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Summary. Sufficient conditions are given under which the sequence of the absolute values
of all local extremes of yl), i € {0,1,...,n — 2} of solutions of a differential equation with
quasiderivatives y["] = f(t, y[O], o ,y["_l]) is increasing and tends to co. The existence of
proper, oscillatory and unbounded solutions is proved.

MSC 1991: 34C10

I. INTRODUCTION
Consider a nonlinear differential equation
(1) y[n] — f(t,y[o],.‘.,y["‘”) inD

where n > 3, Ry =[0,00), R = (—00,00), D = Ry x R*, y[¥ is the i-th quasideriva-
tive of y defined by

B 1 .
9 o _ _Y [ — li-1]y =1 gl = (gln-1ly
2 0@ Y ai(f)(y ), i=12,....n—1,y (¥,

the functions a;: Ry — (0,00) are continuous and f: D — R fulfils the local
Carathéodory conditions.

This work was supported by grant 201/93/0452 of Grant Agency of Czech Republic
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Throughout the paper the sign hypothesis
(3) f(tvlrlv e »In‘)'l"l g 07 f(tvo’l‘Zv o #'l'll) = 0 ill D

will be assumed.

Let y: [0,b) = R, b < oo be continuous, have the quasiderivatives up to the order
n — 1 and let y[*~1 be absolutely continuous. Then y is called a solution of (1) if
(1) is valid for almost all t € [0,)).

A solution y is called non-continuable if either b = oo or
n—1
b<oo and limsup Z ly'(1)| = oo.
t—b i—0

Let y: [0,b) = R be a non-continuable solution of (1). It is called proper if b = oo

and sup |y(t)] > 0 holds for an arbitrary number 7 € R;. It is called singular
Tt<o0

of the 1-st (2-nd) kind if there exists t* € R4 such that y(t) = 0 in [t*,00) and

sup Jy(t)] > 0 for 7 € [0,t*) (if b < 00). It is called oscillatory if there exists a
r<t<tr

sequence of its zeros tending to b (tending to t*) if y is either proper or singular of
the 2-nd kind (if y is singular of the 1-st kind).

A great effort has been exerted to the study of proper oscillatory solutions of the
differential equation of the n-th order

(4) y™ = fty,....y™)  inD

provided (3) is valid. The function f: D — R is considered to fulfil the local
Carathéodory conditions. Thus (4) is a special case of (1).

In the case n = 2 many authors have studied the following problem for proper
oscillatory solutions for special types of (4) and (3): Let {74}7° be the sequence of
the absolute values of all local extremes of y (of y') on Ry. When is {|y(mx)|}{°
({lv'(%)1}%°) monotone? The basic condition, among many others, is the mono-
tonicity of f with respect to the independent variable. see Bihari [8], Belohorec [7].
Das [10], Bobrowski [9], Foltyiiska [11] and Bartusek [1].

In the case n = 3 the situation in this direction is described in [2]. The sequence
{y'(7)|}5° is increasing without any additional assumptions on f.

Similar situation occurs in the case n = 4, see [3. 4]. Without any additional
assumptions on f the sequence {|y’'(74)|}$° is either increasing to co or decreasing
to zero for k — oo.

The first goal of the present paper consists in a generalization of the above men-
tioned results to equation (1): To establish the existence of a set of proper oscillatory
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solutions of (1) for which the sequence of the absolute values of all local extremes of
yll, i€ {0,1,2,...,n — 2} is increasing.

This problem is interesting not only by itself but may be used for studying the
existence of proper oscillatory solutions of (2) with a given asymptotic behaviour.
Thus the second goal consists in deriving sufficient conditions for the existence of a
(proper) oscillatory solution y the quasiderivative Yyl ie {0,1,...,n — 3} of which
is unbounded. This problem has not yet been solved for (1) and new results will be
obtained also for (4).

Notation. If b; € C°(I), then I°(t) = 1,

t
I’“(t,bl,...,bk)z/ by (s)I¥ (s, bs, ..., bp)ds, t € 1.
0

Put a,;4+i(t) = a;(t), j € {-1,0,1}, i € {1,...,n -1}, N={1,2,...}.
We will assume the following hypotheses (not all simultaneously):

(H1) Let one of the following assumptions hold:
(a) Let either aj/az € C'(Ry) for n = 3 or ai,a2 € C'(Ry), 2 € C*(Ry) for
n =4 or for n > 4 let there exist an index ! € {1,2,...,n — 4} such that a;4;,
Jj = 1,2 are absolutely continuous and aj, ;, j = 1,2 are locally bounded from

below;
(b)
(5) |f(t,z1,...,20)] < A(t)g(|21]) in Ry X [—€,€]™,
where € > 0, A € Lioc(Ry), g € C°0,¢], g(0) = 0, g(z) > 0 for z > 0,
fE gc(ltt) =%
(H2) |f(t, 21, ... 20)| < ( z |111) in D, where b € Lige(Ry), w € CO(Ry ), w(z) >
0forz >0, [ -d—)_‘OO'
(H3) let

an(t)h(l""ll) < lf(tv T1,...,2,)| in D,

where a, € Lioc(R4), an 2 0, h € C(Ry), 1(0) = 0, h(z) > 0 for z > 0, h is
nondecreasing, and let one of the following assumptions hold:
(i) h(z)=2*;0< A< 1,

oo Si41 Sn—1 n
/ @it1(Sit1) / (17+z(81+2)/ / an(sn) [/ nt1(Snt1) -
0

it+n—1
/ Qipn(Sitn) dSipn - .. dsn+1] ds, ... ds;41 =00, i=0,1,...,n—1;
0




(ii) hz) =2, [ a(t)dt =00, i=1,2,...,n -1,

/00 In_l(sva'lv' i v”u—l)
t Il(saan~l)

limsup I'(a,_1)
t— o0

an(s) ds > 1,

(i) 57 ai(t)dt =o00,i=1,2,...,n.
(H4) |f(t, 21, 20)| < d@#)fi(l2y]) in D, where d € CO(RL), d > 0, fi > 0 is
nondecreasing in (0,00), fi € CO(R,).

In the sequel, a special type of (1) will be studied:

(6) v = a,(t)g(y!)),

where a,, € Lioe(Ry), a, >0, g € C%(R), g(0) =0, g(r) <0 and g(—z) = —g(x) for
z>0,¢'<0in R, ¢” >0in Ry, a, is nondecreasing. a; € C'(R4), aj > 0in R,.

II. ASYMPTOTIC BEHAVIOUR OF THE SET OF OSCILLATORY SOLUTIONS OF (1)

In this section, properties of solutions of (1) that fulfil the Cauchy initial conditions

- 1€{0,1,....n—1}, o € {=1,1}, ayl1(0) >0 fori=0,1,...,1 -1,
oy(0) <0, oy (0) <O forj=1+1,...,n—1

will be investigated.
The structure of oscillatory solutions that fulfil (7) is described in [6].

Definition. Let y: J = [0.0) = R; b < 0o be a solution of (1) for which there
exist a number j € {0,1,...,n— 1} and sequences {f}}. {f;"'},i € {0,1,...,n— 1},
k € {k;,k; + 1,...} such that

(i) ks, =0fori < j, ki=1fori>j, klim 9 =1;

L — 00
@) 0K, <ty 'R << <t <t
y[i] (t1)=0,i=0,1,...,n—2, y[i] # 0 otherwise in J,
yl" () = 0 for ¢ € (1771, 77, vl # 0 otherwise in J;

(iii) if we put %, =0, t{ = 0 for i > j then

yl@)y0(t) > 0 for t € (t9_,,t8), i =0.1,....n— 1,
<Oforte (ti,t0), i=0.1.....,n -2,
<Oforte (fF '), i=n—1,

k =0,1,.... The set of all such solutions will be denoted by O(b).
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Remark. It is evident that if y € O(c0), then y is proper. If y € O(b), b < o0
and y is non-continuable, then y is singular of the 2-nd kind.

A relation between solutions of (1) satisfying the Cauchy initial conditions (7) and
the set O(b) was described in [6].

Proposition 1. [6] Let y: [0,b) = R be a non-continuable oscillatory solution of
(1) that fulfils (7), and let (H1) be valid.

(i) Then y € O(b) and y is either proper or singular of the 2-nd kind.

(i) If (H2) is valid, then b = oo and y is proper.

The following theorem states sufficient conditions under which proper oscillatory
solutions y € O(o0) exist.

Proposition 2. [6] Let (H1), (H2) and (H4) hold. Then a solution y of (1) that
fulfils the Cauchy initial conditions (7), is oscillatory, proper and y € O(0).

Remark. Note that the assumptions (H3), (i) and (5) cannot be valid simulta-
neously.

Lemma 1. Let y: J = [t;,t:] = R, t; < t2 be a solution of (1).

(a) If j € {1,2,...,n}, yU(t) > 0 (< 0) in J, then yU~Y is nondecreasing (nonin-
creasing) in J.

(b) Ifj € {1,2,...,n}, y(t) > 0 (< 0) in J, then yU~1 is increasing (decreasing)
in J.

(c) If yO(t) > 0 (< 0) in J, then y®= is nonincreasing (nondecreasing) in J.

Proof follows directly from (2), or see [6].
Lemma 2. Lety € O(b), b < 00,3 € {0,1,...,n— 2}, aiy1 € CH(Ry).
(a) Ifai ,(t) > 0 in Ry, then
(8) Yl (t)sgn ylI(ti+1) is concave in Ay, = [tit! 7))
for k 2 'I;'i+1 .
(b) If b < 00 and i < n — 2, then there exists k € N such that (8) holds for k > F.

Proof. (a) Let k > kiy. Put tg = t};_“, t, = tL"l, J = [0,b). Without loss
of generality, suppose that sgn ylJ(to) > 0. The opposite case can be dealt with
similarly.

It follows from y € O(b) and Lemma 2 that

Y+ (0) = 0, g1+ (1) < 0 in (to, 1],
9) Y *2() <0 i Ak, is decreasing in Ay

249




Further using (2),

(100 GI()" = (@ira Oy ®) = aipa(Bair Dy (@) + alyy (I ().

Then according to (9), (10) we have (y[1(¢))"” < 0 and the statement is valid in this
case.
(b) Let b < 00, 7 < n — 3 be valid. By virtue of y € O(b) and Lemma 1

(11) yl*31(¢) < 0,yl+? is nonincreasing in A,.

If ai,, = 0in J, then the statement follows from (10) and (9). Let k > 2 be such
that

min a;11(5) 042 (s)

(12) 0<b—tH < —= , .
max ag2(s) max|ai, (r)]

Consider k > k. It follows from (11) that for t € A, we have

ot
(13) 0 —ylH(t) = —ylHU() + yliH (ko) = - / () de
t

s to

t
= —/ a2ty A() dt < - max aiy2(s)(b = ti:+l)y[i+2](t)~

to

Finally, this together with (10), (9) and (12) implies

(W1)" < asrr (Dassa(OYF+E) = max o, ()0

< YA () @i (t)aipa(t) — Isllelgl aiy1(s)aiza(s)] <O0.

This completes the proof. a

The following Kolmogorov-Horny type or Hardy inequality is very useful. The
proof is similar to the case without quasiderivatives, see [11].

Lemma 3. Let A = [t;,t2] C R, t; <tp. Let b; > 0,i=0,1,...,n and let Z be
continuous such that the quasiderivatives ZU defincd by

z 7l — L(Z[i_l])’, i=1,2,...,n

()
2= 0)

are continuous for i = 1,....n — 1 and Z" € Lj,.(A\). Suppose that Zll i =
1,2,...,n—1 have a zero in A and there exists a constant C' such that

maxMz <C,1=12,....n—1.
teA l),(f)

250



Denote

v =max|Z0(1)], i =0,1,....n =1, v, > |2 (1)
teA

a.e. in A. Then
2\/—’(" ’) o l/n,’L—Ol 1.

Proof. Letie€ {1,2,....n—1}. Let Ay C A, A; = [r,71] be the smallest
interval such that

()] = v min 126 (8)] =
max [Z9(t)] = vi, min |Z0(1)] =0.

Then function Zl1 does not change its sign in A; and

vi=2 /A 120 (t)(Z1(t))'| dt = 2 / |20 (t) ZEF 1 ()b g (8)] dt

A

$2ui+1/ Ml(Z[i"](t))l(lt <A4CViqvioy.
A 1)7(t)

From this and using the mathematical induction we can easily prove that

o1
v; < (2VC) gt

z/i’:l’, t=1,2,...,n—1,

(()\/_ n— ‘t)VO — ’/"' i:l,"..,'ll_l-

Il

O

Lemma 4. Let y € O(b), b < 00,7 € {1,2,....n =2}, k € {kiy1,kig1 +1,...}.
let yll(t) sguyll(tit') be concave in [tit! t;7"]. Let cither 3 € [1,2], v = ﬁ and
gl () sgnyli+1(6+2) is concave in A, = [tl.“,f Jorpg=y=1.1If

min a;(t) min a;4 (¢
A i(t) teA i+1(t)

teA, 2 i o4i—1
(14) PY < : vAZ = [ katk ]a

max a;(t) maxa;q4 (¢

zeAgl() tea +1()

then /Bly (6] < (4]

Proof. Putto=t;"" t) =t ts =ti7" Ay =to—t1, Dy = ta—to, 61 = (to, t1),
82 = (t1, t2) and suppose, without loss of generality, that y[l(ty) > 0. Then y € O(b)
and Lemma 1 yields

~

Y1) > 0 in Ay U Sy, Yyl U(ty) =0,

yli=1 is increasing (decreasing) in A (in Ay),
(15) []( t) >0 (<0)in d; (in Jy), 1/[i](t1) =0,
gt () = 0.yt (1) <0 in 6, U A,

y[i] and g/[iJ"l] are decreasing in | U As.

[RV]
ot
—



The statement will be proved indirectly. Thus, suppose that /Byl(to) > [y}
As y € O(b), we get

(16) VB (t0) > [yl (22)].

As yl! is concave in Aj, yl is above the secant going through the points P, =
[to,y!!(to)] and P, = [t;,0]. Thus fAI ylid(t)dt > P where P = %ly[i](to) is the
area of the triangle P, P,P3, P; = [to, 0] Similarly, it follows from (15) and from the

concavity of (¥ in A, that fA [yl!(t)| dt < P, where P is the area of the triangle
[t1,0], [t2,0], [t2, |y[‘](t2)|] = —.2|y[’](t2)|. From this and from (15) we have

Y=ty = —/ @) at = ——/ ai()yl (1) dt <
Ao Az

. . . . A o '
yl(t) > gl () — gl (te) = / ai(t)yl (1) dt > %y['](to) min a;(s).
Ay sEN,

By 1)
7|y (t2)] max a;(s),

Thus, combining these two results and (16), we obtain

min a;(s
1 i el z()

\/_ma.xa, (s)

SEA2

EI

(17)

Further, (15) yields

18) M) = - /A (1)) dt

- ‘/ aip Oy (@) dt > Kofy™ ()] min aiva(s).

Az
Let 8 = v = 1. Then, similarly,

yll(to) = —/ a1 (yFH(e) dt < &Iu[““](tl)lggnfaiﬂ

1

and according to (18), (17) and (16)

(1)) BRI ai(s) min aina(s)

1>

[(1o) © maxa;(s) max a;j+q(s)
Jli0) ~ maxar(s) max a9

The contradiction to (14) proves the statement in this case.
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Let 3 € [1,2], v = £ and let y(+1(t) sgn yli+1(t) sgn (t;F?) be concave in A;.
Then, by means of (15) and by y € O(b) we have yli+1](¢i*2?) > 0 and thus yli+!] is
concave in A;. From this and from (15) we conclude that

yi(to) = —/ aipr (1)t () dt < Ay

|y[1+1](t1)| max aiy1(s)
Ay €A1

holds which, together with (18), gives

mln ! @iy (s)

/5> Wi 25: 28

yli(to) néix ait1(s)
49 in a;41(s) min ai(s)
min a; min a;(s
2 sehs I Seh,
- max a;4+1(s) max a;(s)
‘/Bsema“( )5€A2 (s)
This inequality contradicts (14). O

In the sequel, proper oscillatory solutions y € O(oo) will be studied. Proposition
2 gives criteria for the existence of such solutions.

Theorem 1. Let y € O(), i € {1,...,n =2}, aip1 € C'(Ry), aiyy(t) > 0 in
R..

(a) If a; is nonincreasing in Ry, then the sequence {|yld(ti™)|}, k € {kiy1, kiv1 +
1,...} of all local extremes of yli! in Ry is increasing.

(b) If i <n —3, aj,,(t) >0 and

lim sup a;(t)

20 - R—— )
(20) lim inf a;(t)
t—oo

then there exists k such that {|yld(t;™)|}, k > k is increasing.

Proof. It is evident that the assumptions of Lemma 3, with the exception of
(14), are fulfilled (use Lemma 1, too).

(a) The statement follows directly from Lemma 4 for 8 = v = 1.

b)yPutg=1,7v= % in Lemma 4; according to (20) there exists k such that

—

in a;y1(t) min a;(t in a;(t
min a;41 () min a:(t)  min as(t)

= ~, t>t
. . i = b = k
max ai+1(t) max a;(t) max a;(t) ~ 2
and thus (14) is fulfilled. O
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Theorem 2. Let y € O(c0). i € {1,...,n =3}, ai;) € C'(R}), a;y2 € CH(RY).
ai, (1) >0, ai,,(t) > 0in Ry. Let either a; be nonincreasing in Ry or let tl_i)m a; =

A, 0 < A < oo hold. Then y! is unbounded.

Proof. The assumptions of Lemmas 2 and 4 are fulfilled.
(a) Let a; be nonincreasing. If 3 =2, y = 1 is chosen, then (14) is valid and

(21) VRl < i h)|
holds. Thus
(22) }‘lim PRIGAR IR

(b) Let tlim a; =Aexist,0 < A<ooandlete >0,0<f=2—-¢,y=1-¢/2.
— 00
Then there exists k such that

in a;(t) () =>1—¢/2. k> k
min a;( )/?elg}ial(t) > [20k 2k

and (14) evidently holds. Thus
(23) V2=l < L

and (22) is valid. d

Remark. (a) Note that, under the assumptions of Theorem 2, the statement of
Theorem 1 is valid and thus the sequence {|yl?(t5™")]} of the local extremes of |y!]]
is increasing for all admissible /.

(b) The inequalities (21) and (23) give an estimate from below for the speed of
the increase of the sequence of all absolute values of local extremes of y!%.

The following results are consequences of the above Theorems 1 and 2 and Lemma
3 and give sufficient conditions for the existence of unbounded proper oscillatory
solutions of (1).

Theorem 3. Let i € {1,....,n—2}, air1 € C'(Ry). aj,,(t) > 0in Ry and let
either a; be nonincreasing in Ry ori <n -3, aj,,(t) > 0 and (20) be valid. Let

aj4+1(t)

&) a;(t)

<O<o0, j=1,2,..., n—2in Ry,

(H1) and (H4) hold with d(t) = a,—,(t). Then cvery proper oscillatory solution of
(1) fulfilling the Cauchy initial conditions (7) does not tend to zero for t — oo.
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If, moreover, (H2) and (H3) hold then every solution of (1) fulfilling (7) is proper
oscillatory and does not tend to zero for t — co.

Proof. Let y be a proper oscillatory solution of (1) for which (7) holds. Ac-
cording to Proposition 1, y € O(o0) and the statement of Theorem 1 holds. Thus
there exist kg and C3 such that

(25) [y () > Cs > 0, k> ko.

Consider the differential equation equivalent to (1)

1

1
M)y = —— f(t. 40 .yt
0 Flty®, .y

Ap—1 (f)

As the assumptions of Lemma 3 are fulfilled in A, = [0,¢;"!] with
va = max fi(ly(t)]),

we get, using (25),

L —i i n—i

0<Cs<vi < Kyy" vy < Kyy™ [}lelgx fl(]y(t)|)]"7.
e,

The statement follows from the assumption that f; > 0 is nondecreasing in Ay,
k > ko. The rest of the statements of the theorem follow from Proposition 2.

Theorem 4. Let n > 4,4 € {1,...,n — 3}, aiy; € C'(Ry), ajy;(t) > 0 in Ry,
j =1,2 tl'_lgloai = A, 0 < A < oo hold. Further, let (24), (H1) and (H4) be
valid with d(t) = an—1(t). Then every proper oscillatory solution of (1) fulfilling (7)
is unbounded in Ry. If, morecover, (H2) and (H3) hold then every solution of (1)
fulfilling (7) is proper, oscillatory and unbounded in R,..

Proof is similar as that of the previous theorem, only Th. 2 must be used instead
of Th. 1. O

Let us turn our attention to oscillatory singular solutions of the 2-nd kind from
the set O(b), b < o0o. According to Proposition 1 such solutions may exist if (H1)
and (7) hold.

Theorem 5. Let y € O(b), b < oo, i € {1,2,....,n =2}, a;+1 € CY(Ry), airs €
CHRy,).



(a) Let either i € {1,2,....n—4} ori =n—3 and a,,_,(t) > 0 in Ry. Then
y is oscillatory singular of the 2-nd kind and there exists k such that the sequence
{ly(N)|}, k > k is increasing and kli?;o [y ()] = oo.

(b) Let either i = n —3 or i = n—2 and let a; be nonincreasing, a},, > 0 in
Ry. Then y is oscillatory singular of the 2-nd kind and there exists k such that
{lyE &)}, k > & is increasing.

Proof. It is evident that the assumptions of Lemma 4, with the exception of
(14), are fulfilled for e > 0,0 < 3 =2—¢,vy= /2 (for B =+ = 1) in case (a) (in
case (b)) (use Lemma 2, too). The validity of (14):

Case (a): As b < 00, there exists k such that for k > k

in a; in a; min a;(t)a;q (¢
min ai(t) win asgr(6) i ai0)i ()
maxax(®) maxar () © max e () > /2=
teAs 7 ten; T tefr.b) i

holds where 7 = t?’l. Thus (14) is valid.

Case (b): (14) directly follows from the assumptions posed on a;, a;4+1. The statement

follows from Lemma 4; as |yl(¢;!)| is increasing and klim tit! = b < co, y must be
' — 00

singular of the 2-nd kind. a

Theorem 6. Let y € O(b), b < oo, let (H4) be valid, a;+; € CY(Ry), j = 1,2
and let either i € {1,2,...,.n—4}ori=n—-32>1anda,,_,(t) 2 0in Ry. Theny
is oscillatory singular of the 2-nd kind and unbounded in [0,).

Proof is similar to that of Theorem 3. O

II. ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF (4) AND (6)

In Section I sufficient conditions are given for the sequence of the absolute values
of local extremes of yl!l, i > 1 to be increasing. The same result for y[% is stated in
this section but for equation (G) only.

Lemma 5. Let y € O(b), b < 0o be a solution of (6). Then g(y®(t)) sgn y°)(t})
is convex in Ay, = [t},19] for k € {ky,ky +1,...}.

Proof. Putty =ti, t; =19, J =[0,b). Without loss of generality, suppose
that sgn y%(¢9) > 0.
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It follows from y € O(b) and Lemma 1 that y(® > 0, y(ll(t5) = 0, y{!}(t) < 0 in
(to,t1], y!2l < 0in Ag. Then (2) and the assumptions concerning function g yield

(g (t))" = " (yOt))[ar ()M ()]
+ ' @) [ah ()M (#) + aa(t)ar ()yP ()] > 0.

0

Theorem 7. Let y € O(b), b < oo be a solution of (6). Let either a4(t) > 0 in
Ry or b < oo, n > 4 be satisfied. Then there exists k such that

WO < 1O ()l k2 R

Thus, y is proper (singular of the 2-nd kind) if b = oo (if b < 00). Moreover, in the
case al, > 0 we can put k = k;.

Proof. According to Lemma 7 the function ¢(y[°(t)) sgn y[o](t,lc) is convex in
[th,t9] for k > k;. Similarly, it follows from Lemma 2 that there exists k such that

yl1(t) sgn y[ll(ti) is concave in [t}, 7] for k > k; at the same time, we can put k = k;
if ay > 0.

Let k > k. Put Ay = [th,10], to = tf, t1 = 1.ty =t} ), 61 = (t1,12), 6 =
2, t;\lHl) A, = [tg,tﬁ;ll], Ay =t) —th Ay = f’[Hl t9. Without loss of generality,
suppose that y[o](t,{.) > 0. Then, according to y € O(b) and Lemma 1, we have

(y(t) >0 (< 0) in & (in &),y (1) =0
yU(te) = 0,yM1(t) < 0in 6, U A,

(26) yl9 yl) are decreasing in Ay U A,

y =) <0in Ay Uy, y* (1) =0,

yr=1 s nonincreasing (nondecreasing) in A; (in As).

The statement will be proved indirectly. Thus, let us suppose that [y(%(t;)] >
ly©(th,,)]- Then (26) and y € O(b) yield

(27) ¥ (1) > [y ().
It follows from (26) that
()] =y (k) — o1 ey) = / Yt dt = / an(®)9(y (1))
Ao Ao

< Bag(y(t2))an(t)
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holds. As g(y[9(t)) is convex in A;, we have

()] >~y () + g () = /
A

" (t) dt = — / a(t)g(yP (1)) at
1 Al

~

A
=z

m|l>|

“lg(y (t0))lan(tr).
Thus, according to (27) and g(x) = —g(—x) we conclude

By _ LgPlto))l _ 1lg(y o)D)l 1
(28) X 72 g0(e) 2 lg(yP)] Z 2

In the same way as in Lemma 4 the inequality

5, 2y

(29) 1>2 = 252
A zlé%)f a(s) A,
can be proved, see the first two inequalities (19), 5 = 1. The contradiction of (28)
to (29) proves the statement. O

Theorem 8. Let a; > 0. Let & € C'(Ry) (€ C?(Ry)) ifn =3 (n=4)
holds. Let (H3) hold where f(t,a1,...,2,) = an(t)g(v1). Then every solution y of
(6) satisfying the Cauchy initial conditions (7) is oscillatory proper. Moreover, the
sequence of the absolute values of all local extremes of y° in R is increasing.

Proof. Thestatement is a consequence of Proposition 2 and Theorem 7 because
hypotheses (H1) and (H2) are valid. O

Remark. Sufficient conditions, under which the sequence of the absolute values
of local extremes tends to 0o, can be obtained from Theorem 4.

In the rest of this section some consequences of Theorems 1, 2 and 4 for equation
(4) are given.

Corollary 1. Let y be an oscillatory solution of (4) that fulfils (7). Then

(a) the sequence of the absolute values of all local extremes of y(*) is increasing
fori € {1,2,...,n —2};

(b) y), 5 =1,2,...,n — 3 are unbounded;

(c) y is unbounded if (H4) holds with d = 1.

Corollary 2. Let y be a solution of (4) that fulfils (7). Let there exist functions

w € CO(R4), a € Lige(Ry) and h € CO(Ry.) such that w > 0in (0,00), [~ w((lf) = 0,

a >0, h>0in (0,00), h is non-decreasing and
a(t)h(|a,]) < f(t 2y, an)| < w(|z)).
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Further, let one of the following assumptions hold:

(i) h(z) =22, 0< A< 1, [T t=DAq(t) dt = oo;
(ii) h(z) =z, limsupt [~ t"2a(t) dt > 1;
t—oo

iii) [7 a(t) dt = oo.

Then y is proper, oscillatory and unbounded.

Remark. The results of Corollary 1, (a), (b) and of Theorem 7 are new, even

for the linear equation

(30) y'"™ = a(t)y, a <O0.

If either n is odd or the integer part of n/2 is odd, then Corollary 2 generalizes

results concerning the existence of proper, oscillatory and unbounded solutions of
(4) obtained in [5] and [13] (for the linear case (30)).
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