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Czechoslovak Mathematical Journal, 47 (122) 1997, Praha 

CONGRUENCES AND IDEALS IN TERNARY RINGS 

IVAN C H A J D A , R A D O M Í R H A L A S , F R A N T I Š E K M A C H A L A , Olomouc 

(Received Janua ry 13, 1995) 

Summary. A te rnary ring is an algebraic s t ruc ture TZ = ( B ; t , 0 , 1 ) of type (3 ,0 ,0 ) 
satisfying the identities t(0,x,y) = y = t(x,0,y) and t(l,x,0) = x = ( x , l , 0 ) where, 
moreover, for any a, b, c 6 R there exists a unique d £ R wi th £(a ,b ,d) = c. A congruence 
6 on 1Z is called normal if 7Z/6 is a ternary ring again. We describe basic propert ies of the 
latt ice of all normal congruences on 1Z and establish connections between ideals ( introduced 
earlier by the th i rd au thor ) and congruence kernels. 

Keywords: ternary ring, ideal, congruence, normal congruence, congruence kernel 

MSC 1991: 13A15, 08A30 

The concept of a ternary field was introduced by M. Hall [5] under a different name 
and used for the so called coordinatization of projective planes, see [5], [10]. It was 
generalized to a ternary ring by the third author, see [7]. It forms an algebraic tool 
for a classification of the so called Klingenberg planes which generalize projective 
planes, see [7], [8] and [9] for more detail. In these costructions we search for a 
suitable factorization of the assigned ternary ring. This factorization can be done 
either by an ideal or a congruence. However, the mutual relationship between these 
two concepts has not yet been investigated. Moreover, only a little is known on the 
congruence lattice of a ternary ring. For a bit more complex structure, the so called 
bi-ternary ring, the ideal theory in the sense of H.-P.Gumm and A.Ursini [4], [11] 
was already settled by the first two authors in [3]; for the reduct called a semiloop 
it was done in [2]. 

Our object is to classify congruences in ternary rings, to describe the congruence 
lattice and to give a mutual relationship between ideals and congruences for ternary 
rings. 
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1. CONGRUENCES IN TERNARY RINGS 

Definition 1. By a ternary ring we mean an 1Z = (R,t, 0,1) of type (3,0,0) 
satisfying the identities 

(1) t(0,x,y)=y = t(x,0,y), 

(V) t(l,x,0) =x = t(x,l,0), 

where for every a, b, c of R there exists a unique element c G R such that 

(*) t(a,b,d) = c. 

Lemma 1. A ternary ring R = (R, t, 0,1) is a one element algebra if and only if 

0 = 1. 

P r o o f . Suppose 0 = 1 and x e R. By (1), we have t(0,x,0) = 0 and, by (V), 
t(0,x,0) = x, thus R is a singleton. The converse assertion is trivial. • 

Definition 2. An equivalence 0 on It is a congruence of a ternary ring 
1Z = (It; t, 0,1) if it has the substitution property with respect to t, i.e. if atc?b; 
for i = 1, 2, 3 implies t(ai,a2,a3)9t(bi,b2, b%). A congruence 0 on 1Z is called normal 
if for each ai , a2, bi, bi, x, y of It, if a\8bi, a2#O2 and t(a\,a2,x)6t(bi,b2,y) then 
also crc?H. 

From now on let LJ denote the identical relation and t the full relation on R, i.e. 
1 = It x R and xujy \i x = y. Clearly, cD and i are normal congruences on a ternary 
ring 1Z. Denote by Con 1Z the congruence lattice of 1Z and by Con^ 1Z the set of 
all normal congruences on 7v. Trivially, UJ is the least and i the greatest element of 
Con ft. 

If a G It and 3> G ConIZ, denote by [a]$ the congruence class of $ containing a. 
Introduce a ternary operation t<p in the factor set R/$ as follows: 

U([a]*,[b]*,[c]*) = [d\+ 

if t(a, b, c) = d! for some d' G [d\&. 

Theorem 1. Let 1Z = (H; 1.1,0) be a ternary Ting and $ G Con7e. Then ft/$ = 
(I t /$; t<$>, [0]$, [1]$) is a ternary Ting if and only if $ is normal. 

P r o o f . Let 1Z/$ = (I?/$;£<j,,[0]$, [1]$) be a ternary ring and [a]$, [&]$, [c]<t> G 
7?,/$. Then there exists a unique [d]phi G 1Z/& with 

(**) M[a]*,[&]*,[c]*) = [<*]*• 
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If ai ,b i G [a]<j>, a2,b2 G [b]$ and t(ai,a2,x),t(bi,b2,y) G [c]<j> for some x,,y e R 

then, by (**), also.r,y G [0*]$. Hence ai$b i , a2$b2 and t(ai,a2,x)$t(bi,b2,y) imply 
x$y, thus $ is normal. 

Conversely, if $ G ConTZ in normal then (**) is clearly satisfied and hence 7Z/$ = 

(R/$; t$, [0]$, [0]$) is a ternary ring again. • 

Theorem 2. Let 7Z = (R; t, 1,0) be a ternary ring, 6 G ConTZ and let the factor 

set CalR/0 be finite. Then 0 is normal. 

P r o o f . Consider the natural mapping h: R -» R/6 given by /i(a) = [a]e. 

Trivially, h is a homomorphism of 7Z onto an algebra 7Z/8 with one ternary and two 
miliary operations te, [0]#, [\]Q satisfying (1) and (V). Let us consider the mappings 
fab: R/6 —> R/6 defined as follows: 

fab(h(x)) = te(h(a),h(b),h(x)) for each a,b,x of R. 

These mappings are surjective. Namely, if h(c) G R/6 then t(h(a),h(b),h(x)) = 

h(t(a,b,x)) = h(c), where c = t(a,b,x); by (*) such a unique element x exists. 
However, R/6 is finite, thus every surjective mapping of R/6 onto itself is a bijection. 
Thus also (*) is satisfied, i.e. 7Z/6 = (R/6, te, [0]e, [l]e) is a ternary ring. By Theorem 
1, 6 is normal. • 

Corollary 1. For every finite ternary ring 7Z, Con R = Con^ 7Z. 

We are going to show that for a non-finite ternary ring 7Z the assertion of Theo­

rem 2 need not hold in general: 

Example . A congruence 0 G Con £ on a loop / is called normal if for every four 
elements x\, X2, yi, y2 G L such that :Ti©yi, (x\ + yi)Q(x2 = y2) also :T2®y2- ^ s 

was pointed out e.g. in [1], there exists a loop C and a congruence 0 on C which is 
not normal. Let C = (C; +, 0) be such a loop and let 0 G Con£ be not normal. 

Choose freely but fix from now on an element 1 G L such that 1 ^ [0]e. Since 6 
is not normal then 0 ^ L x L, i.e. such an element exists. Introduce a new binary 
operation denoted by dot as follows: 

(1) if a g [ l ] e and 6 g [ l ] e then a • b = 0; 
(2) if a G [ l ] e and b <£ [ l ] e then a b = b • a = b; 
(3) if a, b G [l]e and a / 1 7-= b then a-b = 1; 
(4) if a, b G [l]e and a = 1 then a -b = b - a = b. 
Clearly, the identities 

0 • x = x • 0 = 0 andl • x = x• • 1 = x 
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hold in C = (C; -,0). Introduce a ternary operation t as follows: 

t(x,y,z) = x-y + z. 

It is an easy exercise to check that TZ = (L; t, 0,1) is a ternary ring and, moreover, 
the foregoing 0 G Con C satisfies also 0 G Con TZ. 

Hence, there exist elements x\, x2, yi, y2 € L such that x\Ox>2, (x\ + yi)0(x2 + y2) 
but yi, y2 are not congruent mod 0 . Applying the foregoing operation • on L, we 
obtain t(x,y,z) as before. Hence, x\ + y\ = (l,x\,y\), x2 + y2 = £(l ,K2 ,y2) , i-e. 
also t(l,xi,y\)®t(l,X2,y2), thus 0 is not normal in TZ = (L;t,0,1). 

Remark. Let TZ = (R; t,0,1) be a ternary ring. Introduce a new ternary oper­
ation q: R3 —i» R as follows: 

q(a, b,c) = d if and only if l(a, b, d) = c. 

By (*), q is correctly defined. The algebra TZ* = (R; l, q, 0,1) satisfying the identifies 
(1), (V) and 

(2) t(x,y,q(x,y,z)) = z = q(x,y,t(x,y,z)) 

is called a bi-ternary ring, see [3]. 

It is easy to see that (2) implies (*). Hence, the reduct TZ = (R;t,0,1) of a bi-
ternary ring TZ* = (R;t,q,0,1) is a ternary ring. Since bi-ternary rings are defined 
by identities, they form a variety Hence, every congruence 0 on TZ* is normal 
congruence on reduct TZ(R; t, 0,1). Moreover, for ideals of bi-ternary rings the ideal 
theory can be used invent by H. P. Gumm and A. Ursini [4], [11], which is based on 
the universal algebraic approach. Applying it, we have shown in [3] that there exists 
a one-to-one correspondence between ideals and congruences of bi-ternary rings, i.e. 
the variety of all bi-ternary rings is ideal determined, see [3], [4]. 

2 . CONGRUENCE LATTICE OF TERNARY RINGS 

Denote by 0 • <1> the relational product of two binary relations 0, $ on TZ. 

Theorem 3. Let TZ = (R;t,0,1) be a ternary ring and $ G Con TZ and 

0 G COIIA/ 11. Then 0 • $ = $ • 0. 

P r o o f . Suppose $ G Con7£ and 0 G Conyv TZ and a0 • <£b for some a, b of R. 

Then there exists c G R with aOc and c$b. By (*) there exist elements k,s G R such 
that 

(i) t(l,c,) = a = t(l,b,s). 
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Since b$c we also have 

(ii) a = t(l,c,k)$t(l,b,k). 

However, by (i) and (1') 

r(l ,c,k) = a = *(l,a,O)0*(l,c,O). 

Since 0 is normal, this implies kOO. 

Hence, *(l,6,ifc)0*(l,&,O) = 6 . Together with (ii) it implies a$ • 0b, i.e. 0 -$ C $-0. 

It implies also 

$ . 0 = fc-1 . 0- 1 = (0 . $ ) -* c ($ • 0)"1 = 0"1 • S" 1 = 0 • $, 

thus 0 • $ = $ • 0. D 

Recall from [6] that a lattice C is Arguesian if it satisfies the identity 

/ \ (-** V Vi) ^ (x0 A (x\ V m)) V (y0 A (yx V m)), 

where 

771 = (.x0 V an) A (ye V yi) A [{(a,0 V a;2) A (y0 V g2)} V {(x2 V a;-.) A (y2 V Vl)}]. 

Hence, every Arguensian lattice is modular. 

Theorem 4. For every ternary ring 1Z, Con AT 1Z is a complete Arguesian lattice 

which is a sublattice of Con 1Z. 

P r o o f . It is a routine to show that an arbitrary intersection of normal congru­
ences is a normal congruence. Since also CJ, t £ Con At 7Z, this means that Con A/ 7Z is 
a complete lattice. 

By Theorem 3, every two normal congruences permute and thus, by [6], Con/v 1Z 
is Arguesian. 

In both the lattice Con 1Z and Con^ TZ the meet coincides with set intersection. 
It remains to prove that also the operation join coincides in these lattices. Since 

0i, 02 £ Con/v 1Z are permutable, then 6\ • 02 is the least congruence containing 0i 
and 02. We need only to show that also 0\ • 02 is normal. 

Let Oi, a2, bi, b2, x, y G R and suppose 

a,i0i-02bi, a20i • 02b2 and t(a\, a2, x)0\ • 62t(b\, 62,u). 
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Then there exist ci, C2, c3 G R with 

ai0ici,ci02bi, 

a20ic2,c292b2, 

t(ai, a2,x)6ic3,c362t(bi, b2, y). 

By (*), there exist a unique z G R with 

*(ci,c2,2:) = c3, 

whence 

t(ai,a2,x)6it(ci,c2,z) and t(ci,c2,y)92t(bi,b2,y). 

Since 9i, 02 are normal, we conclude 

xQiz and z#2y, 

i.e. x0i - 92y, which proves normality of 0i • 92. • 

Theorem 5. Let 1Z = (It; £,0,1) be a ternary ring and a, b G R, 9 G Con 7^. 
Then 

card[O]0 ^ card[a]0. 

If, moreover, 9 is normal, then 

card[a]0 = card[6]0. 

P r o o f . For each a G R define a unary polynomial function y>a(z) = t(l,a,z). 
By (V), we have 

(Dfl(0) = *(l,a,0) = a. 

Hence, (Da induces a mapping of [O]0 into [a]e. By (*), <pa is an injection. This proves 
the first assertion. 

Now, suppose 9 G Con^v Tl. If d G [a]0 then, by (*), there exist a unique c e R with 
(pa(c) = t(l,ac,) = d. By (V) we have d = t(l,d,Q). Using d G [a]0 and normality 
of 9 we conclude from t(l,a,c) = £(l,d, 0) also c G [O]̂ . Hence, ipa is also surjective, 
i.e. it is a bijection. Then card[a]0 = card[O]0 = carcl[b]^. • 
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Corollary 2. Let 6 $ be normal congruences on a ternary ring 71 = (R; t;0,1). 

If [a]e = [a]<s> for some a G R then 6 = $. 

It is an easy consequence of Theorem 5 since the mapping <pa(z) = t(l,a,z) is 
bijection which does not depend on the choice of 8. 

Recall that an algebra A = (A,F) is congruence-uniform if card[a],9 = cardfd]* for 
each 0 G Con .4 and every a, b of A. A is congruence-regular if [a]e = [a]$ implies 
0 = $ for each a € A and every two 0, $ G Con A. 

By using Theorem 2, Theorem 5 and Corollary 1, we obtain 

Corollary 3. Every finite ternary ring is congruence-regular and congruence-

uniform. 

3. IDEALS OF TERNARY RINGS 

The concept of an ideal of a ternary ring occured for the first time in [7]: 

Definition 3. Let 7Z = (R; t, 0,1) be a ternary ring. For a, b G R we put 

a + b = t(l,a,b). A subset J C R is called an ideal of 71 if the following hold: 

(Ii) OGJ; 
(12) if 6 = a + r for some r e J then there exists r' G J with a = b + r; 

(13) for every a, b, c of R and every n , r2, r3 of J there exists r e J with 

t(a + ri,b + r2,c + r3) = t(a,b,c) + r; 

(14) if t(a, b, y) = t(a, b,x) + r for some r E J then there exists r ' G J with y = x + r'. 

Remark. If J is an ideal of a ternary ring 7£ = (It; £, 0,1) and a G I?, n , r2 G J, 
then £(a,ri ,r2) G J and £(ri ,a,r2) G J. Moreover, if r G I? and (a-f n ) -f r2 = a + r 
then r € J, see e.g. [7]. 

Theorem 6. Let 7Z = (R; t, 0,1) be a ternary ring and J C R. The following are 
equivalent: 

(1) J is an ideal of 71; 

(2) OGJ and if t(a + r\,b + r2,c + r) = t(a, b, c) + s for some r\, r2 € J, then r G J 
iffse J. 

P r o o f . (1) => (2): For any elements a, b, n , r2, r of R there exists s G R such 
that 

t(a + ri,b + r2,c + r) = t(a,b,c) + s = t(l, (a,b,c),s). 

169 



By (*), this "s" is uniquely determined. Suppose 7T, r2 G J. If r G J, then, by (I3), 
we have s G J. If r' G J then there exists fci G H such that (a + r i , b + r2, c + r') = 
£(a,b, c) + fci and, by the foregoing part, fci G J. By (I2), there exists fc3 G J with 

t(a,b,c) = £(a = 7T,b + r 2 , c + /•') +fc2), 

thus also 

t(a + r i ,b + r2,c-h r) = (£(a + n , b + 7-2, c + r') + fc2) + s. 

Since fc2, 5 G J, there exists fc3 G J with 

(t(a + n , b + r2, c + r') + fc3) + s = t(a + ?T, b + r2, c + r') + fc3, 

see e.g. the foregoing Remark. Hence 

t(a + r i ,b + r2,c-\- r) = £(a + ?T,b + r2 ,c + r') + fc3. 

By (I4) there exists hr G J with c + r = (c + r') = c + fc where fc G J, see the 

foregoing Remark again. 

Applying (*) we conclude r = fc, thus r E J. 

(2) =-> (1): We prove directly (I2) and (I4) of the definition. The condition (I3) 

follows immediately by (*) and (2). 

First we prove that if (a + r) + r2 = a-\-r and n , r G J then also r2 G J. Indeed, 

we have 

(a + ri) + r2 = f(V a + n , r2) = *(1 + 0,a + rL, 0 + r2) =a + r = i ( l ,a ,0) . 

By (2) we obtain r2 G J. 

Now, we suppose b = a + r for r G J. By (*) there exists r' G It with a = b + r'. 
Then a = (a + r) + r' = a + 0. Since r, 0 G J, we conclude r' G J, thus the condition 
(I2) is evident. 

Prove (I4): let t(a,b,y) = t(a,b,x) + r for r G J. By (*) there exists r' e R with 
g =- x + r'. We obtain 

t(a, b, 7/) = t(a + 0, b + 0, x + r') = f (a, b, x) + r. 

Since 0, r G J, (2) implies also / ' G J. • 

170 



Theorem 7. Let 1Z = (R; t, 0,1) be a ternary ring and 0 a binary relation on R. 

The following are equivalent: 

(1) 0 is a normal congruence on JZ; 

(2) [0]e is an ideal oflZ and aOb if only b = a + r for some r G [0]e; 

P r o o f . (1) => (2): Suppose a6b. By (*), there exists r G R with b = t(l, a, r) = 

a + r. Since a = t(l,a,0), we conclude t(l,a,r)8t(l,a,0). By (1), 0 is normal, thus 
also rc?0, i.e. r G [0]e. 

Conversely, if b = a + r and r G [O]0 then t(l,a, O)0t(l,a, r) whence a0b. Now, put 

J — [0]̂  and suppose 

(***) t(a + n,b + r>2iC + rs) = t(a,b,c) + r. 

Suppose r i , r2, r3 G [O]0. Then (a + ri)#a, (b + r2)0b, (c + r3)c?c, i.e. also 

(****) t(a + r i , b + r2, c + r3)0r(a, b, c). 

By using (*) and (***) we obtain r G [Oja ^ J. Suppose r\, r2, r G J = [0]#. Then 

(a + r\)0a, (b + r2)0b and (****) give (c + r3)c?c since 0 is normal. By the first part 

of this proof, r3 G [0]#. Applying (2) of Theorem 6, J be an ideal of JZ. 

(2) => (1): Let J be an ideal of JZ. It is an easy exercise to show that the relation 

6 defined by 

a0b if and only if b = a + r for some r E J 

is a congruence on JZ and J = [0]^. It remains to prove that 0 is normal. Let a;c?bz-
for i = 1,2,3, let x, y G R and suppose f(ai,a2 ,x) = a3, l(bi,b2,u) = b3. Then 
b{ = ai + r̂  for some r» G [0]#. By (*), there exists r e R with y = t(l,x,r) = x + r. 
Hence 

t(bi,b2,y) = t(ai +rx,a2 + r2,.x + r) = a3 + r 3 . 

By (2) of Theorem 6, we have r G [0]# whence 

t(l,x,O)0t(l,x,r), 

i.e. .r#(:x + r). Since x + r = y, we conclude xcIu. • 
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