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1. INTRODUCTION

In what follows the graphs considered are finite, without loops or multiple edges.
For a given graph H, a graph G is said to be H-decomposable if there is a collection
7 of subgraphs of G, each of which is isomorphic to H, and whose edge-sets form a
partition of the edge-set E(G) of G. Let D(H) denote the family of graphs which are
H-decomposable. For a given graph H, a graph G is said to have H-factor if there
is a collection 7 of vertex-disjoint subgraphs of G, each of which contains a spanning
graph isomorphic to H and whose vertex sets form a partition of the vertex-set V (G)
of G. Let F(H) be the family of all the graphs having an H-factor.

The problems of characterizing D(H) or F(H) are, by now, classical. In fact,
Volume 1 of Journal of Graph Theory 9 (1985) is entierely devoted to factors and
decompositions. Hence we refer the reader to this source [JGT] for a comprehensive
survey of these problems. We shall mention here only a few results concerning the
algorithmic complexity of the membership in D(H) or F(H).

Theorem A. (Hell and Kirkpatrick [JGT, p. 34].) Let H be a graph having
at least one component with more than two vertices. Then the problem “Does
G € F(H)” is N P-complete.

The related decomposition problem has been solved only recently (June 1991) by
M. Tarsi and D. Dor from Tel-Aviv University.

Theorem B. (Tarsi-Dor [TAD].) Let H be a graph having at least one component
with more than two edges. Then the problem “Does G € D(H)” is N P-complete.

! Professor Sergio Ruiz died tragically in an accident on 1.12. 1991.
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As to the case where all the components of H have at most two vertices, respec-
tively, two edges the following is known.

For such a graph H the problem “Does G € F(H)
seen using the O(n??) algorithm to find the maximum matching in a graph, (see
e.g. [EVK)).

The problem “Does G € D(H)” is yet an intriguing open problem. Due to these
facts about the N P-completencss of both D(H) and F(H) Sergio Ruiz [RU] intro-
duced in 1985 the concept of random-decomposition which we extend here to cover

is in the class P, as readily

also random-factors.

A graph G € D(H) is said to be randomly H-decomposable if any H-decompos-
ition of a subgraph of G can be extended to an H-decomposition of G. Such graphs
form the family RD(H). A graph G € F(H) is said to have random H-factor
if any H-factor of a subgraph of G can be extended to an H-factor of G. Such
graphs form the family RF(H). Much efforts have been done in the last years
to characterize RD(H) for various graphs, and as a result RD(H) is known for
H € {Ny,,,nIKy,K,,, P, 3 <k <6and P;UN,}. The details can be found in
the works of Barrientos, Bernasconi, Jeltech, Ruiz, Smith, IXabell, Beineke, Goddard
and Hamburger mentioned in the References. The only known result concerning
RF(H) is a 1979 result of Summer [SU] who showed that the only connected graphs
in RF(I{;) are IVy,, and I\, ,,. His proof was rather technical and we shall give here a
much simpler proof based oy our forbidden subgraph technique. A closer inspection
of the known cases of RD(H) reveals that RD(H) consists of graphs having simple
structure, such as ni\y, I\’ ,. N,, IV, , and some finite exceptions. However, the
following construction shows that in general this is not the case.

Construction. Let H be a 2-connected graph on n vertices. Let G be a graph
with girth ¢(G) > n. Extend cvery edge to a copy of H in such a way that apart
from vertices of G the copies of H are pairwise disjoint. Denote the resulting graph
G[H].

Clearly G[H] € RD(H) and the structure of G[H| might he far from trivial. This
fact convinced us that the first step to be taken is to consider the algorithmic com-
plexity of deciding a membership in RD(H) or RF(H). Fortunately this happened
to be polynomial as we shall sce later, and the proof of this statement constitutes

the main part of this paper.

2. THE CHARACTERIZATION TIHIEOREM

We begin with some observations before presenting the main result. For any graph
G € D(H)\ RD(H) there is at elast one minimal subgraph which also belongs to
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H)\ RD(H). We denote by M D(H) the family of these minimal graphs for all
such graphs G.

In Fig. 1, we exhibit examples of graphs in D(H), RD(H) and M D(H) where H
is the 4-cycle. We note also that for any graph G € F(H) \ RF(H) there is at least
one minimal subgraph which also belongs to F(H) \ RF(H), this time minimality
with respect to the number of vertices. We denote by M F(H) the family of these
minimal graphs for all such graphs G.

H
G, € D )
G, ¢ RD(H) G»c RD(H) Gy e MD(H)
G1 ¢ MD(H)

Fig. 1

In Fig. 2, we exhibit the family M F(I;).

MF(I) = UMM

Fig. 2
Let’s now present the main theorem.

Theorem 2.1. Let H be a graph of size ¢ > 1. Then there is a finite family
Fn of graphs, each of which has size at most g%, such that a graph G € D(H) is
randomly H-decomposable if and only if G does not contain a member of F; as
a subgraph. Moreover, the problem “Does G € RD(H)” is solvable in time O((’(’j)
where e = |E(G)|.

Similarly to our proof of Theorem 2.1 one can prove the following result which we
state as Theorem 2.2, without proof.

Theorem 2.2. Let H be a graph on m > 1 vertices. Then there is a finite family
Fn of graphs, cach of which has order at most n?, such that a graph G € F(H) has
random H-factor if and only if G does not contain a member of gy as an induced
subgraph. Moreover the problem “Does G € RE(H)” is solvable in time O(n’”l)
where n = |V(G)|.

We shall give a detailed proof of Theorem 2.1.
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We split the proof of theorem 2.1 into several lemmas.

Lemma 2.3. Let G € RD(H). Then any H-decomposable subgraph of G is
randomly H-decomposable.

Proof. Let G' be a subgraph of G and G' € D(H). Take an arbitrary H-
decomposition #' of a subgraph of G'. Since G € RD(H) and G' € D(H),G — G’
has an H-decomposition #". Now using again the fact that G € RD(H), &' u.7"
can be extended to an H-decomposition #' U F"” U.7" of G. Thus F'UZF" is an
H-decomposition of G' which extends #'. This proves that G' € RD(H). O

An immediate consequence is this.

Corollary 2.4. A graph G in D(H) is not randomly H-decomposable iff G con-
tains a subgraph in D(H) — RD(H).

Lemma 2.5. A graph G in D(H) is randomly H-decomposable if and only if
G — H' € RD(H) for any subgraph H' = H of G.

Proof. The necessity follows from Lemma 2.3 to show the sufficiency take any
subgraph G' of G which has an H-decomposition #'. If G' = H then #' extends to
an H-decomposition of G by hypothesis. If G’ contains more than one copy of H, say,
F' ={H,,. .,Hy}, where k > 1, then &' — {H,} extends to an H-decomposition
{F'—{H1})UF" of G — H, € RD(H). Thus #" U.¥#" is an H-decomposition of
G. Therefore G € RD(H). |

Lemma 2.6. A graph G € D(H) is randomly H-decomposable if and only if G
does not contain a subgraph isomorphic to a member of MD(H).

This lemma can be proved with a straightforward argument using Lemma 2.3 and
the definition of M D(H).

Lemma 2.7. Every graph G in M D(H) has a subgraph Hy isomorphic to H such
that G — Ho ¢ D(H).

Proof. Suppose to the contrary that for any subgraph Hy = H of G,G — H, €
D(H). The minimality of G implies that G — Hy € RD(H). Thus, by Lemma 2.5
G € RD(H). A contradiction. a

We say that for a graph G € D(H) a subgraph H' = H is a bad copy of H in
G if {H'} cannot be extended to an H-decomposition of G. Any other copy of H
belonging to an H-decomposition is called a good copy of H in G.
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Lemma 2.8. Let G € MD(H) and let Hy be a bad copy of H in G. Then any
good copy of H has an edge in common with Hp.

Proof. Assume that there is a bad copy Hg of H, a good copy H, of H
and that Hy and H; share no edge. Since H, belongs to an H-decomposition of
G,G - H, € D(H). Now, the minimality of G implies that G — H; € RD(H). Thus,
G — Hy — Hy € D(H). Let # be an H-decomposition of G — H; — Hy. Note that
{Ho} U {H,}UZ is an H-decomposition of G, contradicting that Hp is a bad copy
of H. a

Lemma 2.9. Let H be a graph with q edges and let G € M D(H) then G has at
most ¢? edges.

Proof. Let Hy be a bad copy of H in G and let 2 be an H-decomposition of
G. All members of 2 are good copies of H and by the above lemma, they share
edges with Hyp. But as the members of & are edge-disjoint, & has at most ¢ copies
of H. Therefore G has at most ¢? edges. a

Proof of Theorem 2.1. Take .#y as the family M D(H). This family is
finite since by the former lemma, each member of M D(H) has size ¢* at most. Now
the theorem follows from Lemma 2.6. It remains to present a polynomial algorithm
to decide membership in RD(H ).

Algorithm for RD(H)

Input: a fixed graph H on ¢ edges, and a graph G on m edges to be tested for
membership in RD(H).

Step 1. Construct the family M D(H), of minimal forbidden subgraphs. As M D(H)
is finite this would take O(1) time.

Step 2. Construct the family (G : H) of all the copies of H in G. This would take
O(m7) time.

Step 3. Verify for all subgraphs of G, of size at most ¢* their membership in M D(H).
This would take at most O( il (J"ql)) = O( il'lnj”) = 0(m"’) time.
Step 4. If any of the subgrapjhs in step 3 is i]n MD(H) then clearly G ¢ RD(H).
Step 5. Use I(G : H) of step 2, to delete one by one copies of H from G. This
would take at most O(m?) time, (in fact much faster). If we get stuck in the process
before accomplishing a full decomposition of G, then by definition G ¢ RD(H).
Otherwise G € D(H) but contains no members of M D(H) and hence by the first
part of theorem 2.1 G € RD(H). Hence the overall complexity of this algorithm is
at most ()(m”z). O

Several remarks are in order now.



1. The content of theorems 2.1-2.2 can be generalized to cover the following situ-
ations.

a: RD(H) and RF(H), when H is a hypergraph of finite rank.

b: RD(Q) and RF(Q), where @ is a finite family of finite graphs with the obvious
modification of the concept of decomposition and Q-factor.

c: RD([;") and RF(H), where H is a directed graph and we deal with directed-
graph decomposition.

Surely there are many more cases in which our method works with some minor

changes.

2. One may hope that M D(H) might not contain a graph of size ¢2, which would
imply an improvement in the running time of the algorithm. This is however
not the case when H is connected. Just take a copy Hg ~ H and on each of
its edges construct a copy H; ~ H, 1 < i < ¢. to form a graph G. Clearly
G € MD(H) and ¢(G) = ¢*. In fact it is also not hard to show that [A/D(H)|
grows rather fast.

3. In 1979 Sumner [SU] characterized RF(I\’;). His proof is technical and therc is
no use of forbidden family of graphs. We shall present a proof using M F(RL,)
which is rather short and clegant.

Theorem [SU]. The only connected graphs in REF(I\y) and Ky, and I, ,,.

Proof. Observe first that M F(N;) = { - < }

Suppose first \(G) = k > 3. Let us consider a coloring in which |V1| < |V2] € ... <
[Vi|, such that |Vi| is as large as possible, then |Vj._ | is as large as possible, etc. cte.

Consider u; € Vy, u; must be adjacent to vertices u; € Vi, 2 < i < k for otherwise
we can move u; to other class V) which is already as large as possible, which is a
contradiction to our particular choice. If |Vi| = 1. we ave done as \(G) = k implics
G = K. Hence assume [Vi| > 2. Consider u» € V5. it must be adjacent to some
vertex v € Vj, for the same rcason as before. If ¢ # wy then it follows that the
graph induced by {wuy,uz. 0, ux} is forbidden. Hence wuy is connected only to ;i in
Vi, 3 < i < k. Hence for 1 < j < & we showed that u; is connected only to u;.
1<i<k,i#j. Thus {up,us....,ux} must form a component which is a clique in
G, but as G is connected G = Iy, and as G € RF(I\,) it follows that G = I\y,,.

If \(G) = 2 consider a bipartition of G with classes A4 and B. Suppose v € .
v € B are not adjacent. But as G is connected there is a shortest path from u to
v which is an induced path of length at least 3, and ¢ must contain an induced Iy
which is forbidden. Hence G is complete bipartite and it follows that G = L, .

proving the theorem. O
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