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1. INTRODUCTION 

This paper deals with a relation between the well-known term "absolutely con­
tinuous norm" in a Banach function space and "continuous norm" which was in­
troduced by Q. Lai and L. Pick in [2]. Authors proved that the Hardy operator 
Tf(x) = JQ f(t) dt is compact from a Banach function space (X,v) into L^ if and 
only if the function 1/v has a continuous norm in the associate space (X',v). In con­
nection with this result there arose a problem whether the set of all functions with 
an absolutely continuous norm is equal to the set of all functions with a continuous 
norm in any Banach function space X. 

In the third and fourth section an answer to this problem is given. In the first 
section a Banach function space is found in which there exists a function with a 
continuous and non-absolutely continuous norm. But in this space there is a function 
with a non-continuous norm. In the second section another space is found such that 
every function has a continuous norm and there is a function with a non-absolutely 
continuous norm. 

The first author was supported by foundation "Nadání Josefa, Marie a Zdenky Hlávko­
vých". The second author was supported by Grant No. 201/94/1066 of the Grant Agency 
of the Czech Republic 
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2. PRELIMINARIES 

This section has a preparatory character and is devoted to basic notation, def­
initions and assertions which are used in constructions of norms defining Banach 
function spaces. Let 0 be a non-empty open subset of IRm and let JVi(ft) be the set 

of all measurable functions defined on ft. Denote by \E\ the Lebesgue measure of 
any measurable subset E of ft and by XE the characteristic function of E. Let the 
symbol | / | stand for the modulus of a function / , / G jW(ft). 

2 .1 . Definition. We say that a normed linear space (X, ||.||x) is called a Banach 
function space if the following conditions are satisfied: 

(2.1) the norm | | / | | x is defined for all / G M(Sl) and / G X if and only if | | / | | x < 
oo; 

(2.2) | | / |U = || | / | ||x for every / G M(ft); 
(2.3) if 0 ^ fn S f a.e. in ft then | | / n | | x S ll/llx; 
(2.4) if \E\ < oo, E C ft, then XE G X; 
(2.5) for every set E, \E\ < oo, E C ft, there exists 

a positive constant CE such that fE \f(x)\ dx ^ C7E| | / | |X-

Recall that the condition (2.3) immediately yields the following property: 

(2.6) i f O ^ / ^ ^ t h e n | | / | | x ^ | | g | | x . 

To see this it suffices to set / i = / , fn = g for n ^ 2 in (2.3). 
We will work in the following text only with bounded domains and therefore we 

will assume this property automatically. 

2.2. Definition. Let X = (X(ft),||.||) be a Banach function space and let 

/ G X be an arbitrary function. We say that the function / has an absolutely 

continuous norm in X if and only if for any sequence of open sets Gn , G\ D G<i D 
oo 

Gs . . . , p| Gn = 0, the norms | | /XG„ II tend to zero for n —> oo. Denote the set of 
n=l 

all functions with an absolutely continuous norm by Xa. 

2.3. Definition. Let the same assumptions as in Definition 2.2 be satisfied. 
Let B(x,e) be a ball with centre x and radius e. We say that / has a continuous 
norm in X if and only if lim ||/xB(x e)nQll — 0 f° r every x G ft, where ft stands for 

e-»0+ v ' ' 

the closure of the domain ft. Denote the set of all functions with a continuous norm 

b y K c 

We will keep in the sequel a special notation u for the unit function, i.e. the symbol 
u will always be the function defined by u(x) = 1 for all x G ft. 
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2.4. Remark . It is clear that it suffices to show that the function u belongs to 
X and the imbedding X <-» Li(-l) holds in order to verify the conditions (2.4) and 
(2.5). 

2.5. Definition. We say that a normed linear space (X, \\.\\x) is called a weak 
Banach function space if and only if the conditions (2.1), (2.2) and (2.3) are fulfilled. 

For the sake of simplicity we shall write "BFS" instead of "Banach function space" 
and "WBFS" instead of "Weak Banach function space". 

In what follows we shall prove some assertions which make it possible to construct 
norms in Banach function spaces. 

2.6. Lemma. Let Q,a, a G I, be a system of non-empty open subsets of ft such 

that ft = U naUM, where \M\ = 0. Let Xa = (Xa(fta), \\.\\a) be a system of WBFS 
aG1 

defined on fta. Define a space X(ft) as the set of all functions f with a finite norm 
ll/H = supaei\\fa\\a, where fa denotes the restriction of f onto the set fta. Then the 
space X = (X(ft), ||.||) is a WBFS. 

P r o o f . Clearly, the expression | | / | | is defined for every / e M(ft) and defines a 
norm. The properties (2.1) and (2.2) are evident. To prove (2.3) assume 0 ^ fn /* f 

a.e. in ft. It is not difficult to verify the inequality | | /n | | ^ | |/ | | . Suppose that 

(2.7) | | /n | | = sup ||(/n)a||a ^ K < sup | | /a | |a = | | / | | for all n. 
ael a£l 

Since sup | | / a | | a > K there exists b,b £ I, such that ||/fc||6 > K. Now, Xb is a WBFS 
aEl 

and using (2.3) it follows that there is a positive integer n0 such that ||(/n0)&ll& > -K\ 
which gives a contradiction with (2.7). The lemma is proved. • 

2.7. Lemma. Let ftn be a sequence of non-empty open subsets of ft and 
oo 

ft = U ftn U M, where \M\ = 0. Let Xn = (Xn(ftn), ||.||n) be a corresponding 
n=l 

oo 

system of WBFS. Define a norm | | / | | = J2 \\fn\\n for fn being the restriction of f 
n = l 

onto ftn. Then the space X = (X(Q), ||.||) is a WBFS. 

P r o o f . The conditions (2.1) and (2.2) are again trivial. To prove (2.3) it 
suffices to use the following well-known property of the space l\. Let an = {an}^=1, 
n = 1,2,..., be a sequence of elements of l\, an ^ 0 and an /* ak for n -> oo. Denote 
by a the sequence {ak}k

xL1. Then Hâ H/j /* IIOH/x- Note that WaW^ can be equal to 
infinity. Now, let 0 ^ fk /> f a.e. in ft. It is again easy to see that ||/A.|| -̂  | | / | | . To 
complete the proof it suffices to set an = | | (//c)n | |n and an = | | /n | |n . • 
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2.8. Lemma. Let (X(Q), \\.\\x) be a WBFS such that u G X. Define a norm 

by | | / | | Y = H/IU + JQ l/l- Then the space (Y(Q), | |. | |y) is a BFS. 

P r o o f . The proof follows immediately from Remark 2.4. • 

3. T H E FIRST CONSTRUCTION 

In this part we give a construction of a norm denning a BFS X such that Xa C 
Xc C X. We will consider in this section f_ = (0,1). To construct this norm we 
will use the idea of the construction of the Cantor set which we will denote by £. 
Let I = (1/3,2/3), I0 = ( l /3 2 ,2 /3 2) , h = (7/32 ,8/32), I00 = ( l /3 3 ,2 /3 3 ) , I01 = 
(7/33 ,8/33), Iio = (19/33,20/33), In = (25/33,26/33) and so on. Denote further 
the "complementary" intervals J = [0,1], J0 = [0,1/3], Ji = [2/3,1], J00 = [0,1/32], 
J01 = [2/32,3/32], Jio = [6/32, 7/32], Jn = [8/32,1] and so on. 

Let the symbol /C stand for the set of all finite sequences containing only the 
numbers 0 and 1, including the empty sequence. We will call the elements of /C 
multiindices. For a given multiindex a,a = ( a i , a 2 , . . . , a n ) G /C we introduce the 
length of a (write |a|) as the number of all members of the sequence a, i.e. |a | = n. 
Let us define a partial ordering on /C. We say that a _̂  (3 for a = (a\, a<i,..., ak), (3 = 
0#i, #_, • . . , Pn) if and only if |a| ^ \(3\, i.e. k ^n, and a; = fa for i = 1,2,. . . , k. The 
reader will notice that this partial ordering on /C is in fact the lexicographic ordering 
defined on the tree (/C, -<), which is well-known for instance in the set theory. In the 
following we will use the notation a ^ (3 if a •< (3 does not hold and a ^ f3 if (3 -fc a. 
The symbol a oo f3 is used in the case a -fc (3 and a ^ (3, i.e. if there is no relation 
between a and {3. Recall that a = (3 if and only if a ^ f3 and a y (3, and a 7- (3 if 
a = /3 is not satisfied. 

It is not difficult to see the following properties: 

(3.1) for |a | = n we have \Ia\ = l / 3 n + 1 and \Ja\ = l / 3 n ; 
(3.2) a = (3 if and only if Ia = Ip and a 7-= f3 if and only if Ia n Ip = 0; 

(3.3) a :< (3 if and only if Jp C Ja and a * j3 if and only if Jan Jp = 0; 
(3.4) a -< (3 if and only if Ip C Ja and a -fc (3 if and only if Ip C\ Ja = 0; 
(3.5) for a given a € JC and an integer k,k > \a\, the number of all multiindices f3 

such that (3 y a and |/3| = k is equal to 2fc~'al; 
(3.6) for every x G £ there exists a unique sequence {an}n^= 0 such that a0 ^ a i ^ 

00 

<*2 ^ «3 _!_•••, \oLn\ = n and {x} = f) j a n . 
71=0 

Let us now introduce a norm. Put 

Зn - ł _ 1 

| x = sup — — 
\a\-n 

Y, i \f(x)\&c+ f\f(x)\áx. 
.TT_ Ji„ Jo 
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Denote by | |/ | | the first summand in | | / | |x , i.e. | | f | |x = | | / | | + JQ | / | . First we shall 
prove that the norm | | / | |x defines a BFS. 

3.1. Lemma. The space X = (X(0,1), | | . | |x) is a BFS. 

P r o o f . Obviously, Lemma 2.6 and Lemma 2.7 guarantee that | | / | | defines a 
WBFS. According to Lemma 2.8 it suffices to show that ||w|| < oo. Recall that u is 
the unit function on (0,1). Using (3.1) and (3.5) we obtain 

3 n + 1 v 1 
\\u\\ = sup — — } • ... = 1 < 00, 

' |a|=n 

which completes the proof. • 

3.2. Theorem. The function u does not have an absolutely continuous norm 

inX. 

P r o o f . Take a sequence of open sets GN = (J Ia. Obviously, GIv is a 
\<*\>N 

decreasing sequence of sets and the intersection of all G/v is empty. Let us calculate 

IÎ XCTvllx- The statements (3.1) and (3.5) give 

ll«XOw|| = SUp —— V | Ja| + \GN\ ) S U p 5 V l = l 
k>N " \a\=k k>N* \a\=k 

for every IV, and the proof is complete. • 

3.3. Lemma. Let ao •< a\ •< Q2 •< . . . be a sequence of multiindices, \a^\ = IV-
Then 

lim \\uXj(XN \\x = 0. 

P r o o f . Evidently, it suffices to estimate only the norms \\uxjn II- According 
to (3.4) we have 

jaN = u h = U U h-
(3>ZOLN k=\ocN\ \^\ — k 

pyctN 

Now, (3.1) and (3.5) immediately yield 

3^+1 3 f c+1 2k~N 1 

pyacN 
\P\=k 

The last expression tends to zero for IV increasing to infinity, which proves the lemma. 
D 
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3.4. Theorem. The function u has a continuous norm in X. 
oc 

P r o o f . Fix x G [0,1]. We have two cases: either x e \J Ia or x G <£. Let us 
H=o 

investigate the first case. Since Ia,a G /C, are open sets, there exists a multiindex j3 

and a real number £0 > 0 such that (x - £0,x + e0) C Ip. Obviously, it suffices to 

estimate ||ux(x-e,x+e)|| o n i y f° r e < eo- By an elementary calculation we obtain 

3|/?| + 1 PX+E rX + E 

\\uX(x-e,x+£) \\X = -^pf J M + J \U\ 

which tends to zero for e -> 0+ due to absolute continuity of the Lebesgue integral. 

Let us consider the case x G <£. According to (3.6) there exists a unique sequence 
oo 

JaN, |«IaN I = 1/3^, such that f| JaN = {x}. Let us write C = £i U £2 U £3, where 
N=0 

Ci is defined as the set of all x G € such that x belongs for every TV to the interior 
of JaN, the set £2 contains all boundary points of all intervals Ia,a G AC, and €3 

contains only 0 and 1. 
Take x G €2 • Without loss of generality we can assume that a; is a left boundary 

point of an interval Ip (if x was a right boundary point the proof would be analogous). 
Clearly, 

\\uX(x-e,x+e)\\x ^ | |X(x-£,x) | | + \\X(X,X+E) || • 

Lemma 3.3 guarantees that ||x(x-e,x)|| tends to zero for e -> 0 + . The estimate of the 
second summand is analogous to the previous case and follows again from absolute 
continuity of the Lebesgue integral. 

Finally, the use of Lemma 3.3 immediately completes the proof of this theorem 

for x G £1 U£ 3 . • 

We promised at the beginning of this section to construct a space X such that 
Xa ^ Xc 7-= X. To satisfy this we must construct a function g such that g does not 
have a continuous norm. It is not difficult, as the following example shows. 

3.5. Theorem. There exists a function g such that g £ Xc. 

P r o o f . Take a sequence of multiindices a0 = 0, OL\ = 0, a2 = 00, a3 = 000, — 
Define a function g(x) = 2N for x G IaN and g(x) = 0 otherwise. It is easy to verify 
that g G X and ||gX(o,i/3*)ll ^ 1 f° r a n N. This implies the assertion of the theorem. 

• 
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4. T H E SECOND CONSTRUCTION 

In this section we shall construct a BFS Y such that {0} C ya C yc — Y, 

i.e. every function in Y a continuous norm and there is a function with a non-
absolutely continuous norm. 

A certain very simple idea how to construct this space Y would be based on the 
result of the previous section. It would be possible to take the space X and define 
y = Xc. The following three assertions show that this idea cannot be used. 

Remark that we shall suppose in these three assertions that ft is a non-empty open 
bounded subset of Um. 

4.1 Lemma. Let X be a BFS. Then Xa is a closed subspace of X. 

P r o o f . The proof can be found in Theorem 3.8. in [1]. • 

4.2 Lemma. Let X be a BFS. Then Xc is a closed subspace of X. 

P r o o f . Let fn G Xc and fn —•> / in the topology of the space X. Let us 

estimate ||/x.B(i,e)nfi||- Using the triangle inequality and (2.6) we obtain for any n 

| |/XB(a,e)nn|| < | | ( / - fn)XB(x,e)nn\\ + ||/nXB(x,Onn|| < 11/ - /n | | + ||/nXB(x,e)nft||. 

Now, given an n > 0 we can find n0 such that | | / - / n J | < n/2. Since / n o G Xc we 
have for sufficiently small e the estimate ||/n0X.8(x,t?)nnll < W ^ which completes the 
proof. • 

Remark that Lemmas 4.1 and 4.2 imply that Xa is a closed subspace of Xc. 

4 .3. Theorem. Let X be a BFS and let Y be a closed subspace of X such that 

Y T-= X. Then there exists no norm which would turn the space Y to a BFS. 

P r o o f . Assume that there is such a norm. We will write X = (X, \\.\\x) and 
y = (y, ||.||y). Theorem 1.8 of Chapter I in [1] implies that Y is imbedded into X, 
i.e. that there exists a positive real constant c\ such that 

l l / l l x ^C i l l / l l y 

for all f € Y. Consider the identical mapping from (Y, ||.||y) onto (Y, | | . | |x). Since 
I is a continuous one-to-one linear mapping, the inverse mapping is continuous, too. 
This yields the existence of a positive real constant C2 such that 

l l / l | y<c 2 | | / | | x 
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for all / £ Y. This implies the equivalence of the norms ||.||x and ||.||y on Y. 

Now, take a function / € X \ Y, i.e. \\f\\x < oo and | | / | |y = oo. The property 

(2.2) gives | / | € X \ Y. The measure theory yields the existence of a sequence of 

simple functions fn such that 0 ^ fn /* |/ |- Recall that any simple function / can 

be expressed as a finite sum of characteristic functions of sets E\, E^,..,, En such 

that \Ei\ < oo and E{ D Ej = 0 for i ^ j . Using this fact and (2.4) we know that 

fn G t for all n which together with (2.2) and (2.3) implies | | / n | |x /* \\f\\x a n d 

l l / n l l y / l l / l l y -
Thus H/llx = oo and | | / | |y < oo, which is a contradiction with the equivalence of 

norms and the proof is complete. • 

It is seen from this theorem that we must construct the space Y in another way. 

We shall define a norm again on the interval (0,1) and keep the notation of Ia and 
Ja,a E /C, from the previous section. For any / G .M(0,1) let us define a norm 

~ 3T1+I r 

11/11 = 22 max sup — p 2 ^ / l /(z) |dx 
k=0W~kn>k ^ \(3\=nJl« 

P>OL 

and the norm in a space Y by 

ll/lly = 11/11 + f\f{x)\Ax. 
JO 

4.4. Lemma. The space Y = (7, ||.||y) is a BFS. 

P r o o f . Lemmas 2.6 and 2.7 guarantee that the norm ||.|| defines a WBS. Ac­
cording to Lemma 2.8 it suffices to show ||u|| < oo. Recall again that u denotes the 
unit function. The statements (3.1) and (3.5) give 

IMI = y ^ m a x S U P -^— y ^ „./3i, 1 

0 0 - 0 0 ^ 

= > max sup -r-r = / -zr < 00, 
k=o' ' n ^ * fc=0 

which completes the proof. • 

4 .5. Theorem. The function u does not belong to Ya. 

P r o o f . Define GN = U I« as in the proof of Theorem 3.2. Recall that we 
\<*\>N 

can write GN in the following way: 
00 

GN=\J U 7«-
fc=JV |a|=fc 
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Fix IV and estimate ||ÎXXGN||У- Omitting the Li-norm and taking from the norm 

II^XG^ II on-У the first summand of the whole series we obtain 

o n + l °° 

Ц t i X O i . l І У ^ s u p — £ \IßП(\J U I«)\ 
n>° \ß\=n k=N\ac\=k 

oIV+1 

\ß\=N 

for every IV, which completes the proof. D 

Now, we shall prove that every function from Y has a continuous norm in У, 

i.e. Уc = У. In the proof the following lemma plays a key role. 

4.6 Lemraa. Let \\f\\ < oo and let {&N}N=I be an increasing sequence of 

multiindices, \aN\ — N. Then 

Jim \\fXJ„J = 0-
IV->oo N 

P r o o f. Assume that the assertion of this lemma does not hold. Then (2.6) and 

(3.3) imply that \\fxj„N II - s non-increasing and there exists a positive real number 

c such that for every IV the inequality 

(4-1) \\fXJ„J>c 

holds. Now, fix IV and calculate \\fxjn II- According to the definition of | | / | | we 

have 

0 0 o n + l f 

(4-2) \\fxJ„N II = £ гTŁ 8 u p V £ ìfì 

kToìaì=k^k 2 \ßЏnJl""J«* 
ßҺ<* 

V з n + 1 V í iл 
= .L,пVиŁsup~5»~ lu / III 

tҐoM=кn>к 2 wŽnJl<>nJ-» 
ßУa 

°° on+1 
3 - ' III 

^ 3 " + 1 . ^ f 
+ > max sup — — > / 

= A^N) + A2(N). 

Let us first estimate A\(N). Let k, O ^ k ^ N - 1 , be a fixed integer. Suppose 

for a moment that |a | = k, a * ak. Since (3 y a and aN y &k then ft <* aN and 
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according to (3.4) we have Ip D JaN = 0. This yields 

3 n + 1 -\ I 

rřísup ^ r IJ / l/l = ° 
pya 

and we can rewrite Ai (IV) in the form 

W - 1 o n + l / V _ 1 Q n + l /• 

^N)=£sup±— £ / |/|. 

Fix n. I f k < n ^ N - l then the inequalities |/3| ^ IV — 1 < IV = |aIv| imply 
/? ̂  a/v and the statement (3.4) gives Ip D JaN = 0. Then we can write 

N~l Q n + l r 

-4i(-V)=$>up— £ / |/|. 
fc=0n^Iv -4 i^i^J/^nJ,^ 

Let n ^ IV. Let |/?| = n such that aw ̂  /3. Then the property (3.4) again yields 

I/3 H JaN = 0 and it follows that the last term can be non-zero if and only if /? y ajv. 

But in this case the property (3.4) gives Ip C\ JaN = Ip. Now, we can finally write 

^ - 1 QП+l ľ 

(4.3) * w = E*ф-2=- £ / I/I 
*=on>N z |/3|=n-l7'< 

= ̂ s ^ p ^ E / I/І-
101= 

py<xN 

Let us estimate ^(IV). Increasing the integration domain from Ip n Ja7V to I/3 we 

obtain 
0 0 / Qn+l r \ 

MN^Y: M y E / I" • 

Since the last expression is the rest of the series 

1/31 = ™* 
pУa 

°° / c . n + 1 --—, ľ \ 
Ц/ll = ^ max sup - - — £ / l/l 

ь o l н = Ł ^ 2 láiЛ / /Зb« 

230 



and this series is convergent according to the assumption, A-2(N) tends to zero for 

N increasing to infinity This together with (4.1) and (4.2) guarantees the existence 

of No such that AX(N) ^ c/2 for IV ̂  IV0. Tlie equality (4.3) gives for IV ̂  IV0 an 

estimate 
3 n + 1 v - /" , ,, c I 

7X>N z , , , . J Iti -- i N 

\fl\ = n J 7 " 
/3^a/v 

The use of the last inequality and the fact that jowl = N immediately yield 

^( 3,i+1 Y - r ifi^i 
/v=0 V ' n ^ A " |/3| = 7i */ylí / 

/^cv 

fc=A'„ \ n ^ |/?| = n 7 / / ' 

ßУak 

> - T 7 = oo, 
2 ---' A: 

A ' - N ( ) 

which is a contradiction with the assumption, and the proof is complete. • 

4.7. T h e o r e m . Every function from Y has a continuous norm in Y. 

oo 

P r o o f . Fix x e [0,1]. It is clear that either x G IJ Ia or x G C . 
|«|=o 

Let us investigate the first case, i.e., there exists a multiindex 7 such that x G I7. 

Since I7 is open there is a positive real number £Q -such that for all £,0 < e < SQ, 

we have L = (x — e,x + e ) c / r Let us calculate the norm \\fxie II Y • By virtue of 

absolute continuity of the Lebesgue integral it suffices to prove that A£ = \\fxi£ 11 —̂  0 
for e -> 0+. 

Clearly, 

0 0 071+1 /• 

(4.4) A ^ ^ m a x s u p l ^ j : / | / | . 

/i^cv 

Let us now fix k. If k > \j\ then /? ̂  7 and by virtue of (3.2) we have IpCMy = 0. 

Since L C I7 we immediately obtain I^HK = 0. Let us consider the case 0 ^ k ^ |7|. 

Let us fix a, I a I = k. Provided a ô  7 and due to /i >: n we have [3 ^ 7 and 

consequently, IpDle = 0. We have just shown that the maximum in (4.4) is attained 

for a such that \a\ = k,a •< ->. Such an a is determined by A: definitely and this 
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enables us to write a = a(k). Thus, it is possible to rewrite the norm | | / x L | | hi the 
following way: 

' 7 I Q n + l r 

^ = E » P V 2 / I/I 
A - = 0 n ^ * ^ |/5| = n 7 / ' < n L 

/?^c*(/c) 

where c*(fc) satisfies a(k) •< 7 and |a(fc)| = fc. 

Obviously, if n ^ |7|, then /J / 7 and (3.2) gives I^ D lE = 0. Thus, the supremum 

is attained for n = | —y|, that is, 

|7| m з Ы + 1 . 

^ = E i - Ľ y,n.ľ" 
fc=o |/?|=Ы ^ 7 " ^ 

I/3NI7I 
/?^a(/e) 

The conditions |/3| = |̂ y|, /3 y a(k) and 7 >: a(fc) entail (3 = 7 and as a consequence 

we obtain I£ CI/?, which yields 

IT| O|7 |+I r Q | 7 | + I t* 

^ = E-2M-/i / i = (W + 1 ) ^ r / i / i -
fc=0 J / e -- JL 

The absolute continuity of the Lebesgue integral guarantees A£ —> 0 for £ —•> 0 + . 

Let us consider the case x £ <£. It is clear from absolute continuity of the Lebesgue 

integral that we can omit the second summand in the norm | | / | |y and to investigate 

only the member | |/ | | . 

The estimate of | | / \ 7 e | | follows immediately from Lemma 4.6. • 

We have constructed the space Y and proved that Ya C Yc = Y. To show {0} C Ya 

it suffices to take the characteristic function of the interval I = (1/3, 2/3). 
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