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1. INTRODUCTION AND PRELIMINARIES

The Hankel integral transformation, defined by

(Dup)(2) = /()Oo(xt)l/2J,L(:ct)go(t) At (u> -1,

where, as usual, J, denotes the Bessel function of the first kind and order u, was
studied on distribution spaces by A.H. Zemanian [14], [15]. Given p € R, this
author [15, Chapter 5] introduced the space J#, of all those smooth, complex-valued
functions ¢ = ¢(z), x € I =]0, 00|, such that

Vo k() = sup l2™ (7! D)* a2 p(2)| < 0o
xE

for every m,k € N. When endowed with the topology generated by the family of
seminorms {’yf;, k }m ke, J, becomes a Fréchet space where ), is an automorphism
provided that g > —3 [15, Theorem 5.4-1]. The generalized Hankel transformation
5'):‘ is then defined on JKI’L’, the dual space of J#,, as the transpose of £),,.

Also, A.H. Zemanian [14] defined the space B, . (1 € R, a > 0), consisting of all
those smooth, complex-valued fuctions ¢ = (), x € I, such that ¢(z) =0if z > a,
for which the quantities

Y (@) =sup |7 D)*a7# " 2p(0)| (K €N)
zel

are finite. Equipped with the topology associated to the system of seminorms
{7} Iren, each B, . is a Fréchet space. The inductive limit &, of the family
{By,a}a>0 is a dense subspace of .
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The theory of the Hankel convolution on J&,, %,,, and their duals has been devel-
oped by the authors in a series of papers (2], [3], [4], [10].

In a previous work [5], we introduced a chain {J#"},cz of Hilbert spaces where
the Hankel transformation is an automorphism. For every p € N, JEP 1s the space
of all those ¢ € L?(I) such that the distributions T}, ;¢ (0 < j < p) are regular and
satisfy

P oo i ) 1/2
el ={ > [ BTup@Pa}” <o,
i+j=0"0
where T, o is the identity operator and T, ; denotes the operator Nyyj—1...N,
(j €N, j > 1), with N, = a#*+/2Dg=#=1/2_ The space JP and its dual J7,7P
(p € N) are Hilbert, the norm || - ||,,, being induced by the inner product

P (6]
[‘Pv w]p,p = Z / x%Tu,j‘p(x)Tp,jw(w) de (o, ¥ € %p)
i+j=0"0
Moreover, projlim #? = J¢, and indlim 5,7 = % [5, Proposition 2.15]. The
p—oo p—*oo
study of the multipliers and Hankel convolution operators on the spaces J7? (p € Z)

was initiated by the authors in [6]. In this paper we complete our investigation about
multipliers (Sections 2, 5) and Hankel convolution operators (Section 4) of the spaces
HP (p € Z). As a consequence, the space 0 of multipliers, respectively &), , of Han-
kel convolution operators, of both J#, and jfﬂ’ are expressed as projective-inductive
limits of Hilbert spaces. We also examine the joint continuity of the product, re-
spectively the Hankel convolution, from & x J¢], respectively &7 , x J#/, into J&]
(Section 6). In Section 3 we deal with some auxiliary machinery, mainly the behavior
of the Hankel translation operator on J£? (p € Z). Our work is motivated by the
study developed in [7], [8], [9] and [11] for the Fourier transformation.

Throughout this paper p will represent a real number not less than —%. Also, the
letter C' will always stand for a positive constant (not necessarily the same in each
occurrence).

2. HANKEL MULTIPLICATION DISTRIBUTIONS

Let p,g € N. In [6], the authors introduced the space €, ; of multipliers from
JET into 7, that is, of all those functions §: I — C such that 8¢ € J#7 for each
¢ € HF and the mapping ¢ — 0y is continuous. Of course, 0, , acts as a space of
multipliers from J¢,9 into J¢, 77 by transposition.

The main properties of &, , were also investigated in [6]. In particular, this space

was shown to be Banach under the norm
10115, = sup{ll6&ll,q: ¢ € FE lollp < 1} (0 € Op ).
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For our purposes it will be convenient to formulate the following alternate description
of Op 4.

Proposition 2.1. Let p,q € N, §: I — C. Then § € 0,, if, and only if,
0y € 7 for each ¢ € I, and

(21) Iw‘pllmq < C”‘*P"u,p ((,0 (S %)

Proof. The condition is plainly necessary. To show that it also suffices, let
¢ € JHP. There exists a sequence {p;}jen in J#, which converges to ¢ in the
topology of J£? 5, Proposition 2.12]. A subsequence {¢;, }xen of {¢;}jen converges
a.e. to ¢. Therefore, {6yp;, }ren converges a.e. to fp. On the other hand, since
{j}jen is Cauchy in JP, so is {8;}jen in A4, by (2.1), and hence it converges
to some ¢ € H#! in 7. In particular, {6, }ren converges to % in J7. Then

¥ is the limit a.e. of some subsequence of {6y;, }ren. By uniqueness, fp = 9 a.e.
Furthermore,

N0ellq = jlij; 1005lliq < ngngo lleille = Cllelp-
This completes the proof. O

Let p,qg € N. It is known that z““/Qﬁp,q C ], at least when ¢ > pu + 1

[6, Proposition 7 and 5, Proposition 2.15]. We want to describe z¢+1/26, , as a
subspace of J¢,.

Lemma 2.2. Let p,g € N and T € J,. ThenT € z"+1/20p,q if, and only if,
== 2p(2)T (x) € H2 for each ¢ € JE,, with

(2.2) le=# = 20(@)T (@) lug < Cllollnp (0 € 7).

Proof. The necessity is clear. By Proposition 2.1, for the sufficiency it is
enough to show that T is a function.

Choose 1 € C*([) such that 0 < Bi(z) <1 (z € 1), Bi(z) =1 (0 <z < 1), and
Bi(z) = 0 (z > 2), and define Bn(z) = Bi(z/n) (n € N, n > 2, z € I). Also, set
gn(z) = Bu(@)T(xz) MEN, n > 1,z €I) and g(z) = gn(x) (R =1 <z < n,n €N,
n>1).

IfneN,n>1,and ¢ € B, with p(z) =0 (x > n), then

/On gnt+1(z)p(z) dz = /O gn+1(2)@(x) dz = (gnt1,9) = (Bay1 T, ¥)
= (Tv ﬂn-&-l‘p) = <T7 (P) = (Tv ﬁn@)

= (BaT\ ) = {gnr0) = / gn(2)p() dz = / gn(@)p(a) da.
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Consequently gn41(z) = gn(7) a.e. in ]0,n], whence g(z) = gn(z) a.e.in]0,n] (n € N,
n > 1), and (g,¢) = (T, p) whenever ¢ € %B,,. The space %, being dense in J#,, to
complete the proof it suffices to show that g defines a distribution in J#,.

Let ¢ € J7,, and choose r € N, 7 > p 4 1. Then (1 + 2?)"p(z)Bn(z) € J€, for all
n €N, n > 1. By (2.2) and [5, Lemma 2.6], we may write

(0. 0)] < / " o(@)e(e)] da

N oo
= lim/ lgn (z)p(2)|dz < 1im/ lgn () ()| dz
N—oo Jo N—oo /g

[e ] 1:2;1—{—1 1/2 oo . . 12
< D i —p—=1/2 2\T 2 3.,
= {/0 (1+22)" d":} A}lm {/ |2 (L4 27) p(z)gn (z)] dl}

—00 0
<C lim [l27* V21 + 2%) (@) gn (2)||ng
N-ooo
<C lim (1 +2%)70() BN (2) | n.p
—00
=C [|(1+ 2*)"p(2)|ly.p-

Since (1 + 2°)7¢(x) € 5, and #P continuously contains J#, [5, Proposition 2.15],
Lemma 2.2 is proved. O

Motivated by [11], given p,q € N we introduce the space

///9(%”,%[’) ={F € ji‘;’ | 3LF € f(jf;f’,)i’;f)
with 2 ™#2p(x) F(x) = (Lr)(x) (p € )}

of the so-called multiplication distributions from 7 into S 7. Here, and in what
follows, £ (£, 7¢,7) denotes the space of all continuous linear mappings from 7
into J7.

Proposition 2.3. For each p,q € N, the identity ./ 2(}, A7) = 120, .
holds.

Proof. It suffices to apply Lemma 2.2. O
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3. THE HANKEL TRANSLATION OPERATOR ON J#7? (p € Z)

For each y € I, a Hankel translation operator 7, has been defined on %, [2, 10].
Before investigating the behavior of that operator on the spaces J#? (p € N) we
must prove the following auxiliary result.

Lemma 3.1. For every p € N and y € I, the function g, ,(z) = y**/2(zy) ™" x
Ju(zy) (z € 1) lies in Op .

Proof. Fixpe Nandy € I. If (z7'D,)'0(z) € L>(I) (0 < i < p), then
6 € 0,, [6, Proposition 4]. Now, for 0 < ¢ < p we have

(7' Da)iguy(2) = (=1)'y* 2 (2y) ™ Jupi(ay) (z € D).

Since the function z7#~%J,;(z) is bounded on I, this completes the proof. a

At this point, given p € N and y € I, we are in a position to define the Hankel
translation operator 7, on J£7 by the formula

(ryp)(z) = ﬁ;t(gu,yﬁ,u‘p)(z) (p € ‘)ﬁf’ zel),

where g, , is the function defined in Lemma 3.1.
Note that the operator 7, (y € I) reduces to the usual Hankel translation operator
when restricted to %, [2, Equation (3.1)].

Proposition 3.2. Let p € N. The operator 7, (y € I) is well-defined and contin-
uous from J?P into itself. Moreover, if p > 1 then the identity

(3.1) (ryp)(2) = () (y) (2,9 € 1)

holds for every ¢ € JP.

Proof. Fixp € Nandy e I. That 7, is a continuous endomorphism of J#”
follows from Lemma 3.1 and from the fact that ), is an automorphism of .)f;[’ [5,
Theorem 2.2].

Equation (3.1) holds when ¢ € J¢,, and JZ, is dense in J7 [5, Proposition 2.12].
Since convergence in J£F, p > 1, is stronger than pointwise convergence (5, Lemma
2.14], necessarily (3.1) also holds when ¢ € 7 and p > 1. O

For y € I and q € N, the translation operator 7, is defined on J#,77 by transpo-
sition. Then, by Proposition 3.2, 7, is a continuous linear mapping from J,, 7 into
itself.

The functional §,, introduced in Proposition 3.3 below will be very useful later.
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Proposition 3.3. Let p € N, p > p+3/2. The limit lir(r)l+ x~#=1/2p(z) exists for
T —
all p € 7. The linear functional

(3.2) (6, 0) = lim ca™# 2p(z) (¢ € H#P),

z—0+

where ¢, = 2*T'(u + 1), is continuous. Furthermore,
(3.3) (0usyp) =0(y) (WEI g€ Jf:f :

Proof. FixpeN,p>u+3/2, and let ¢ € JP. It is known that

zTH20(x) :/0 v H2(9,0) (y) (xy) ™+ T (wy) dy

for z € I (see the proof of [5, Lemma 2.14]).
The integrand above lies in L!(I). Certainly, the function 27#J,(z) (z € I) is
bounded. Moreover,

yh1/2 _ yu+l/2 ot p—1 ;
2@ = T (9T Gu) Wl < > W (9u) W) (we D,
j=0

with ¥/ (9,¢)(y) € L}(I) (0 < j < p— 1); see the proof of [5, Lemma 2.14].
Now, by dominated convergence,

o0
li%l+ eV p(z) = c;l / y““/z(f)“(p)(y) dy
0

z—

The linear functional §,, defined by (3.2) satisfies

Gl < [ (5,00 d < Z / (9,0) )] dy < Clpllup
0

for every ¢ € JP (proof of [5, Lemma 2.14]), hence it is continuous.
Finally, let us prove (3.3). For fixed ¢ € P and .« € I, there holds

(34)  Hu(e(y) — cuz ™2 (1)) (#) = (1= cu(at) " Ju(@t)) (Hue) () (¢ € ).

As (9.9)(t) (t € I) is bounded [5, Theorem 2.2 and Lemma 2.14], and since
hm (1 — cu(xt)™#J,(zt)) = 0, it follows from (3.4) that

(35) &3& ﬁ;t((p(:’/) - C#z—u—l/z’(Tr‘p)(l/))(t) =0.
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The difference 1 — ¢, (xt)™# J, (zt) being bounded for all t € I, (3.4) also implies

(3.6) 19 (0(y) — cuz ™72 (1:0) () ()] < Cl(H90) (8],

with ($.¢)(t) € L'(I) and C > 0 not depending on t € I.
On the other hand, we have

oY) — ez 2 (120)(y)
(3.7) = /0 9, (0() — cuz™* 2 (120) W) (D) () 2 T (wt) dt (y € 1),
because ¢(y) — c,x " Y2(1,0)(y) € L'(I).

Formulas (3.5) and (3.7), along with the dominated convergence theorem (which
applies by virtue of (3.6)), yield

— H —u—1/2
o(y) = lim ™" (rp)(y) (p€ AT Y€,

In view of Proposition 3.2, this establishes (3.3). O

4. HANKEL CONVOLUTION OPERATORS ON J¢7 (p € Z)
Let p,q € N. In [6], the spaces of convolution operators
0L, = {T € ALy 2(5,T)) € 0y}
were defined and endowed with the norm

T = Iy ™29, 1) W)llpq (T € O5).
By topologizing the space 2#T1/26, ; so as to make it isometric to &, ,, we have
the following.

Proposition 4.1. The generalized Hankel transformation is an isomorphism from

1/2
(?’f,yq onto zH+1/ Op.q-

Taking into account Lemma 2.2, another description of the spaces ﬁqu may be
given. To this end, we recall that the Hankel convolution of 7' € J#, and ¢ € J, is
the function (Tfp)(x) = (T,7.¢) (z € I) [10, Definition 3.1]. For all T € 5! and

I
¢ € Jt, the exchange formula

9Tt () = v~ 2(H,0) ) (9, T)(y) (y € 1)
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holds [10, Proposition 3.5].

Proposition 4.2. For each p,q € N, ﬁ,ﬁyq is the space of all those T' € .)fp’ such
that THp € 7 for all p € ), and

T4l < Cllellup (@ € )

Proof. LetT € J%,. By Lemma 2.2 and [5, Theorem 2.2], y"‘_l/Q(.?JLT)(y) €
Op,q if, and only if, y = ~1/2(9), T) (y) (9,9) (y) = 9. (The)(y) € H7 for each ¢ € 7,
and

IT8Nug = 19 (T8O g < ClHellnp = Clllluy (@ € H).
O
Fix p,q € N. Since ], is dense in J£? [5, Proposition 2.12], for each T € &} | the
continuous mapping
2 (A Mwp) — (G Nlg)
pr— THp
admits a unique extension up to J#7 preserving the norm, which we keep denoting
by the same symbol §. Hence, ()’qu may be regarded as a subspace of £ (P, #]7).

The norm of £ (P, #7) restricted to 0% , will be represented by || - ||} ,.
The following exchange formula will be of great utility later.

Proposition 4.3. Let p,q € N. For each T € 05,(1 and ¢ € J}, the identity

(4.1) 9,(Tte)(y) =y 29, T) W) (9,0) () (yeT)

holds. Furthermore, the norms

: ||ga,q and |- I‘,’,,q coincide on ﬁg,q,

Proof. IfT € O}, then y=#~1/2(%,T)(y) € 0,4 Consequently, both the

left- and the right-hand sides of (4.1) define continuous linear mappings from J#?

into 7. Since (4.1) holds if » € J#, with J7, dense in JP [5, Proposition 2.12],
necessarily it also holds for all ¢ € JF.
Now, the fact that £, is an isometry of J7 [5, Theorem 2.2], along with (4.1),
implies
ITN}, g = sup{lITtellq: @ € AL, ollp < 1}

= SUP{”ﬁ;t(Tﬁ‘P)“u,q: pE %p’ ”‘lelvl' < 1}

= sup{lly ™ 9.T) W)eW)llg: ¢ € K N@llup < 1}

= ”y_“_lﬂ(f);.T)(y)”p,q = |T|£»,q (T'e ﬁ,';,q)-
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' Let p,q € N. The Hankel convolution of T € ﬁg,q and u € J¢,7 is the functional
THu € 7P, given by

(Thu, p) = (u, THp) (p € HT).

Note that, for a fixed T € ﬁqu, the mapping u — Tfu from 77 into 77 is
the transpose of the mapping ¢ — Ty from J£7F into J7.

Note also that if '€ OF  and ¢ € J#, then [5, Propositions 2.4 and 2.15] provide
us with two (coincident) definitions of the functional Ty € JF. In fact, on the
one hand, since ¢ € J#, C J7, the function vi(z) = (T,7,%) (z € I) satisfies
vy € K7 C 5, P. On the other hand, as ¢ € J#,77, we may consider the functional
vy € J7P defined by (va,¢) = (¥, THp) (¢ € HP). Now, 77 C J#,, and
(v1,9) = (v2,) whenever ¢ € J#, [10, Proposition 3.5]. Since , is dense in J#”
(5, Proposition 2.12], v; and vy define the same functional in J#P.

Corollary 4.4. Let p,g € N. Given T € 6’}",,,1 and u € J,79, the identity

9, (Thu) (y) =y~ 2(5,T) () (9, 1) (y)

holds.

Proof. By Proposition 4.3, for all ¢ € J7? we have

(9, (Ttu), Hup) = (Thu, ) = (u, Thp) = (9,4, 9,(THe))
= (9,0 @),y ST W) (9u0) 1))
= (y™ (5, 1) ()90 ¥), (9u9) ¥) ) -

O

Next we aim to characterize €% (p,q € N, ¢ > p + 3/2) as the space of all
those continuous linear operators from J#? into J¢! (respectively, J¢,? into J¢, ")
commuting with Hankel translations (Proposition 4.6).

We adopt from [11] the notation

m(o, B)={Te LW, B)|7,T=Tr, (yel)}

Here &/ and & denote suitable linear topological spaces where the Hankel translation
is defined, and .Z (&, #) represents the space of continuous linear mappings from
&/ into #. Recall that the spaces A4 2(F, H#,7) (p,q € N) were defined at the end
of Section 2 above.
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Lemma 4.5. Assume p,q € N, with ¢ > u+ 3/2. To every F € MD(HP, HT)
there corresponds a unique Tr € m(JP, H7) such that Trp = (9, F)fe (p €
). The mapping T: F — T is an isomorphism from .#9(H7P,#7) onto
(A2, ).

Proof. Given F € .#9(H}, #]), we define Tr: P — H7 by Trp =
9u(Lr$Hup), where Lp satisfies z7#~12p(z)F(z) = (Lrpp)(z) (¢ € H.); then,
Tr € (7, 47). Fixy € I and ¢ € S, and let g, , be the function considered
in Lemma 3.1. There holds

= ~r1/2

9y (@) (Lre)(2) 9uy(@)P(2)F(2) = Lr(guye) ().

Hence, we may write:

Ty(TFP) = 949,39 (TF¥)) = Du(9u,y Lr(Hup))
=9, (LF'(gu,yﬁu(P)) = ﬁp(LF(fJuTy‘p)) = TF(TySO)'

Since 7,Tr and Tr7, both lie in £ (P, #7), and since J7, is dense in J? [5,
Proposition 2.12}, we conclude that Tr € m(JF, J2,7).
Conversely, assume that T € m(J7F, 7,?) and define the linear functional

(H,p) = (04, Tp) (v € ),

where 4, is as in Proposition 3.3. Then H € J#/, because 6,,T is a bounded linear
functional on J#? and the inclusion of J#, into J#? is continuous.
Fix ¢ € 5,. Using Proposition 3.3 we obtain

(4.2) (Te)(y) = (O, yTp) = (6, Tryp) = (H,7y0) = (Hip)(y) (y € I),

or, in other words, T'($,¢) = Hf(H,p). Let F = ) H € J£; then

(43) 9u(THu9) (y) = 9,,(9, (9.0 (W) =y~ *0(y)F(y).
Since $, 79, = L € (P, %)), we find that F € .Z (AT, 7).

Now the proof may be completed as follows. That the mapping T is well defined is
a consequence of the first paragraph above, along with (4.2) and (4.3). The preceding
paragraph shows that T is onto. Finally, the remaining assertions of Lemma 4.5 are
obvious. O

Proposition 4.6. Let p,q € N, ¢ > p+ 3/2. A linear map L: P — 7
(respectively, L: 5,9 — ") lies in m(JF, J,7) (respectively, m(J€, 9, #,7F))
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if, and only if, there exists a unique T € ﬁqu such that Lu = THu for all u € P
(respectively, u € 7,79). '

Proof. Assume L € m(JP, ). By Lemma 4.5 and Propositions 2.3 and

B

4.1, there exists T € 6’}3’,1 such that Ly = Ty if ¢ € J€,. Since J#, is dense in J&?
[5, Proposition 2.12], by continuity Ly = Ttp whenever p € J£P.

IfT e ﬁg,q and Ly = Ty for all ¢ € HF, then Ly = Tl for all p € 5. From
Lemma 4.5 and Propositions 2.3 and 4.1, we conclude that L € m(J€F, #7).

Now suppose L € m(J#,~9, %, P). Then is adjoint L* lies in m(J?, 5#7); in fact,
forally € I, p € H#F and u € 7,7, we have

(u, 7y L*p) = (Tyu, L") = (L1yu,p) = (1, Lu, p) = (Lu, Typ)
= (u,L*1,p) .

As just proved, there exists T € é’}f,q satisfying L*¢ = Ty (¢ € H#F). The identities
(Lu,0) = (u, L) = (u, The) = (Thu,¢) (u€ H 1,0 € HP)

show that Lu = Tfu (u € J,77).
Conversely, if T € 0} , and Lu = Ttu for all u € J#,77 then L € L (79, ,7).
Since 7, (THp) = TH(ryp) for all y € I and ¢ € P, we get

(LTyua 90> = <TﬁTyU,<P) = (Tyu’ Tﬁ‘P) = (U,Ty(Tﬁﬁp))
= (u, TH(1yp)) = (THu, Typ) = (TyLu,p) (y € I, € HP).
That is, L € m(J,79, 5,7 7).
To prove uniqueness, assume that 7' € 0,‘1,,1 and T§u = 0, for all v € A7

(respectively, u € J£,7 7). Then, by Proposition 4.3 (respectively, Corollary 4.4),
0= z‘“‘l/?(f)LT)(x) € Op 4, whence T = 0. This completes the proof. a

As [|ollu,p < ll@llu,q whenever p,g € N,p < g, and ¢ € J#7, the identity mappings
0” o+l < (7 ¢ 0p+1 s a€EN)
are continuous. This fact allows us to consider the limits

g ind lim 0” (g eN) and 0 l1—pro_] lim 6’”

p—roo 00

Here &) , is the space of convolution operators of J#, and J#, [6, Proposition 19)].
In the following Proposition 4.7 we characterize O} t(qe N) as the space of convo-
lution operators from J#, into 7 and from J¢, mto Jé”’

M
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Proposition 4.7. Let ¢ € N and T € 5. The following are equivalent.

(i) T e 0%

(ii) The mapping ¢ — Tfy is continuous from J¢, into J¢,7.

(ili) The mapping v —— THu is continuous from 7% into 5, when J is
endowed with either its weak™* or its strong topology.

Proof. Statements (ii) and (iii) are equivalent by transposition. We shall
establish the equivalence between (i) and (ii).

Assume T € 0%, and let p € N be such that T € 6% . Then Ly = Tfy is
continuous from P into J. Since the embedding ), — J#P is continuous (5,
Proposition 2.15], L is continuous from J#, into /7.

Conversely, let T' € J#, be such that Ly = Tfyp is continuous from ¢, into J#7.
By [6, Lemma 1], there exists p € N satisfying [|T8¢ll.,q < Cll¢lln,p (@ € H.). But

this means that T' € 0} “ and completes the proof. O

q'

Our next objective is to characterize é’g (g € N, ¢ > p+ 3/2) as the space of
continuous linear operators from J#, into J# (respectively, S, into J¢) that
commute with Hankel translations.

Proposition 4.8. Let ¢ € N, ¢ > pu+3/2. A linear map L: 5, — 7 lies
in m(%,%’;ﬂ) (respectively, m(J€,%, ¢, ), where A, is endowed with e1the1 its
weak* or its strong topology) if, and only if, there exists a unique T € 0’3 such that

Lu = Tfu for all u € J, (respectively, u € 7 9).

Proof. By Propositions 4.6 and 4.7, it is apparent that the mapping Ly = Ty
(p € 57,), with T € 0’2, is continuous from J#, into 7 and commutes with
translations.

Conversely, if L € m(J#,, /) then the mapping o — (6,., L) (¢ € ) defines
a linear functional T € ¢, satlsfymg

(L(p)(x) = (5#7 TxL‘P) = (6/H LTsz) = (T, T«l*p) = (TW)(S'J)

for every ¢ € %, and x € I (Proposition 3.3). From Proposition 4.7 we conclude
that T € OF.

To prove uniqueness it suffices to argue as in the proof of Proposition 4.6.

The respective part follows easily by transposition. O

At this point we aim to describe ﬁ’g (¢ € N) as an inductive limit of Hilbert spaces
(Proposition 4.10). For every k € N we define the operator (1 —S,)~* from J#, into
itself by the formula (1 — S,) ¢ = 9,.((1 + 22)7*(H,.9)(2)) (¢ € F#,), and from
£ into itself by transposition. These mappings are injective.
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Given k,q € N, put

(1=8,)7* A1 ={(1-8,)Fue A ue #Y,
(1-S8)kA1 ={T € #: (1 - S,)7*T € 7},
and endow those spaces with the topologies that make the operator (1 — S,)~* an

isometry. It is apparent that for each k, ¢ € N, the Hilbert spaces (1 — S,L)‘kjﬁf"
and (1 — S“)k%q constitute a dual system with respect to the bilinear form

(1-8)*# 9% (1-S5,)H —C
(u,0) > (u,v) = (1 = Su)ku, (1 - S,)*v).

Lemma 4.9. For every q € N, the following holds.

(i) S, is dense in (1 - S,)~* £ (k € N).

(i) #8 C (1 = Su)7 C (1 —8,)*547 C ..., with continuous embedding.

(i) #5,79 D (1-8,) 1,79 D (1-5,) 722,77 D ..., with continuous embedding.
(iv) 1nd hm(l - ,L)"J?’q is the strong dual of proj llm(l - )‘kjf;t‘q.

k—o0

Proof. Since (1 —.S5,)~F defines an isometric isomorphism between J€,7 and
(1 —5,)7*£79, and since J#, = (1 — S,)7*J%, is dense in J,9 [5, Proposition
2.12], part (i) follows.

Next we observe that, for all £ € N, (1 — S,,)‘k(%:f C 7 as well as (1 —
S,)~k A9 C A9 [6, Corollary 1 and 5, Theorem 2.2], and that

(1=5,)7"""T = 9, ((1+2°)7"9, 9,1 +2*)""($,T)(z))
=(1-5)""(1-S5.)""T (n,meN, T € x).

Fix k € N, and let T € (1 — 5,)k2, so that T € J, and (1 — S,)~*T =

€ 7. Then, as just observed, (1 — 5,)7*"!'T = (1 - S,L) @ € 7, whence
T € (1 - 8,)* 3. Moreover,
I - S;L)_l(p”u,q = ”ﬁ/t((l + 532)_1y)u‘p(m))|l;t,q
= (1 + 12)_15’3;“9(-7’)””«1 <+ -”72)_1||qu”¢“#,{1'
This proves (ii).
Similarly, if T = (1 - S,)~*'u € J£, where u € J£,9, then
T=(01-S)"*1-8,)'ue (1-S,)"* 71,

with

(1 = Su) " ull,—q = I19].((1 +22) 7' 5 u(@)) 1, —q
=11+ xz)_lﬁ;ﬂ‘(x)“u,—q <A+ 1’2)_1uq,quuuu,—¢



Thus, (iii) is proved.
The limit projlim(1 — S,)~*.#,77 is reduced, because of (i). Hence, its dual with

0
k—o0

the Mackey topology may be identified with irlxcd lim(1 — S,L)k.)i‘,’f [12, IV-4.4]. Since
—00
projlim(1 — S,L)_’“‘%;‘q is semireflexive [12, IV-5.8], the strong dual topology and

k—oo

the Mackey topology coincide on illlcd lim(1 — S, )k.#,7 [12, IV-5.5]. This establishes
—00
(iv). O

Proposition 4.10. For all ¢ € N, the identity 0} = ind lim(1 — S,)*#2 holds.
—00

Proof. Letp,g e N, let T € 6!, and choose k € N such that z#1/2(1 +

2?)=F € AP, Then, ¢ = §,(a*1/2(1 4+ 2?)7*) € AP [5, Theorem 2.2] and f =
Tt € J#,7. From Proposition 4.3 we obtain (9, f)(x) = (1 + 1:2)‘k(5’,):‘T)(x) € A0
consequently f = §,((1+ 2?)~*(9,T)(z)) = (1 - S,)"*T € 7 [5, Theorem 2.2],
and hence T € (1 — S,)k£1.

Since the mappings

. k q
Ot — AL — (1= 5,)F 0,

SO,

T+— To— (1-5,) (Tte) =T
are continuous, so are the embeddings
o, = (1-S)fA8 — ind lim(1 — Sk,
and from the arbitrariness of p € N we infer the continuity of
ot — ind] loiom(l — Sk

Conversely, given k € N and ¢ € 5, let ¥ = (1 - S)*p € S, If ¢ € N and
p € J7, then

(1= S Alte(x) = (1= S,)* f, ) = (f, (1= S0  Te)
= {f,r.(1 = Su)kp) = (fi(1 = S0 o) (@) = (fiY)(x) (z €]
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[10, Proposition 2.1]. Thus [5, (proof of) Theorem 2.2],

q

(- Su)kf)ﬁW”u,q = | fllug < Z 2™ T, m (FH) 2

n+m=0
q
= Y e Tun@ 259, ) (@) (909)(@)ll2
n+m=0

q

= 3 et D) a2 (9, ) @) 2 (5,) @) e

n+m=0
< Z Z( )“T"+m+“+l/2(1‘_lD)j(m_“_ln(fj“f)(z))
n+m=0 j=0
x (@71 D)" I @7V (9,9) (@) 2
<> > (1)l D ) W
n+m=0 j=0
x la™ /2 @ DY, ) @)
= 3 3 (I Dy A S el T (B @)
n+m=0 j=0

By [6, Lemma 1] and [5, Theorem 2.2 and Proposition 2.15], there exist r,s € N

(not depending on ) such that

I = S)* Htellua < CUDA N llDufllwg = ClY sl Fllig <

This shows that (1 — S,)*f € ¢! | and that the embeddings

Sq’

(1-8,)kA1 < 0! < indlim 0} | = O}

oo Pl q

are continuous. Since k € N is arbitrary, we conclude that

indlim(1 — 5,)" 7 = O]

—>00

is also continuous. This completes the proof.

C”‘P“u snf”uﬂ

a

As a consequence of Proposition 4.10, we obtain some results about continuity,

topological properties, and structure in f}’}} (g €N).

Corollary 4.11. For each q € N, the following holds.

(i) The embedding 03 < J¢,| is continuous, when J¢ is endowed with either its

"

weak* or its strong topology
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(ii) O} is the strong dual of projlim(1 — S,) =%, .
k—oco
Proof. To prove (i) it suffices to show that the mapping (1 — S, )*#0 — ¥
is continuous for every k € N, when either the weak* or the strong topology are

considered on ;. Indeed, for k € N, T € (1 - S,,) ,)?‘/[’, and ¢ € J€, we may write

o, T) | = 1{(1 = S)" 0, (1 = ) *T) | <N (L = S0 @llu—all(L = Su) T Tlpg-

The space J#, being continuously contained in /¢, [5, Propositions 2.15 and 2.4],
this establishes (i).
Part (ii) follows from Lemma 4.9 (iv) and Proposition 4.10. O

Corollary 4.12. For every q € N, the space 0’,‘} is complete, reflexive and
bornological.

Proof. Let ¢ € N. The Fréchet space projlim(l - S~ k.)f’ 9 is barrelled

[12, II-7.1, Corollary], bornological [12, II-8.1] and se mneﬁexwe [12, IV-5.8]. Hence,
projlim(1—5,,) 7527 is reflexive [12, IV-5.6], and its strong dual 6 is reflexive [12,

"
k—o0

IV-5.6, Corollary 1], complete [12, IV-6.1], and bornological [12, IV-5.6 and IV-6.6].
d

Proposition 4.13. Let ¢ € N and T € . Then T € 0} if, and only if, there

k
exists k € N, ¢; € C (0 < j < k), and p € 7, such that T =} ¢;S),p
j=0

Proof. FixqgeN. Assume that ¢ € J7, and let k,j € N, with 0 < j < k. We
claim that (1 — S,)~FSip € 71, whence Sf‘go €(1-S,)k 7. In fact, we have

(1= 5,)7*S30 = 5, (1 + %)™, (Sig)) = 5 (=127 (1 +22) " (9,)).

For 0 < j < k the function 2%/(1 + 2?)~* lies in 0, [6, Proposition 4], which

estabhshes our claim.

A
Now, let T € 5. If T = 3 ¢;S}p for some k € N, ¢; € C (0 < j < k), and

§=0

@ € S then, as just proved, T € (1 — Su)kjf;q. Conversely, suppose T € ﬁg SO

that T € (1 — S,)*#7 for some k € N. If ¢ € 7 is such that (1 — S, )T =

k
then (9, T)(z) = (1+ 2?)7*(9),¢)(z), whence T = (1 — =X ( )(=1)ISie

j=0

with Sip € (1 — S, )k A0 0
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Next we characterize the bounded subsets of é’g (g e N).

Proposition 4.14. Let ¢ € N. A set B C 0} is bounded if, and only if, there
exists k € N such that B C (1 — S,)*# and B is bounded in (1 — S, )k 3.

Proof. The sufficiency is clear. To prove the necessity, we argue by contradic-
tion. Assume that B\ (1 — ,L)kij # 0 for all £ € N. Then there exist sequences
{k;}32, in N and {f;}$2, in B such that f; € (1 - S,)+0€2\ (1 - S,)% 727
Choose a bounded closed convex neighborhood U; of zero in (1 — Sﬂ)kl,%‘;ﬂ such
that fi € U;. Once Uy, Us,...,U; have been chosen, apply [8, Lemma 1] to find
a bounded closed convex neighborhood U1 of zero in (1 — S, )ki+ 1 such that
U; C Ujr and fi € iUj41 for 1 < i < j+ 1. Then |J Uj is a convex neighbor-

jeN
hood of the origin in é’g which does not absorb {f;}32; C B; this is the expected
contradiction. Hence, B C (1 - 5,,)*£7 for some k € N.

Now suppose that B is not bounded in any (1 — )jjf’q (j = k). Write V,, =
{T e (1—-5.)r#7: (1 = S,)"*T||,q < 1}, and choose g; € B\ jVi (j = k, k+1).
By [8, Lemma 1] there is a bounded closed convex neighborhood V41 of zero in
1- S,L)’““,)fjﬂ satisfying Vi C Viy1 and g; € jVit1 (7 = k,k + 1). An inductive
procedure allows to define sequences {g;}32, C B and {V;}52, such that V; is a
bounded closed convex neighborhood of zero in (1-5,,)? 1 and g; € iV; (k <1< j).

Therefore |J V; is a convex neighborhood of zero in 0’2 which does not absorb
jeN
{9i}52x C B. This contradiction completes the proof. O

In the sense indicated by Proposition 4.15 below, ., is a dense subspace of (&,
(g € N).

1+1)'

Proposition 4.15. Let ¢ € N, and for each ¢ € J¢, define
LoT)= [ 9,Tt0)@)de (7€ 0L,
0

Then .%,, = {L,: ¢ € J€,} is a (weakly *, strongly) dense subspace of(é’q_H) .

Proof. Fixpe #,peN,and T € & p.qt+1- Then [5, Theorem 2.2]

(o< [Tisrto@lde < [T ol + 09T @] dr

© 4y 1/2 S . 1/2
<{/0 H_lz} { 0 (1+x)21f)“(Tﬁ«p)(f)li’dw}

< C”ﬁ;t(TﬁSD)”u,q-H = C”TﬁLP”/L»qH < C”T”g,q+1“<ﬂ”;typ-
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.t
Hence, L,: é’p,ﬁ_
ﬁgﬂ — C continuous, so that %, = {L,: ¢ € J#,} is a subspace of (€2+1)’.

Since 03 41 is reflexive, the strong topology of (ﬁg +1)" is the Mackey topology, and

; — C is continuous. The arbitrariness of p € N yields L,:

convex subsets of (6’2 +1)" have the same closures in both the weak* and the strong
topologies [12, IV-3.3]. Thus, we only need to prove that .%, is weakly* dense in
(ﬁg +1)'- This may be accomplished by showing that ., separates points of ﬁ’g 11
with respect to the duality ((‘7’5+1)',0’3+1> (12, IV-1.3]. In fact, let T € ﬁgH be
such that

0= (L T) = [ & VS D)) (90) (o) da

0

for all ¢ € J%, (Proposition 4.3). Then
/ 1:_“_1/2(.6;T)(z)g0($) de=0
0

for all ¢ € J,, whence z7#~1/2(§, T)(z) = 0 (z € I). Here we have used the fact
that z~#~1/2(%/,T)(z) is a continuous function on I [6, Proposition 5]. Therefore
T = 0, which completes the proof. O

Given two topological vector spaces &7, %, denote by (&, %) (respectively,
% (', B)) the space £ («/, #B) endowed with the topology of pointwise convergence
(respectively, of bounded convergence). Fix ¢ € N. By Proposition 4.7, 0}1’ may be
regarded as a subspace of £ (7, 7). Hence, besides the inductive topology 7, it
is natural to consider on é’g the topologies 75 and 7, induced by % (%, #7) and
L (., A7), respectively. We shall prove that all these topologies coincide on 03
(Proposition 4.19). For this purpose we need an auxiliary result about the Hankel
convolution, stated as Lemma 4.17, which we shall derive from the corresponding
property of the multiplication (Lemma 4.16).

Given k,q € N, let us consider the spaces

1+ $2)_'°Jf,’f" ={1+2*)ruc A u€ AT
(1+2®)*or ={T € A (142°)*T € A1},

endowed with the topology induced by ¢, 7 (respectively, J#7) through the mul-
tiplier (1 + 22)~*. In is apparent that for each k,¢ € N, the Hilbert spaces (1 +
z?)7k 79 and (1 + 22)* A7 constitute a dual system with respect to the bilinear
form

1+2%) %79 x (1 + 22 #9 — C,
© "
(u,0) s (u,0) = (1 + 2%)*u, (1 +2%) o).
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By [5, Theorem 2.2], the Hankel transformation defines an isomorphism between
(1+2%)~*2#,79 and (1-5,,)~*J%,9, respectively (1+2?)*#7 and (1-5,)k 4. In
particular, ind lim(1+22)* 7 is the strong dual of projlim(1 + z?)~*¢,79 (Lemma

—o0

k—o0
4.9, (iv)).

Lemma 4.16. Fix ¢ € N. Assume that B C projlim(1 + 22)~*5,79 is bounded,
k—o0

and let A denote the unit ball of 9. There exists ¢ € J, such that B C
z=r12p(z)A.

Proof. Toevery k € N there corresponds Cx > 0 such that BC,:I(I +z?2)7kA.
Let BO, respectively A, denote the polar set of B, respectively A, and let v €
Cr(1+2?)* A% = (C (1 +22)7*A%). Ifu € C; ' (1+2?)7%A then Cr(1+22)Fu € A,
Cil(1+2%) v e A® and

| (u,v) | = | {(1 4+ 2%)ku, (1 +12)_kv>| <1

As B C C'(1+ 22)7*A, it follows that |(u,v)| < 1 for all u € B and v € C (1 +
x2)kA°. Therefore, Ci(1 + 22)*A° C BO.

Now, let ¢ € C*°(R) satisfy 0 < ¥(t) <1 (t € R), ¥(t) =0 (¢t £0), and ¢(t) =1
(t>1). Ford> 0 and h € A there holds

q ' C
(@ —d)(1+2%) " h(@)llug < CllAllug D 1@ DYz = d)(1+2) oo < T2

j=0
with C independent of d and h, whence lim sup ||¢(z — d)(1 + 2?) " h(z)]||n,q = O.
d—oo pe AV

Thus, given k € N there exists a sequence {dk }ren such that d, > 0, dky1 > 1+ dk,
and

sup [¥(z = di)(1 = 2®) ' h(2) g < 275" Chyn (K EN).
e 0

Then, for k € N and h € A°,

Y(x —di)(1 + 22 h(z) = (1 + 22) T y(z — dp) (1 + 22) 7!
x h(z) € 27F71C 1 (1 + 22)FF1AC,

Define

o N (z) = x#1/2 [%MCI + Zw(x —d)(1+ 2| (z e,
k=1

where M > 0 is chosen so that MA° C (1 + z2)A° [6, Proposition 4].



Note that ¢ € J#,. Moreover, if h € A® we have

P25 () h(z) = %Cth(x) + ; V(e — do)(1 + 22 h(z)

1 o~ ok
€ §ClMA° + ) 275 O (1 +2?) A0
k=1
oo
CZ2 kCr(1 4+ 22)FA° ¢ (22 ) = B°.

k=1 k=1
That is, A C z=#~1/2¢(x)B°.

On the other hand, z=*~1/2p(z)(1 + )1 C AP (k€ N), because
t~# Y254, C 0,, [6, Proposition 6]. Consequently, B® C mdhm(l + 23k C
:1:“+1/2<p‘1(:1:)=%f“7.

Now, let u € B C projlim(1+2?)~*£,79 C /] C 4. Then z*+1/2p~1(z)u(z) €

k—o0
2, and for w € B, N A° C B, Nz=#~1/2¢(z)B® we find that
[(z* 12 (z)u(x), w(z))| = [(u(z),a" T/ 2o~ (2) Jw(z))| < 1.
The space &, being dense in ] [5, Proposition 2.12], this shows that
"2 = 1 (g)u(z) € A.

Since u € B is arbitrary, we conclude that B C +7*~!/2p(2)A. The proof is thus
complete. : ]

In view of the remark preceding Lemma 4.16, and applying Corollary 4.4, we
immediately obtain

Lemma 4.17. Fix g € N. Assume that B C projlim(1-.S5,)~ k,%"t 9 is bounded,
k— 00

and let A denote the unit ball of %‘q. There exists ¢ € J€, such that B C pfA.

Lemma 4.18. For every ¢ € N, the inductive topology of 0}; is generated by the
system of seminorms ¥ = {|| - £¢|l.q } e, -

Proof. Let g € N. As above, we denote by 7 the inductive topology of 0‘3.
Note that the ¥-topology is just the topology of pointwise convergence 7, that 0}}
inherits from (€, /7).

For each p € N, the estimate [|Tf¢||,.,q < ||T||,, ollll.ps valid whenever T € O}

pP.q
and ¢ € J£,, shows that the identity mapping 0% < ( 0q, Ts) is continuous. Thus,
7 is finer than 7.

Pq

66



Conversely, choose a 7-neighborhood U of zero in 0}1‘ = ix}cd lim(1 — S,)* 2.
—00

Then there is a bounded set B C projlim(1 — S,)™*#,79 such that B® c U (Corol-

"
k—o0

lary 4.11). By Lemma 4.17, there exists ¢ € J¢, satisfying B C oA, where A
denotes the unit ball in J#,9. For T € (1 - Sk C H, and ¢ € H,, we have
(T, pt) = (THp, %) [10, Proposition 3.5]. Since J7, is dense in 5,9 [5, Proposition
2.12], for each T € &} we may write

sup{|(F,T)|: F € B} < sup{|(T, ¢fiu) |: u € A}

= sup{|(T, o) |: ¥ € H, |[¥llu,—q < 1}
= sup{| (T, ¥) |: ¥ € S, [¥llu,—g < 1} = ITHpl| s q-
Thus {T € O}: ||THp|luq <1} C B° C U, and therefore 7; is finer than . O

Proposition 4.19. Let ¢ € N. The bounded convergence topology and the point-
wise convergence topology coincide on 0}; as a subspace of £ (5, H1), and they
equal the inductive topology of 0’3. In particular, the inductive topology of ﬁg is gen-
erated by any one of the families of seminorms {||-#¢l|,.,q } pe s, , {sug II-#olleq } BEB,.»

peE

where B, denotes the family of all bounded subsets of Jt,.

Proof. The notation for the spaces and topologies that will be used here was
introduced after Proposition 4.15.

The identity mapping O} , — % (7, #7) (p € N) is continuous. Thus, 6% | —
Zo(HA, A7) (p € N) is continuous [5, Proposition 2.15], and consequently so is
(ﬁ(‘l’,r) < & (., 7). This means that 7, C 7. As 7 = 7, (Lemma 4.18), and
since 7, C 7, we conclude that 7 =7, = 7. O

Remark 4.20. é’g 41 is neither Montel nor nuclear. For the proof take a sequence
B = {kn}nen in J€, such that ||kn|luq+1 = 1 and (Hukn)(x) = 0 (¢ > 1/n).
This B is bounded in ﬁgH (Proposition 4.14). Moreover, if ¢ € J€, is such that
(H,9)(x) = 2#t1/2 (0 < & < 1), then [5, Theorem 2.2] and the exchange formula for

the Hankel convolution yield

q+1 oo
(4.4)  IkatollZ o41 = 190 Ent @2 41 = Z /0 |27 T, 9 (kntip) (2)]? dz
i+3j=0
q+1 1/n ) .
=2 / |12 (7 DY 12 (9, k) (2) | da
i+j=0"0
q+1 (%) .
= Y | W Tk @ e = 18l g
i+j=0"0

= [lknll} g1 = 1.
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From (4.4) and Proposition 4.19 we infer that B does not have any cluster point
in é’gH. In particular, B is closed in ﬁgﬂ. Also by (4.4) and Proposition 4.19, B
cannot contain zero-convergent subsequences in (72 41

In the notation of Proposition 4.15, for every ¢ € .#,, we have

Lok = | [ Sulhutol@)de] = | [Tt 0,k @) 0up) ) as

1/2

(4.5) < n=1/2 sup ’m_l‘—1/2(5§#¢)(2})|{ /OOQ ](f)#kn)(;v)|2 dil?}

zel

< n—1/2 SléII) |Iﬁ”_l/2(f)/t‘p)(z)”|kn”;t.q+l n:.)o 0.

Now (4.5) and Proposition 4.15 imply that B converges weakly to 0 in 0g+1. As
convergence in ﬁg 41 is stronger than weak convergence, we conclude that B does
not contain any convergent subsequence in ﬁ’: +1- Therefore B is not compact, and

ﬁgH is not Montel.

Since 03 41 is complete (Corollary 4.12) and B is closed in 0’2 41 we find that B is
not precompact, so that ﬁg +1 is not nuclear [13, Proposition I1I-50.2].

5. MULTIPLIERS ON J£7 (p € Z)

Let p,¢ € N. In this Section we present new properties of the spaces €, , of
multipliers from J£P into £ and of J#,9 into 7", investigated in [6] and treated
in Section 2 above. As an interesting consequence, the space ¢ of multipliers of .7},
and J#/ is expressed as a projective-inductive limit of Hilbert spaces.

According to Proposition 4.1 and the remark following Proposition 4.6, we have

0,;,,I+1 — ﬁp’q — 0p+1,q ([)‘ (€ N),
with continuous embeddings. Hence, for ¢ € N we may consider

0, =indlim o, ,.

p—r0o0

. . . 3 /* . .
The generalized Hankel transformation makes @7 and Y20 isomorphic, where
the latter space is topologized so that the mapping o — #+/20(2) defines an
isomorphism from ¢, onto 2 *!/20,. We may also consider

¢ = projlim 0,.

q—o0
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Here € is the space of multipliers of 7, and J¢, topologized in such a way that the
generalized Hankel transformation is an isomorphism between &, , and z#t1/20 |6,
Proposition 14].

Via the generalized Hankel transformation, for ¢ € N the properties of £, enumer-
ated below can be immediately derived from the corresponding ones of the spaces
0}; studied in Section 4. Proofs will be omitted.

Proposition 5.1. For each q € N, 0, is the space of all continuous multipliers
from ¢, into S8 and from J,”9 into Jt,,.

Proposition 5.2. Given q € N, let .#2(5,, ) denote the space all those
F € € such that x=*~'/2p(z)F(z) € 7 for all ¢ € A, and the mapping
¢ —> a7#712p(z)F(z) is continuous from #, into K. Then, .M D(H#,, #) =
w120,

The spaces (1 + 22)¥J€9 and (1 + 2z?)"*#,79(k,q € N) were defined prior to
Lemma 4.16.

Proposition 5.3. Let g € N.
(i) The identity z*+1/26, = i1}»d lim(1+ %)% 2 holds. Moreover, z*+1/20, is the
:—00
strong dual of projlim(1 + z%)~*#,7.
k— o0

(ii) The embedding x#*'/20, — | is continuous, when J¢, is endowed with
either its weak* or its strong topology.

(iii) The space O, is complete, reflexive and bornological, but neither Montel nor
nuclear.

(iv) Let T € .. Then T € a**'/20, if, and only if, there exists k € N, ¢c; € C
(0<j< k), and p € S

n

k
such that T = 5 cjz¥o(x).
Jj=0

(v) A set B C 0, is bounded if, and ouly if, there exists k € N such that z*+/2B C
(14 2?)* 2 and 2**1/2 B is bounded in (1 + 2?)* 1.
(vi) For every ¢ € Jt,, define

(M, T) =/0 T(x)p(x)de (T € Og4a).

Then ./, = {M,: ¢ € J€,} is a (weakly*, strongly) dense subspace of (Og4+1)".
(vii) The bounded convergence topology and the pointwise convergence topology

coincide on 04 as a subspace of £ (€, #1), and they equal the inductive topology

of 0,. In particular, the inductive topology of O, Is generated by any one of the

famnilies of seminorms {|| - ©(2)||,.q } e, , {sup |[-@(2)|l4,q} Bens,, where B, denotes
pEB
the family of all bounded subsets of J¢,,.
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6. JOINT CONTINUITY OF MULTIPLICATION AND OF HANKEL CONVOLUTION
OF DISTRIBUTIONS

Our purpose here is to analyze the joint continuity of the Hankel convolution as
an J¢,-valued mapping. We will establish first the corresponding property for the
ordinary product in J¢,.

An auxiliary result is required.

Lemma 6.1. Given q € N there exist p € N, p > ¢, and a sequence {pm }men C
J€, such that

—pu—1/2 . — . - —r2 —
ilé% [z om(@)|lpq =1 and m%l_l)noo lom(@)e™ ||uq+1 = 0.

Proof. Fix q € N, and define
hm(z) = m#H1/2=1g=(m2)? (meN,xz € lI).
Then, for j € N, 0 < j < ¢, we have

sup [z7H# /2 (27 DY Dy ()] < 29mI 79 sup ()it /2e=(ma)?|
z€l z€el

<29 su1:1)|wj+"+1/2e_x2| (m e N).
TE

Note that sup [z7+#+1/2e=2"| < 00 (0 < j < q), because fj(z) = aitrtl/2e=+
z€l
(z € I) is continuous and the limits lim fj(z), lim f;(2) exist and are finite
z—0+ r—+o00

(0 € j < q). By [6, Proposition 4], there exists p € N, p > ¢, such that h,, € 0,
(m € N), with S = sup ||hm]lp,q < 00.
meN

Now, set

om(T) = STl /2 agut1/2e=(ma)* (1) e N, z € I).
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Clearly ¢ € ;, (m € N), and sup [+ 2o (@)llp.g = 5= 50 [hmllpg = 1.
meN meN

Moreover,

oo
_ 2 2
lom@e R 0r > [ 1Tpgss(om(@e)P da
0
— S—2m2u+1—2q /00 qu+#+3/2 (I—ID)q+le—(m2+1)12|2 dz
0
— S—24q+17n2u+1—2q(7n2 + 1)2(q+1) /“’0 |$q+ﬂ+3/2e—(m2+1)22|2 dz
0
o0
— 5-24q+1(1 +m—‘2)‘2(q+1)m/ |$q+#+3/2€—(1+m_2)z2|2 dz
0

o0
> STt (1 4+ m’2)2(q+1)m/ G20+ 2m43—12 4
0

=87247132(1 g m 22T (u+ g+ 2) (meN).
Thus, lim_[lpm(2)e™ [lug+1 = oo. O

From now on 3 and o will refer to the strong and the weak* topologies of J¢),,
respectively.

In [6, Proposition 16] we established that the mapping (6,7) — 6T is O-
hypocontinuous from & x (J¢/, 8) into (¢, 3). However, the following holds.

Proposition 6.2. The product (8,T) — 6T is not jointly continuous from € X
(£, B) into (,,0). Hence, it is not jointly continuous from 0 x (J¢,,p) into
(J£!,3), either.

’[L b

Proof. The polar set P of the singleton {z#*1/2¢=%"} C £, is a o-
neighborhood of zero in . If the multiplication were jointly continuous from
O'x (), B) into (U, ), then we could find zero-neighborhoods U, V' in &, (5, ),
respectively, with UV C P. For some ¢ € N there exists a zero-neighborhood G in
0, such that GN O C U. Let p € N correspond to ¢ as in Lemma 6.1. Choose a
ball B, ,(¢) centered at zero, with radius ¢, in &), 4, satisfying B, 4(¢) C G, and a
sequence {@m }men C I, such that

sup [le ™" 20 (@)pg <€ and  lim om(@)e™ lugrt = 0.
meN m—oo

For each m € N and g € V we have 2~ #~1/2¢, (2)g(x) € UV C P, so that
I(:l;_“‘l/chm(z)g(at),1:“+1/2e_”2>| = I(g(ar),gom(x)e_xzﬂ <1

This means that all functions ¢, (z)e™=" (m € N) lie in the polar set Q of V. Since
Q is bounded in J&,, so is the sequence {y,,(x)e™" },,en, and we conclude that
sup [|@m (x)e™* ||,1,q+1 < 00 [5, Proposition 2.15]. This contradiction completes the
proof. O
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In [6, Proposition 19] we proved that the Hankel convolution is 0, y-hypo-
continuous from &, , x (J€,/3) into (J/,B). It is not jointly continuous from
0, % (U], B) into (€], B), however.

Proposition 6.3. The Hankel convolution is not jointly continuous from ﬁ,’;,u X
(7], B) into (S, 0), neither from 0, , x (3, ) into (&, 3).

Proof. This follows immediately from Proposition 6.2 and [10, Proposition 5.2].
O
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