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Let G be a connected (finite undirected) graph. By a step in G will mean an
ordered triple (u,v,z) of vertices in G with the property that d(u,v) = 1 and
d(u,z) = d(v,z) + 1, where d denotes the distance function of G. The concept
of a step is closely related to that of a geodesic (or a shortest path). An axiomatic
characterization of the set of all geodesics in a connected graph was given by the
present author in [5]. A characterization of the set of all steps in a connected graph
will be given here.

The letters g, h, ¢, 7, k, m and n will be reserved for denoting integers.

Let V be a finite nonempty set. We denote by (V') the set of all sequences

(1) (vos -+ yUn),

where n > 0 and v, ...,v, € V.

By a graph we mean here a finite undirected graph with no loops or multiple
edges, i.e. a graph in the sense of [1] or [2], for example. If G is a graph, then V(G)
and E(G) denote its vertex set and its edge set, respectively. Let vg,...,v, € V(G),
where n > 0; we say that (1) is a walk in G if {v;,vi+1} € E(G) foreach i,0 < i < n.
Obviously, every walk in G is an element of £(V(G)). By a path in G we mean such
a walk (1) in G that the vertices vy, ..., v, are mutually distinct.

Let G be a connected graph, and let d denote the distance function of G. (Note
that in [3] a characterization of the distance function of a connected graph was given.)
Obviously, if (1) is a walk in G, then d(vo,v,) < n. By a geodesic (or a shortest
path) in G we mean such a walk (1) that d(vo,v,) = n. It is not difficult to see that
every geodesic in G is a path. We now introduce the concept of a step in G. By a
step in G we will mean an ordered triple (u,v,z), where u,v,z € V(G) and

(2) d(u,v) =1 and d(u,z) = d(v,z) + 1.
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Obviously, (u,v,z) is a step in G if and only if there exists a geodesic (1) in G with
the properties that n > 1, © = vg, v = v; and @ = v,. In the present paper a
characterization of the set of all steps in a connected graph will be given.

Let V be a finite nonempty set, and let T C V3. If u, v, x € V, then instead of

(u,v,2) € T or (u,v,2) ¢ T

we will write
UV —7 & Or uv non —r x, respectively.

We denote by I'(V, T') the graph H with V(H) =V and

E(H) = {{u,v}; u,v € V,u # v and there exists z € V

such that uv =7 x or vu = x}.

Proposition 1. Let V be a finite nonempty set, and let T C V3. Assume that
there exists a connected graph G with the properties that V(G) =V and T is the
set of all steps in G. Then G =T'(V,T).

Proof. Let d denote the distance function of G. Since V(G) = V(I'(V,T)), we
see that G = T'(V,T) if and only if E(G) = E(['(V,T)).

Consider arbitrary u,v € V.

Let {u,v} € E(G). Then d(u,v) = 1. Since d(v,v) = 0, we see that (u,v,v) is a
step in G. This means that uv —r v. Since u # v, we have {u,v} € E(T'(V,T)).

Conversely, let {u,v} € E(I'(V,T)). Then u # v and there exists z € V such that
uv =7 x or vu =7 x. The fact that (u,v,z) or (v,u,x) is a step in G implies that
d(u,v) = 1. Hence {u,v} € E(G).

We have G = I'(V,T), which completes the proof. a

Proposition 1 is an introduction to the next theorem, which is the main result of
the present paper.

Theorem 1. Let V be a finite nonempty set, and let T C V3. Assume that
['(V,T) is connected. Then the following statements (I) and (II) are equivalent:
(I) T is the set of all steps in I'(V,T);
(II) T fulfils Axioms A-H (for arbitrary u,v,x,y € V):

A ifuv -7 z, then vu —7 u;

B ifuv =7 z and vu =7 y, then x # y;

C ifuv =7z and xy =7 v, then xy =1 u;
D ifuv —7 x and xy — 71 v, then uv =7 y;
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if uv =7 = and uy =7 v, then y = v;

ifuv =7 x, vu =7 y and xy =71 y, then vy =7 w;

if wv =7 = and xy — 7 y, then either xy —1 u or yr =7 v or uv —7 y;
if u # z, then there exists z € V such that uz =t x.

™ Q™

Combining Theorem 1 with Proposition 1, we get the following result:

Corollary 1. Let V be a finite nonempty set, and let T C V3. Then there exists
a connected graph G with the properties that V(G) =V and T is the set of all steps
in G if and only if T'(V,T) is connected and T fulfils Axioms A-H (for arbitrary
u,v,z,y € V).

For the proof of Theorem 1 we will need three remarks and three lemmas.
In Remarks 1-3 and Lemmas 1-3 we will assume that V' is a finite nonempty set,
T C V3 and T fulfils Axioms A, B, C, D and H.

Remark 1. Let u,v,z € V be such that wv -7 2. Axiom B implies that u # v,
and therefore, {u,v} € E(I'(V,T)).

Let ug,u1,...,Un,wr,...,w, €V, where n > 1, and let
UoU] =T Wiy yUp—1Up =T Whp.
It is clear that (ug,uq,...,uy) is a walk in T'(V, T).

Remark 2. Let u,v,z € V be such that uv —7 x. Combining Axioms A and B
we get u # x.

Lemma 1. Let ug,u1,v1,...,0:41 € V, wherei > 1, let
V1V2 =T UQ,y - .,ViViy1 —T UQ
and let wyug > 7 v1. Then
UgUg41 =7 U1 and uyug =7 Vgqq

for each g, 1 < g < 1.

Proof. We proceed by induction on g. First, let ¢ = 1. Since vivs —7 ug
and ujug =7 vy, Axioms C and D imply that viv, =7 u; and wiug =7 ve. If
¢ = 1, then the proof is complete. Assume that 2 < g < ¢. According to the
induction hypothesis, ujug =7 vy. Since vgvg41 —7 ug, Axioms C and D imply
that vyvy41 —7 w1 and uyug =7 vg41, which completes the proof. O



Lemma 2. Let xg,...,%j,Y1,---,Yj+1 € V, where j > 1, let

Y1Y2 =T Zo,---,YjYi+1 2T To
and
T1ZTo 2T Y1,--- yTjTi—1 =T Yj-
Then
YrYh+1 =T Thy -y YjYj+1 =T Th
and
ThTh—1 =T Yhy- -y ThTh—1 =T Yj+1

for each h, 1 < h <j.

Proof. We proceed by induction on h. Since z;x9 =T ¥, the case when h =1
is covered by Lemma 1. If j = 1, then the proof is complete. Assume that 2 < h <.
The induction hypothesis implies that

YrYh4+1 2T Th-1,---,Y5Yj+1 =T Th-1-
Recall that zpzn_1 =7 ya. Applying Lemma 1, we get the result. a

Lemma 3. Let I'(V,T) be connected, let zg,...,z,, y1 € V, where n > 2, let
(zo,--.,zn) be a geodesic in I'(V,T), and let z,y1 =1 xo. Let d denote the distance
function of I'(V,T). Then there exist k > 0 and Zp41,...,Zn+k+1 € V such that

Tn+1 = Y1,

3) TntgTntg+1 —T To for each g, 0 < g <k,
(4) ThTh—1 =T Tnyn foreach h, 1 < h <k

and

(5) either (a) TnTn—1 =T To and d(yy,x0) =n — 1,

or (b) Tk41T NON —T Tptk41-

Proof. We distinguish two cases.
Case 1. Assume that there exists an infinite sequence

(-L'n+1 yTn42,Tn43, - - ~)
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of vertices in I'(V, T) such that z,4+; = y1 and

TntiTntit1 =T To foreach i =0,1,2,....
Let

ZTgTg—1 =T Tnyg for each g =1,2,3,....
Lemma 2 implies that

ThTh—1 =T Tn+hyThTh—1 =T Tnth+1,ThTh—1 T Tnth42,---
foreach h=1,2,3,....

As follows from Remark 2,

Th # Tnth, TnthtlsTntht2,--. foreach h=1,2,3,....

This implies that
Z1,Tn+1,T2n=1,---
are mutually distinct, which is a contradiction to the fact that V' is finite. Therefore,

there exists k > 0 such that x4 12x non =1 Tnyrt1. We see that (3), (4) and (5)
hold.

Case 2. Let the assumption of Case 1 be not fulfilled. Since (zg,...,z,) is a
geodesic in I'(V, T') and n > 2, we have y; # xo. It follows from Axiom H that there
exist Tn41,--.,Zntj+1 € V, where j 2 1, such that z,41 = y1,Tn4j+1 = o and

TnTnt+1 T L0+ Tn+jTntj+1 =T To-

As follows from Remark 1,
(Tnt1s- - Tntjt)

is a walk in I'(V,T). Thus d(zn41,%0) < j. Since d(z,,zo) = n, we have
d(Tpy1,T0) 20— 1.

First, let

Ti41%; =T Tpyit for each i, 0 <7 < 3.

Then z417; =1 0. If j > n, we also have z;z;41 =71 z0, which is a contradiction
to Axiom B. Hence d(zn41,70) = n — 1 and £,Z,—1 =71 To. Put kK = j. Then (3),
(4) and (5) hold.

Next, let there exist k, 0 < k < j, such that

Tk41Tk NON =T Tnyk+1

and (4) holds. We see that (3) and (5) hold, too.
Thus the lemma is proved. O
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Remark 3. Let I'(V,T) be connected, let xg,..., 1, y1 € V, where n > 2, let
(zo,...,xn) be a geodesic in I'(V, T), and let z,,y; —+1 rg. Let d denote the distance
function of I'(V, T'). Lemma 3 implies that there exist & > 0 and zy41,. .., 2Znp1q1 €
V such that z,4+; = y; and (3)-(5) hold.

It follows from Remark 1 that
(X0, 21,y Ty e oy Tngktr1)
is a walk in I'(V, T). Axiom A implies that
(6) TgTgp1 =T Tgy1 for each g, 0 < g <n+ k.
Combining (3) and (4) with Lemma 2, we see that if & > 1, then

Tnt+hTnth+l 2T Thy -y TnthkTnth41 =T Th

and

ThTh—1 7T Tnthy---sThTh—1 2T Tntk+1

for each h, 1 < h < k.
Since T,T,41 =T To, We have

(7) Tntilntitl =7 x; for each i, 0 < i < k.

Proof of Theorem 1. Denote G = I'(V,.T). Recall that G is connected.
We denote by d, D and S the distance function of ¢, the diameter of G and the set
of all steps in G, respectively. Obviously, S C V3.

PART ONE (I = II). Let T = S. Consider arbitrary u,v.2,y € V. It is easy to
see that T fulfils Axioms A, B. E and H. We will prove that T fulfils Axioms C. D.
F and G.

(Verification of Axioms C and D). Let uv =1 @ and @y =7 v. Then

d(u,v) =1 =d(z,y),d(u,z) = d(v,z) + 1 and d(z,v) = d(y,v) + 1.

We get
d(u,y) < d(v,y) + 1 =d(z,v) = d(u,r) — 1 < d(u,y).

Therefore, d(u,y) = d(v,y) + 1 = d(u,z) — 1. We see that vy =7 v and uv =7 y.
(Verification of Axiom F.) Let uv =7 z, vu =7 y and 2y =7 y. Then

d(u,z) = d(v,z) + 1,d(v,y) = d(u,y) + 1 and d(xv,y) = 1.
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We get
d(y,u) +1>d(z,u) =d(v,z) + 1 2 d(v,y) = d(u,y) + 1.

We see that zy —7 u.
(Verification of Axiom G.) Let uv =7 x and 2y —7 y. Assume that uv non =1y
and yz non =7 v. Then

d(u,z) = d(v,z) + 1,d(z,y) = 1,d(v,y) > d(u,y) and d(z,v) > d(y,v).
We get
d(y,u) +1 > d(w,u) = d(v,2) + 1 > d(y,v) + 1 > d(u,y) + 1.

We see that zy =7 w.
Thus T fulfils Axioms A-H.

PART TWO (II = I). Let T fulfil Axioms A - H. We will prove that

(8,) if rs 55 t, then rs - t for every r,s,t € V
such that d(r,t) <n

and

(9,) if rs =7 t, then rs =5 t for every r,s,t € V

such that d(r,t) < n

for eachn, 0 <n < D.

We proceed by induction on n. It is obvious that both (8p) and (9¢) hold. If
D =0, then the theorem is proved. Assume that D > 1.

Consider arbitrary ry,72,73 € V such that riry —g r3 and d(r1,73) = 1. Then
{r1,72} € E(G) and r, = r3. Since G = ['(V,T), there exists z € V such that
r1T2 =7 z Or Tor; =7 2. It follows from Axiom A that ryro =7 re. Since ro = r3,
we get rire =7 r3. Thus (8;) holds.

Consider arbitrary sp,ss,s3 € V such that s;s2 =7 s3 and d(s1,s3) = 1. Then
s183 —s s3. According to (8;), s1s3 =7 s3. Since s;s2 =7 s3, Axiom E implies
that s3 = so and therefore, s;s0 —s s3. Thus (9;) holds.

If D =1, then the theorem is proved. Let 2 < n < D. The remainder of the proof
will be divided into two sections. In Section 1 we will show that (8,-1) and (9,—1)
imply (8,). In Section 2 we will show that (8,,) and (9,—1) imply (9,).

Section 1. Consider arbitrary zo,z,y € V such that zoz —s y and d(zo,y) = n.
Clearly, there exist zy,...,z, € V such that x; = z, x,, = y and (29, Z1,...,Zn) is a
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geodesic in G. We have 2oz, —s5 =,. We want to prove that xoz; =1 z,. Suppose,
to the contrary, that oz, non —r x,.

First, let pzn_1 =7 20. Clearly, zoz1 =5 n—1. Since d(zo,Tn_1) = n -1, it
follows from (8,—1) that zoz; =1 ,—1. According to Axiom C, Tox; =7 =, which
is a contradiction.

We get ,2,—_1 non =7 zo. According to Axiom H, there exists y; € V such that
ZTny1 =T To. As follows from Lemma 3, there exist £ > 0 and 2p41,...,Tpyks1 €V
such that £,41 = y1, Tk+1Tk NON =T Tpykt1, and (3) and (4) hold. Recall that
ZTory non —r T, and d(zg,z,) = n. There exists m, 0 < m < k, such that

(10) TmTmt1 NON =T Tpym and

d(:r'm, wn-}-m) =n
and

(11) either T, 11Zm NON 2T Tntm41 OF Ting1Tmt2 =T Tndmtl

or d(Tm+1,Tntmt1) < N

According to (6), ZmZTm+1 =7 Tm+1. As follows from (7), TnimTntm+1 =T Tom-
We distinguish Cases 1.1 and 1.2.

Case 1.1. Let Tymi1Tm =T Tntmt1-

Assume that d(zm41,Tntm+1) < n. According to (9,-1) we have 12, —s
ZTnt+m+1, and thus d(zm, Tntm+1) = d(@m+1, Tnem+1) — 1 < n—1. This implies that
d(Tm, Tntm) < n, which contradicts (10). Thus d(x,,+1,Tntm+1) = n. This means
that

(-Tn+m+1» oy T2y T4 )

is a geodesic in G. We have d(tpntm+1,Tmt2) =1 — 1 and d(Tpym, Tmy2) =1 — 2.
Therefore, Tntm+1Tntm —5 Tm42. It follows from (8,—1) that Tpymt1Tnsm =71
Tm+2-

Let Trm41Tmy2 =7 Tnym+1. Axiom C implies that p4m41Tnem =T Tmy1. "We
have seen that TpimTpnim+1 =T Tm. SINCE Tymlti =T Tmsi, it follows from
Axiom F that ,,Zm11 =7 Tnim, which is a contradiction to (10). Thus zmy1Zm+2
NON =T Tpima1- SINCE Tmi1lm =T Tntm+1 ad d(Timy1, Tngm41) = N, We get a
contradiction to (11).

Case 1.2. Let Tpy1Tm non =7 Tpims1. Recall that hymTnimyr =7 T
According to (10), TpmTmi41 NON =T Tppm. SINCE TpTmi1 =T Tmt1, Axiom G
implies that

Tp4+mTn+m+1 =T Tm+1-
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Since d(Zm, Tnt+m) =Ny A(Tm+1, Tntm) = n— 1. According to (9n—1), TnemTntm+1
=5 Tm+1- Hence d(Tmi1,Tntm+1) = n — 2. Since TmTmi1 —S Tnim, We get
TmTmt1l =S Tnim+1. Clearly, d(Tm,Zn4m+1) = n — 1. According to (8,-1),
TmTm+1 =T Tnym+1. Recall that TnimTniym+1 =7 Tm. Axiom C implies that
TmTm41 =T Tntm, Which contradicts (10).

We proved that zoz; =1 z,. Hence (8,) holds.

Section 2. Consider arbitrary y,y;, 2o € V such that yy; =7 zo and d(y, z¢) = n.
Clearly, there exist i, ...,z, € V such that z,, = y, and (2o, 21, ..., %) is a geodesic
in G. We have z,y;1 =1 9. Obviously, d(y1,z0) > n — 1. We want to prove that
Tny1 —s To. We see that z,y; —s zo if and only if d(y1,z0) = n — 1. Suppose, to
the contrary, that d(y;,z0) > n.

As follows from Lemma 3, there exist k¥ > 0 and Zp41,...,Tntk+1 € V such that
Tntl = Y1, Tkt1Tk NON =T Tpikt1, and (3) and (4) hold. Recall that d(zo,z,) = n.
There exists m, 0 < m < k, such that

(12) d(Tm,Tntm) =N
and
(13) either Zmy1Zm non =7 Tnymt1 OF A(Timg1, Tngmt1) < 0.

According to (6), TmTmi1 =T Tme1. Axiom A implies that T,41Zm =T Tm. As
follows from (7), TntmTntm+1 =T Tm-
We distinguish Cases 2.1 and 2.2.

Case 2.1. Let d(Tm+1, Tntm+1) =n. Then

(wn-{—m—f—l y xn+ma ceey xm—{—l)

is a geodesic in G. Hence T,im41Tn+m —S Tmsy1. It follows from (8,) that
Tntm+1Zntm =T Tmi1- Recall that TnimTntm+1 =T Tm. SINCE Ty 1Tm =T Ton,
Axiom F implies that z ;1% =7 Thtm+1, Wwhich contradicts (13).

Case 2.2. Let d(Tm+1, Tntm+1) < N.

Assume that d(zm,ZTn+m+1) = n. Then d(Zmi1,Tntm+1) = n — 1. There-
fore, TmTm+1 —S Tnims1. According to (8,), TmTm+1 =T Tntm+1. Since
TntmTntm4+1l —T Tm, Axiom D implies that TpymTntm+1 =T Tme1. Since
d(Tm+1s Tngm) = n — 1, it follows from (9,-1) that TpnimTnim+1 —S Tmt1-
Therefore, d(Tm+1, Tnyme1) = n — 2, which is a contradiction.

Thus d(Tm,Tntm+1) < n. It follows from (12) that

d(Tm, Tntmy1) =n — 1.

157



Recall that z,,41 = y1. If m = 0, then d(zo, Tn41) = n—1, which is a contradiction.
Let m > 1. Since m < k, Remark 3 implies that

T1T0 2T Tngm+1y- -1 TmTm—1 2T Tntm+1-

Consider an arbitrary ¢, 1 < ¢ < m. If d(z;,Znti+1) < n, then (9,,—;) implies that
TiTi—1 =S Tntm+1, and therefore, d(xi—1, Tnim+1) = d(TiyTnimsy1) — 1. Since
d(Tm, Tntmy1) =n — 1, we get

d(x0, Tngm41) =1 —m — L.

This means that m < n — 1. As follows from Remark 3,

($n+1,- ~~,$n+m+1)

is a walk in G. Thus d(zn+1, Zn+m+1) < m. This means that

d(il?(), zn+1) g d(117071'n+m+1) + d($n+1n+l~mn+1) < n-— 17

which is a contradiction.
We have proved that x,y; —s zo. Hence (9,) holds.
Thus T = S, which completes the proof of Theorem 1. a

Remark 4. Let V be a finite nonempty set, and let T C V3. As we will show,
the fact that T fulfils Axioms A-H does not imply that I'(V,T) is connected.

Assume that V = {ry,...,7,,51,...,8n}, where n > 3 and |V| = 2n. Put rp4, =
ry and 5,41 = 1. Assume that T is the subset of V® with the property that uv —r
if and only if one of the following cases a) and b) holds:

a) there exist distinct g and h, 1 < ¢ < n and 1 < I < n, such that

either (u=ry, v=ry and x =rp)

or (u=sg, V=S54, T=S5):
b) there exist 7 and j, 1 < i < nand 1 <7< n, such that

either (u =7;, v =riy; and @ = s;)

or (u=s;, v=-si41 and & =r;j).

It is not difficult to see that T fulfils Axioms A-H and that I'(V, T') has exactly two
components.
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Let V be a finite nonempty set, and let R C (V). We denote by [R] the subset
T of V3 defined as follows:

uv — x if and only if there exist n > 1 and uo, uz,
..., U, € V such that (ug,u1,...,un) € R, u = uo,

v=u; and z = u,
for any u,v,z € V.

Proposition 2. Let V' be a finite nonempty set, and let R C £(V). Put T = [R].
Assume that there exists a connected graph G with the properties that V(G) =V
and R is the set of all geodesics in G. Then G =T'(V,T).

Proof. Since V(G) = V(I'(V,T)), we see that G = I'(V,T) if and only if
E(G) = E(I'(V,T)).

Consider arbitrary u, v € V.

Let {u,v} € E(G). Then (u,v) is a geodesic in G. Thus (u,v) € R. Clearly,
uv =7 v. Since u # v, we see that {u,v} € E(I'(V,T)).

Conversely, let {u,v} € E(I'(V,T)). Then u # v and there exists € V such that
wv =1 @ or vu =1 x. Since T = [R], there exist n > 1 and ug,uy,...,u, € V such

that (uo,uy,...,u,) € R,z = u, and either (i) u = up and v = u; or (ii) v = u; and
v = ug. The fact that (uo,u1,...,un) is a geodesic in G implies that {u,v} € E(G).
We have G = I'(V, T'), which completes the proof. O

Theorem 2. Let V be a finite nonempty set, and let R C (V). Put T = [R].
Assume that I'(V, T) is connected. Then the following statements (III) and (IV) are
equivalent:

(III) R is the set of all geodesics in I'(V, T);
(IV) T fulfils Axioms A-H (for arbitrary (u,v,z,y € V) and moreover, R fulfils

the following Axioms X, Y and Z (for arbitrary m,n > 1 and u,uq, ..., Un,
wWo, ..., Wy € V):

X (u) € R;

Y if (U, Um, .. .,up) € R, then (up,...,ug) € R;

Z if (Wyum,...,u0), (Wn,...,wp) € R, wo = ug and w, = um, then

(wywn, ..., wo) € R.

Proof. Denote G = I['(V,T). Recall that G is connected. We denote by d the
distance function of G.

PART ONE (IIT = IV). Let III hold. It is easy to see that R fulfils Axioms X,
Y and Z. Since T' = [R], we see that T is the set of all steps in G. According to
Theorem 1, T fulfils Axioms A-H. Hence IV holds.



PART TWO (IV = III). Let IV hold. Consider arbitrary vo,...,v, € V, where
n > 0. We will prove that

(14,) (vn,---,v0) € R if and only if (v,,...,vp) is a geodesic in G.

We proceed by induction on n. Let first n = 0. It is obvious that (vp) is a geodesic.
According to Axiom X, (vo) € R. Thus (14¢) holds. We now assume that n > 1.

Let (vn,vn-1,...,v) € R. Since T = [R], v,Un—1 =T vo. Theorem 1 implies that
(Vn,Un—1,v0) is a step in G. Hence

(15) d(vn,Vn-1) = 1 and d(vn,vo) = d(vs—1,v0) + 1.

As follows from Axiom Y, (vn_1,...,%) € R. According to (14,,-1), (Vn—1,...,v0)
is a geodesic in G. It follows from (15) that (v,,v.-1,...,v0) is a geodesic in G.
Conversely, let (vn,vn—1,...,00) be a geodesic in G. Then (15) holds. Hence
(Un,Un-1,v0) is a step in G. According to Theorem 1, v,v,_; =T vo. Recall that
T = [R]. It follows from the definition of [R] that there exist m > 0, uo,...,um € V

such that (v, um,...,u0) € R, up = v and um = v,—;. Since (Vp,Vn-1,...,7) is a
geodesic, (Un_1,...,v) is also a geodesic. According to (14,—1), (vn-1,...,v0) € R.
Axiom Z implies that (v,,vn_1,...,%) € R.

Thus (14,) holds. The proof of the theorem is complete. O

Combining Theorem 2 with Proposition 2 we get the following characterization of
the set of all geodesics in a connected graph.

Corollary 2. Let V be a finite nonempty set, and let R C ©(V). Put T = [R].
Then there exists a connected graph G with the properties that V(G) = V and R
is the set of all geodesics in G if and only if T'(V,T) is connected, T fulfils Axioms
A-H (for arbitrary u,v,z,y € V) and moreover, R fulfils Axioms X, Y and Z (for
arbitrary m,n > 1 and u,ug, ..., Um, Wo,..., Wy € V).

Another characterization of the set of all geodesics in a connected graph can be
found in [5] (cf. also (7] or [8]).

Remark 5. The concept of the set of all geodesics in a connected graph is closely
connected to that of the interval function (in the sense of [4]) of a connected graph.
A characterization of the interval function of a connected graph was given in [6].
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