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In the interval I = [a,b] we consider a vector linear differential equation

m

(1) ul™(t) = > Pi(t)u I (ri(t) + q(t)

i=1

with the following complementary conditions outside [

(21) w D) =0 for t¢I(i=1,...,m)

and the boundary conditions

(22) uV@)=0 (i=1,....m—1), ™) =0,

where m > 2, the functions 7;: I = R (i = 1,...,m) and the matrix functions P;:
I - R™" (i =1,...,m) are measurable, n > 1, and the vector function q: I — R
is summable.

A vector function u: I — R™ is called a solution of the problem (1), (21), (22), if

(i) w is absolutely continuous along with its derivatives up to and including the
order m — 1;

(ii) the equation (1) holds almost everywhere in I, where «(=1(r;(t)) = 0 for

mi(t) ¢ I;

! Supported by the Grant 201/93/0452 of Czech Grant Agency (Praha) and by Grant
0953/1994 of Development Fund of Czech Universities.
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(iii) the boundary conditions (23) are satisfied.

Obviously, if a < 7:(t) < b (i = 1,...,m) holds almost everywhere in I, then the
conditions (2;) are redundant.

We do not exclude from our considerations the case that the matrix functions P;
(¢ =1,...,m) are not summable in I. In this sense, the problem (1), (21), (22) is
singular. For 7;(t) =t (¢ = 1,...,m), problems of this type are discussed in [1]-[7].

In this paper, the results of [8] are used to establish optimal, in a certain sense, con-
ditions guaranteeing unique solvability of the problem (1), (2,), (22) and continuous
dependence of its solutions on P;, 7; (1 =1,...,m) and q.

We use the following notation and definitions:

x;—the characteristic function of the interval [, ie. x,(¢t) = Lif t € I and
x;(t)=0ift ¢ [;

R—the set of the real numbers;

R™—the space of the column vectors z = (z;)?, with the components z; € R and

the norm
n

ll=ll = Zilzlv

=1

R™*™—the space of the n xn matrices X = (:L'ik)?,,\:l with the components z;;, € R

XM=Y lwal;

1,k=1

and the norm

r(X)—the spectral radius of a matrix X;
if x = (z;)2; € R® and X = (v)}y—, € R™™", then

o] = (lesl)iey, X1 = (laid)in=r;

if 2 = (2:)%, and y = (y:)ly € R™, X = (vit)ly-; and ¥ = (ya) Py € R,
then

c<ye <y (i=1....,n), X <Y &y <y (i,k=1,...,n);

a matrix or vector function is called continuous, summable, etc. if its components
are such;
C(I; R™)—the space of continuous vector functions x: I — R™ with the norm

lellc: = max{lla(t)]: ¢ € 1
L(I; R™)—the space of summable vector functions .«: I — R™ with the norm
b
lelle = [zl ar.
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For arbitrary ¢ € {1,...,m} assume

a for 7;(t) < a,
(3) T0i(t) =  Ti(t) fora < 7i(t) <O,
b for 7;(t) > b

(4) Poi(t) = x,; (r: () i (2).

Theorem 1. Let
b .
(5) / [10:(t) — a]™ 7| Poi (t)|| dt < 400 (i =1,...,m).

Then the problem (1), (21), (22) is uniquely solvable if and only if the problem

T m—1 T0i(t)
(6) d (t Z P01 t)/ (7_01 _s)m 1—-1 ( )ds

=1
+P0m( )x(TOm(t))v
(7 z(b) =0
has only the trivial solution.

Proof. By (3) and (4), a vector function u is a solution of the problem (1),
(21), (22) if and only if it is a solution of the differential equation

(8) ut™ () = > Poi(t)u1 (104(t)) + q(t)
i=1

with the boundary conditions (2).
Let u be a solution of the problem (1), (21), (22). Further, let

(9) o(t) = ™D (1)
and

Tu'(‘) .
(10) Z(m_l Pult) [ ) = 9" () ds

+P0m( )x(Tom (1))
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Then it follows from (2,) and (8) that

(11) u(t) = / (t —s)™ 2u(s)ds

and z is a solution of the vector functional-differential equation

(\l(t)

(12) dt

p(@)(t) +q(t)

satisfying the condition (7). Obviously, the inverse assertion also holds: if z is a
solution of the problem (12), (7), then the vector function u defined by (11) is a
solution of the problem (1), (2/), (22).

Therefore, the problem (1). (2;), (2) has a unique solution if and only if the
problem (12), (7) has a unique solution.

It follows from (5) and (10 that p: C(I;: R") — L(I,R") is a linear operator
satisfying, for any « € C (I, R"). almost everywhere in I the inequality

Ip@)OI < n@)llzllc.

where
m—1

n(t) = Z (m—1i)! |Poz(t i (1) — ™=

and

b
/ n(t) dt < +o0.

By Theorem 1.1 from [8], the problem (12), (7) has a unique solution if and only if
the homogeneous problem (6), (7) has only the trivial solution. O

Theorem 2. Let the conditions (5) hold and let

(13) r( /[Tg1 ) —a]™” Py (t |dt>
— (m—1)

Then the problem (1), (2,), (2.) has a unique solution.

Proof. It is sufficient to prove, as follows from Theorem 1, that the problem
(6), (7) has only the trivial solution. Let @ = (;)"_, be a solution of that problem.
Then

b
(14) a(t) = / p(x)(s)ds fort eI,
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where p is the operator defined by (10).

Put
lzle = (lzille)iz,
and
m 1 b ]
(15) A=Y s / [r0:(8) — )™~ Pos (8)] dt.
i=1 ) U
Then (10) and (14) give
lele: < Alale,
ie.
(16) (E - A)|z|lc <0,

where E' is the unit matrix. On the other hand, by (13),
r(4) < 1.

Thus the matrix E — A is not singular and (E — A)~! is non-negative. Multiplying
(16) by (E — A)~!, we get
|z|le €0,
ie. a(t) =0. O
The following example shows that the condition (13) is optimal in the sense that

it cannot be replaced (without further assumptions on 71,...,7,), for any ip €
{1,...,m}, by the inequality

m

. b )
(17) /(X sy [t - imsolar) <1
1:1 a

where v;, = 1 and v; (i #i9,i=1,..., m) are arbitrary great positive numbers.
Example 1. Let 0<d <0 —q,

© fora<t<b-4,

(18) Tl'n(t) =b- 67 Pi()(t) = -\
(m—i0)!6~ (b —a—8)o""E forb—6<t<b,

(19) i) =t,P(t)=0 (i #ig,i=1,...,m) and ¢(t) =0,



where © and F are the null and unit n X n matrices. Then

{(—) for i # o,

E fori= io.

/{7-0, t) — a]™ | Po; (t)| dt

(m —1)!

Therefore, (13) is violated but (17) holds for v;, = 1 and any v; > 0 (¢ # ip,i =
1,...,m). On the other hand, in the case considered the problem (1), (21), (22) has
infinitely many solutions. This casily follows from (18) and (19): for any ¢ € R™, the
vector function

u(t) = cw(t),

where
wt)=(t—a)™ " fora<t<b-24,

m—2 i _ ot
(200 w(t) =) “_I’T*L‘”w“)(b—a) ym-t1 /M(t —5)™"2(s —b)ds

=0 0
forb—6 <t <b,
is a solution of the problem (1), (2;), (22).
Example 2. Let t; (i = 1....,m) be fixed points in the interval [a,b], v; (i =

1,...,m) arbitrary great positive numbers,

Ti(f,) = (b - a)l""‘ 't - f,'ll/' + a,
(m —i)!

2mn

P(t (l) )(rn i) (vi—1)— llt (m—1i U‘E (Z — 1 )’

and A the matrix defined by (15). Then

1
A= Ev—lE, T(A) = =

and, by Theorem 2, the problem (1), (21), (22) has a unique solution.

Example 2 shows that in Theorem 2, the matrix functions Py, ..., P,—1 may have
non-integrable singularities of any order at the points of the interval [a, b].

Theorem 3. Letn =1,

(21) 7:(t) > t for almost all t € [a,b] (i =1,...,m),
and
b ) b
(22) Z (m o) = iR 0t < o ( - / |P0m(t)|dt>.
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Then the problem (1), (21), (22) has a unique solution.

Proof. First of all, we notice that, by (3) and (21),
(23) i) =t (i=1,...,m)

holds almost everywhere in I. By Theorem 1 it is sufficient to prove that the problem
(6), (7) has only the trivial solution. Suppose the contrary, i.e. that the problem (6),
(7) has a non-trivial solution x. Then there exists to € [a, b] such that

|z(to)] = max{|z(s)|: @ < s < b}, |x(t)] < |x(to)] forto <t <b.

If we now assume
y(t) = max{|z(s)]: t < s < b},

then we shall have

On the other hand, with regard to the inequality 79, (t) > ¢, from (6) and (7) we get

b
(25) y(t) < z(t) + / [Pom (s)|y(s)ds fora <t <D,
Jt
where
m—1 Toi
2% Pz : m—1—1 d d
@ 0= Gy i [ [ [ o) - =i a] .
The function z is non-increasing. Thus, using Gronwall’s lemma, (25) yields the
estimate
b
(27) y(to) < =(to) exp (J/ | Pom (t |dt>
to

Since y(to) is positive, this estimate implies that there exists a set Iy C [to,b] of a
positive measure such that

m-—1

Z (m — |P01(f)| >0 fortel,.

Using this inequality along with the inequalities (23) and (24), we get from (26)

m—1

Z(to <y(t0)z ,n /[Tol(f -—(l]m l‘P()L(t Idt



However, this estimation together with the conditions (22) and (27) leads to the
contradiction

y(to) < y(to),

which proves the theorem. O

As the following example confirms, the condition (22) is optimal in the sense that
it cannot be replaced, for any ip € {1,...,m — 1} and = €]0, 1|, by the inequality

m—1
(28) ; W’ﬁ—l)' /ab[TOi(t) - a]m—i|P0i(t)| dt < exp (— ./ab | P ()] ds>,

where v;, =1 —¢ and y; (1 # 10,4 = 1,...,m) are arbitrary great positive numbers.
Example 3. Lete €]0,1[,ip € {1,...,m—1}, v, = 1 —e. Further, let § be the
numbers defined by the equality

(b—a—(S)m—in_l_c

b—a N B
and w the function defined by (20). Finally, let
P(t)=0 (i #i0,i=1,...,m),

Pu (1) fora<t<b-4,
YT mo= D)W wlom D (b — §)]71 for b—6 <t < b,
()=t (i=1,...,m), ¢(t) =0.

Then ( n
(i0—1) b — L b—a—-246 m-—1
v (b—0)> (m — io)!( @0
0 < Py, (t) = Py, (t) < (m —ip)!16™ " (b —a —§)o—™
and , -
) _ _ (\ 10—
———1—.— (t—a)" P, (t)dt < (b——“——> =(1-¢)"L.
(m —1io)! Jy_s b—ua
Therefore,
1 for i # i,

b ny 0
/ [m0i(t) — a]™ | Pos(t)| dt < {

(m —)! (1 —-¢)~! fori=ij.

The inequality (28) is thus satisfied for v;, = 1 — ¢ and any v; > 0 (1 # o, { =
1,...,m —1). The unique solvability of the problem (1), (2) is violated because it
has a solution u(t) = cw(t) for any ¢ € R.
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From the inequality
exp(—s)21—s for0<s<1
and from Theorem 3 we obtain

Corollary. Ifn =1, the condition (21) is satisfied, and

m

1 ’ m—1
Z (m —i)! / [T0i(t) = a]™ 7" Pos ()| dt < 1,
i=1 s Ja

then the problem (1), (2) has a unique solution.

As example 1 shows, in the above corollary the condition (21) is essential and
cannot be omitted.

Along with the equation (1), we consider, for every positive integer k, the per-
turbed equation

m

(29) W (1) = 3 Pu(yu= (1) + an(0),
i=1

where 7;1: I = R and Py, : I — R™*™ are measurable, and g : I — R™ is summable.
For arbitrary i € {1,...,m} put

a for 7. (t) < a,
T0ik(t) = { Tin(t) for a < 1 (t) < 0,
b for Tik(t) >0

and
Poir(t) =\, (1an (8)) Pir (1)

Theorem 4. Let the condition (5) be satisfied and let there exist a summable
function n: I — Ry such that the inequalities

m

(30) S (o () — )" P (O]l < at) (k=1,2,...)

=1

hold almost everywhere in I. Further, let

(31) esssup{|roi (t) — 10:(t)|: t € I} = 0 if k = +o0 (1,...,m),
t
(32) lim /(‘rol-k(s) —a.)""_"'POi;L.(s)ds
k—+oo [,

t
= / (10i(8) — @)™ " Pyi(s)ds uniformly on I (i =1,...,m),

t t
lim / qr(s)ds = / q(s) ds uniformly on I.
k—+oc0 /.

a
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Finally, suppose that the problem (1), (21), (22) has a unique solution u. Then
there exists a positive integer ko such that the problem (29), (21), (22) has a unique
solution uy for every k > ko, and

lim ugf_l)(t) = u'""V(t) uniformly on I (i=1,...,m —1).

k—4o00
Proof. For arbitrary y € C(I; R™) and a positive integer k put

(33) 9i(y)(t) = 0 for 79;(t) = a,
. 70i (t)
6(®)(t) = (m — i) (r0s(t) — )™ / (70i(t) — 5™~ =y (s) ds

for 70;(t) >a (t=1,...,m—=1)
(34) gir(y)(t) = 0 for moix(t) = a,

) Toir (¢
g @)(t) = (m — i) (7om (t) — a)™™ / (rors (1) — )™=y (s) ds

for 1oi(t) >a (t=1,...,m—1),

(35) gm(y)(t) = 'u(Tom(t )): gmi (V) (8) = y(Tomk(t)),

(36) p(y)(t il i (0 = a)™ " Poi(t)gi (y) (1),
(37) p(y)(t) = i Gy ok () = @)™ Poi (£)gie () (1)
We consider the equation (12) and

(39) B p@© + a0

with the initial condition (7).

As shown in the proof of Theorem 1, the vector function z(t) = u(™~1(¢) is the
unique solution of the problem (12), (7). As for the problem (29), (21), (22), it
is uniquely solvable if and only if the problem (38), (7) is uniquely solvable. The
solutions of these problems are connected by the equality

1 t )
g [ - ) ds

We thus have to prove that there exists a positive integer ko such that the problem

uk(t) =

(38), (7) has a unique solution x; for k > kg and

lim .4 (¢t) = «(¢t) uniformly on I.
k—+oc
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By Corollary 1.6 from [8], it is sufficient to prove that

t t
(39) . lil}rl / pr(y)(s)ds = / p(y)(s) ds uniformly on I
x— 400 a a

for any absolutely continuous vector function y: I — R™.
By (36) and (37),

(40) { [ w6 - p)1s] < 5 + At} 0

where

m b
=3 / (o () = )™ "1 Poik ()l g (1) () = 9:() (5)1| s,
i=17e

m

Ac)() =S

i=1

/ [T0ik (5) — @)™ ™" Poir(s) = (0i(s) = @)™ " Poi(s)}gi(y)(s) ds

In view of (31)-(35), the following conditions hold almost everywhere in I:
Jim g () () =g =0 (i =1,...,m)
L —+o00

and
lgax (W) (&) = g: (Ol < 2Mylle (i =1,...omk =1.2,...).

Combining this with the condition (30) and applying Lebesgue’s theorem about a
limit in an integral, we get

(41) lim dox(y) =0.

k—+o0

On the other hand, in view of Lemina 2.1 from [8], it follows from (30) and (32) that

(42) lim Ay (y)(t) = 0 uniformly on I.
k—+o00
Now (39) immediately follows from (40), (41) and (42). O
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