ( - 1 ) ( J V ( K ) - 1 ) / 4 G ( K ) , 

(18) G(/c)2 = ( - 1 ) * + ( J V W - 1 ) / 4 J V ( K ) 1 / 2 / C I 

(19) G(K)€Q(e2 , t i / 4 / v ( K)). 

Our first lemma determines the effect of a certain automorphism or G = G(K) 

when D = 1 (mod 4), a result we shall use later. 

L e m m a 1. If D = 1 (mod 4) and 1 -4 a € Gal (Q(e2l t i/4D)/Q(e2, t i/D)) then 

a(G) = (-1)(D-WG. 

P r o o f . The automorphisms aT of Q(e2l t ' /4D) are given by 

or (e2*'/40) = e 2™/ 4 0 , r = 1 , . . . , 4£>, GCD(r, 4D) = 1. 
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Those automorphisms ar fixing Q(e27U/D) must satisfy 

r E 1 (mod D), 1 ^ r ^ 4F>, GCD(r,4D) = 1, 

so that r = l o r r = 2D + 1. Thus the unique nontrivial automorphism of 
Gal(Q(e2TCi/4D)/Q(e2Ki/D)) is a = a2D+x given by O(e27ti/4D) = - e 2 7 d / 4 D . As 
a(i) = - i and <r(e2TCi/p') = e27li/^' (j = 1 , . . . , fc), we have 

PJ-1 Pj-i. 

x x=l J ' x=l J 4 

so that by (15), (12) and (13) 

a{G) = (_i)E?=1(Pi-i)/4G = ( _ I ) ( D - D / 4 G . 

D 

Our next lemma determines the roots of the minimal polynomial K4 — 2_4_DK2 + 

_42C2D in terms of G = G(«). 

Lemma 2. The roots of the minimal polynomial X4 - 2ADX2 + A2CD of 

\l A(D + By/D) ^re given as follows: 

f Case 1: ±VA(UJG + uG), ±IVA(UJG - LJG), 

< Case 2: ±VA(G + G)/y/2,±iy/A(G - G)/y/2, 

L Case 3: ±\VA{(\ + i)G + (1 - i)G), ± | i > / I ( ( l - i)G + (1 + i)G), 

where a; = e
2TCi/16. 

P r o o f . We set 
e = ( - i ^ + W * ) - - ) / 4 . 

From (18) we have 

G2 = SN(K)1/2^ G2 = eN(/^)1/27c, 

so that by (11), (12), (13) and (16) 

\eDll2(B + C)/2ll2, in easel , 

G2+G2 = I 2eD1/2B, in case 2, 

k 2eD1/2C, in case 3, 

fieD1/2(C-B)/21/2, in easel , 

G2 -G2 =\ 2ieDxl2C, in case 2, 

[ 2ieDxl2B, in case 3, 
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and 
_ f D, in case 1, 

2GG = { 
[2D, in cases 2 and 3. 

Hence in case 1 we have 

(wG + UG)2 = ^ - t ^ G 2 + V-^G2 + 2GG 
' \ /2 A/2 

= eD1/2(B + C)/2 + eDl'2(B - C)/2 + D 

= D + eBVD 

and 

( i ( . G - ^ ) ) 2 = - ^ C 2 - ^ ü 2 + 2CÜ 

= D- єB\[Ђ, 

so that 

( ± VA(LJG + LOG)) = A(D + eBy/D), 

( ± iy/A(u>G - uJG))2 = A(D - eB\fi5), 

as asserted. Cases 2 and 3 follow in a similar manner. • 

We set 

( 0 = \/~A(LOG + uoG), (p = \\/A(fjjG - aJG), in case 1, 

(20) I 0 = y/A(G + G)/y/2, <p = \y/A(G - G)/\/2, in case 2, 

[ 0 = \y/A((\ + \)G + (1 - i)G), ip = \y/A((\ - i)G + (1 + i)G), in case 3, 

so that by Lemma 2 

(21) K = Q(\JA(D + BVD)) = Q(0) = Q((D). 

Lemma 3. (i) 

fQ(e2 7 t i/lAl), HA = \ (mod4), 
£ \Q(e27 l i/4lAl), if A = 3 (mod 4). 

(ii) IfD = \ (mod 4) 

( Q(e2Ki/lAl), in case 2 when A + C = 1 (mod4) 

and in case 3(b), 

Q(e2*i/4|A|^ in case 2 when A + C = 3 (mod4) 

and in case 3(a). 
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P r o o f . The assertions of the Lemma are easily checked when A = 1 so we may 

assume A 7- 1. Set k = Q(>/_4), so that k is a quadratic field, and let f(k) denote 

the conductor of k. Now 

f(k) = \disc(k)\ 

( A, if A>0,A= 1 (mod4), 

if A > 0 , A = 3 (mod4), 

if _4<0,_4 = 1 (mod4), 

if A <0,_4 = 3 (mod4), 

if .4 = 1 (mod4), 

4|_4|, if_4 = 3 (mod4), 

so that 

\/IeKQ(ew/ !( 4 ' ) = 
Q(e2кi/W), ifЛ = l ( m o d 4 ) , 

Q(e2кi/4W), ïíA = 3(modá). 

This proves (i). 

Suppose now D = 1 (mod 4). In case 2 we have 

(_l)(->-i>/<Л = 
1 (mod4), if A + C = l (mod4), 

3(mod4), if Л + C = 3 (mod4), 

in case 3(a) ( - l ) ^ - 1 ) / 4 ^ = 3 (mod 4), and in case 3(b) ( - l ) ^ - 1 ) / 4 ^ = 1 (mod 4). 

Part (ii) now follows from (i). • 

L e m m a 4. f(K) ^ 2z|^4|i3). where I is defined in (8). 

P r o o f . We consider cases 1, 2 and 3 separately. Set u = e

2 T C i/1 6. 

Case 1. Clearly u G Q(e 2 7 d/ 1 6) and, by (12) and (19), we have G G Q(e 2 r t i / 2 D ), 

so that uG G Q(e2 T C i/8 D). Similarly uG G Q(e 2 7 t i/ 8 D) so that LJG + uG G Q(e 2 K i / 8 D ) . 

By Lemma 3(i) v 7 ! G Q(e2TCi/4lAl) so that (9 = y/A(uG + uJG) G Q(e 2 7 l i / 8 I A ' D ), that 

is by (21), if C Q(e2^/8|^l^), and so f(K) ^ S\A\D = 2l\A\D, as I = 3 in case 1. 

Case 2. By (12) and (19) we have G G Q(e2n[/4D), C7 G Q(e 2 K i / 4 D ) , so that 

G + G G Q(e 2 7 l i / 4 D ) . By Lemma 3(i) y/A G Q(e2 7 l i/4IAI), and clearly ^2 G Q(e 2 K i/ 8), 

so that 0 = y/A(G + G)/y/2 G Q(e2KiWA\D), that is by (21), K C Q(e 2 7 d / 8 I A I D ), and 

so /(AT) ^ 8|A|F> = 2'|_4|_D, as I = 3 in case 2. 
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Case 3 . By (12) and (19) wejiave G e Q(e2%il4D), G € Q(e2™/4D). Clearly 

i e Q(e2Ki'iD) so that ^ j l g j . f c " 0 0 € Q(e2™/4D). Then, by Lemma 1, we have 

(l + i)G + (l - i)G\ _ (1 - i ) ( - l ) ( - , - - ) / 4G + (1 + i ) ( - l ) ( D - ! ) / 4 G _(Џ + 1)U + (1-1)UҲ 

<Ҷ -(ĎГïJTï ) = (_i)(D-l) /4 

( 1 + І ) G + ( 1 - І ) G 
i(D-l)/4 

so that 

m (1 + ig+,g,"i)g^(^°). 
By Lemma 3(ii) we have 

/n .<» r- I ; 7T~ (Q(e2Ki/W), in case 3(b), 
23 ± i ( D - 1 ' / 4 \ / I - d ( - l ) ( o - i ) / 4 ^ € ) K K '' 

K yK ' \ Q ( e 2 - / 4 ^ l ) , in case 3(a). 

Then, from (22) and (23), we deduce 

0 = / - j f ( - + i )g + ( - - i ) G \ f Q(e2 7 t i / | A | D), in case 3(b), 
V 2 ) G | Q ( e - - i /4 |>i |_) ) in case 3(a), 

so that, by (8) and (21), K C Q(e
2W2'|A|D) a n d s o y ( ^ ) ^ 2

; | ,4 |o . D 

Lemma 5 . 

( ! 

I JQ | /(AT), in cases 2 and 3. 

— ' f(K), in case 1, 

P r o o f . Let p be an odd prime divisor of D. As D is squarefree, we have 

(P) = (P,VD)2 

in Q(y/D). Thus p ramifies in Q(\/D) and, as Q(\/Z?) C Q^A(D + By/D)) C 

Qte27ii//(K)^ p ramifies m Q(e2Kl/f(K)). Hence p \ f(K) for every odd prime divisor 

of D. This proves the assertion of the lemma. • 

Lemma 6. \A\ | f(K). 

P r o o f . Let p be prime divisor of |__|. As A is odd, p ^ 2. In J_" we have 

(p, JA(D + BVD)) , if p{G, 

<p ) = 0 / / V2 

(KP,xjA(D + Bs/D) + yjA(D-Bs/D)) , iip\B. 

Thus p ramifies in K and so in Q(e2ni/f^). Hence p | f(K) and so | ^ | | f(K). D 
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Lemma 7. 4 | f(K) in cases 1, 2 and 3(a). 

P r o o f . We have 

' (2, \/T>\ in Q(\/Z>) in case 1, 

(2) = < (2, \JA(D + By/D) + \JA(D - BVS)\ in If in case 2, 

, (2 ,1 + yjA(D + By/D)\ in If in case 3(a), 

so that 2 ramifies in Q(e2 7 l i / / ( K)), and thus 4 | / ( I f ) . • 

Lemma 8. 

16 I / ( I f ) , in case 1, 

8 I f(K), in case 2. 

P r o o f . From (21) we have 

<9,(D€iv"CQ(e27l i / / (K)), 

and by Lemma 7 for cases 1 and 2 we have 

t e Q ( e M / W ) . 

Case 1. By Lemmas 3(i), 6 and 7 we have 

y/A e Q(e2Ki/4^l) C Q(e2 T C i / / (^). 

By (12), (19), Lemma 5 and Lemma 7, we have 

CGQ(e2Ki/2D) CQ(e2TCi/ / (K)). 

Hence, appealing to (20), we see that 

27-1/16 _ , . _ ______ <- n / > i / / ( K ) 
e ' — UJ = 

2GV7! 

and so 16 | f(K). 

Є Q ( e 2 к i д а ) ) , 
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Case 2. By (12) and (19) we have G e Q(e 2 r i l 4 D ) , G e Q(e2Ki/iD), so that 

G + G e Q(e27l il4D). By Lemmas 5 and 7, we have 4£> | f(K), so that 

G + G e Q ( e M / ^ » ) . 

By Lemma 3(i) we have 

\ / l € Q ( e 2 K i l 4 ^ l ) , 

and, by Lemmas 6 and 7, 4\A\ | /(AT) so that 

yi e Q( e2-/ /W). 

Hence we have shown that 

But, by (20) and (21), 6 = ^/A{G + G)/y/2 G K C Q(e
2W/(K)) s o y/2 e Q(e 2 K i / 'W) 

and thus 8 | f{K). D 

P r o o f of T h e o r e m . From (8) and Lemmas 5, 6, 7 and 8, we see that 2Z|A|F) 

divides f{K). Hence by Lemma 4 we have f{K) = 2/|A|I9. D 
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