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Czechoslovak Mathemat ica l Journal , 46 (121) 1996, P r a h a 

SEVENTY YEARS OF PROFESSOR VLASTIMIL PTAK 

(BIOGRAPHY AND INTERVIEW) 

On November 8, 1996 an outstanding Czech mathematician working in areas of op­
erator theory and linear algebra, Professor Vlastimil Ptak, celebrated his seventieth 
birthday 

Vlastimil Ptak was born on November 8, 1925 in Prague. He studied mathematics 
and physics at Charles University in Prague from the year 1945. Already during his 
studies he worked as a teaching assistant at the Czech Technical University. After 
obtaining his RNDr. (rerum naturalium doctor) degree he became a research student 
of Professor M. Katetov. In 1952 he joined the Central Mathematics Institute, later 
the Mathematics Institute of the Czechoslovak Academy of Sciences where he stayed 
until his retirement. V. Ptak received his Candidate of Science degree (CSc, the 
equivalent of PhD.) in 1955 (thesis [6], [7]). In 1963 he defended his thesis for the 
degree of DrSc. (doctor of sciences). In 1965 he was appointed a full professor of 
mathematics at Charles University. 

V. Ptak has been the head of the Functional Analysis Department at the Institute 
since 1960. 

The seminar in functional analysis, which he has led for many years, has educated 
a number of research workers. The annual spring workshops in functional analysis, 
which he founded and whose organization he has led for twenty two years, represented 
a source of inspiration for numerous guests. For many years he has delivered a special 
course in functional analysis at Charles University. He has also supervised many 
postgraduate students. 

V. Ptak is a member of the editorial boards for the Czechoslovak Mathematical 
Journal and for Linear Algebra and its Applications. 

He has held important offices in the organization of Czechoslovak science, for 
example on committees for scientific degrees and on the board for national projects 
of basic research. 

For his outstanding results in functional analysis, V. Ptak was granted the Cze­
choslovak Federal Prize in 1966. 

The author takes the opportunity of wishing Professor Vlastimil Ptak good health 
and favourable conditions for his further creative work and joins a short interview 
about Ptak's scientific results. 
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Interviewer: Could you tell us when you decided to carry out research in functional 

analysis, and what your decision was based on? 

Ptdk: My goal was to dig down to the fundamental principles which underlie 

mathematical analysis, to identify the common core of the problems of analysis. I 

came to the conclusion tha t the key issues to be understood were the continuity 

of inverse operations and the interchangeability of limiting processes. Functional 

analysis appeared to be the framework which might allow that understanding. 

Interviewer: In spite of your infinite-dimensional interests you never ceased to 

work in a lgebra . 

Ptdk: Questions which combine the methods of analysis and algebra have always 

a t t rac ted me. It is fascinating when a question about infinitary processes is resolved 

by an argument of finite algebraic character or vice versa. Striking examples are 

provided by questions about the spectral radius. In this connection I have managed 

to throw some light on two significant problems. One concerns the notion of critical 

exponent, which relates the infinitary quantity lim \/[/l]|On | to its finite sections. The 

other was the development of an algebraic analogue of the theory of C* algebras, in 

which the role of the norm is replaced by the purely algebraic function 

p{x)=r{x*x)± 

r being the spectral radius. 

Interviewer: We'll say more about that later. Could you tell us something about 

your proof of the Jordan n o r m a l form theorem? 

Ptdk: Even as a student I noticed tha t methods based on quality, besides being 

effective in a geometric (or co-ordinate-free) approach to infinite-dimensional ques­

tions, also furnished a natural (and in my opinion, the simplest) way of establishing 

the Jordan form of a matrix. 

Interviewer: Work in l inear algebra makes up a substantial part of your publi­

cations. 

Ptdk: Although my main efforts were directed towards the theory of operators 

in infinite-dimensional spaces, I was always conscious of its close connections with 

matr ix theory. A good example is the theory of the critical exponent in Hilbert 

space, where a finite problem leads in a natural way to infinite-dimensional mat ters . 

The start ing point was the following result [38]1. If A is a linear operator on the 

7i-dimensional Hilbert space such that | A | ^ 1 and r(A) < 1 then | A n | < 1. My 

proof was based on the pigeonhole principle. Paper [58] offers a strengthening of 

We refer here to the list of Ptak's publications which occurred in [R4]. At the end of this 
paper we present the continuation of this list for approximately the last ten years. 
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this qualitative theorem to a quantitative result; as a technical tool to this end I 

introduced the infinite companion matrix. 

The infinite companion matrix C^ (with n rows) [58], [97], [149], [152] is a matr ix 

which has the identity matr ix in its first n columns c 0 , . . ., cn-\ and continues in such 

a manner tha t each further column is a fixed linear combination of the preceding n 

columns: 
7 1 - 1 

Cn+k = ^ 0,iCi+k, k = 0 , 1 , . . . 

2 = 0 

It follows that the n consecutive columns c/c , . . . , c/,+ n_i form the power Ch of the 

companion matrix C of the polynomial <p(x) = xn — ^aix1. If <D(0) ^ 0, one can 

also adjoin columns with negative indices and extend the same property for negative 

powers. Explicit (combinatorial) formulae for all entries of C^ as polynomials in the 

coefficients of C are also available. 

The infinite companion matrix represents a concrete explicit realization of a com­

pression of the shift operator and establishes a connection with the dilation theory 

of D. Sarason and Sz. Nagy. Dilations have to be taken in a more general sense 

since C°° represents a projection operator which is not necessarily orthogonal as in 

the theory of Sz. Nagy. Paper [58], where the infinite companion was introduced, 

represents an independent and different approach to the dilation theory, based on 

the fact that the cone of positive matrices is generated by tensors of the form aa*. 

These considerations lead, in a na tural manner, to the investigation of lifting inter­

twining relations. In a joint paper with P. Vrbova [135], we have defined generalized 

Hankel operators by an intertwining relation of the form XT? = T2X, 7\ and T2 

being two given contractions. It turned out that , in order to obtain a Nehari type 

theorem (in other words, for a lifting to exist), it is necessary to impose an additional 

condition, R-boundedness. 

Besides the joint work with M. Fiedler, devoted to the analogous finitedimensional 

relation C1 H = HC, which characterizes Hankel matrices, and to its generalization 

for polynomials with zeros at infinity, some of my papers use the idea of lifting 

intertwining relations to study Hankel, Bezout and Loewner matrices [131], in par­

ticular operators defined by Lyapunov type relations X — SXC = W which may be 

used to characterize Bezoutians [123]. This yields explicit factorization formulae for 

polynomials in C, for the Schur-Colm matrix etc. 

Inter-viewer: You have written a series of joint papers on linear algebra with M. 

Fiedler. How did this long collaboration begin? How did your differing scientific 

orientations influence your work together, and how did you arrive at questions of 

common interest? 
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Ptdk: The intersection of our interests is quite wide, so tliere was ample scope 

for collaboration, and in our particular circumstances of the time it was not only 

desirable but practically forced. When the Mathematical Insti tute took over the 

building in Zitna Street Fiedler and I were assigned a shared office which was un-

suited to independent individual study. There was only one window, and only one 

desk had natural light. The pre vailing system of "research management" required 

physical presence throughout the working day. In those circumstances the best solu­

tion was for us to work together on topics of common interest, foremost among them 

the question of the convergence of iterative processes. Subsequently we both wrote 

independent papers on this topic. 

At the time the question of the rate of convergence of iterative processes was a 

fascinating and topical one. Independently of similar research of R .S . Varga [R2] 

we discussed in [16] the dependence of the rate of convergence of the Gauss-Seidel 

iterative method (for a symmetric system) on the choice of splitting . In the following 

years, we invented (independently of Feingold and Varga) the notion of generalized 

norms [39]. It turned out that for studying generalized norms, the theory of M-

matrices, introduced by A. Ostrowski and studied by Ky Fan, Koteljanskij, Varga 

and others, was an important tool. This led to the paper [37], which was intended 

as a collection of useful results. To our surprise, this paper became one of the 

most cited papers in linear algebra. Even our notations Z, for the class of matrices 

with nonpositive off-diagonal entries, and P , for the class of matrices with positive 

principal minors, have been universally accepted. We returned to this topic later in 

[51], [54] and [65]. In [53], analogies between the class of positive definite matrices 

and M-matrices were discussed. 

Another class closely connected with the class of .AI-matrices is tha t of diagonally 

dominant matrices. In [54], we characterized this class and a new class of weakly 

diagonally dominant matrices. 

In [44] we used the following idea for the numerical inversion of a large matr ix of 

the form I — A. Let A be partitioned in an appropriate way so tha t entries within 

each block do not differ too much. Let i be a matrix with constant blocks which 

approximates A. Then the inversion of I —A is performed by inverting a small matr ix 

(with as many rows as is the number of block rows in A). Inversion of I — A is then 

obtained by an appropriate updating of (I — A)~l. 

In [41] and [48], similar ideas lead to estimates of eigenvalues by the approximation 

of given irreducible matrices by reducible ones. 

In recent years our collaboration has concentrated especially on the topics of Han-

kel, Bezout and Loewner matrices. As is well-known, these classes have connections 

with pairs of polynomials and their relation to interpolation problems. An impor tant 

property of Hankel, and Bezout matrices, is their intertwining with the associated 
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companion matrix and its transpose. We studied the corresponding relations in [133], 
[134]. In [137], we investigated the relation between Bezout and Loewner matrices, 
that is matrices of the form ((c7 — dj)/(yi — Zj)). 

I pursued the study of iterative processes and the spectral radius further in my 
individual work later. One theme here led to the introduction of the critical expo­
nent. Another theme was a general study of iteration and its connection with the 
Closed Graph Theorem, which ultimately bore fruit in the discovery of the method 
of nondiscrete induction. This technique applies also to nonlinear problems. 

The Closed Graph Theorem essentially states that, subject to some completeness 
assumptions, every reasonably defined mapping is continuous. The attempt to give 
a quantitative strengthening of this theorem led to the "Subtraction Theorem". In 
the course of my investigations I came to realise that the role of the linearity of the 
mappings in question was inessential. The realisation led me to the notation of a 
small function and thereby to the method of nondiscrete induction, which permitted 
a sharpening of error estimates for a range of iterative processes. 

Interviewer: Topological vector spaces were one of your research interests. 
Among other things, your Ph.D. thesis was on this topic. How did you come to this 
subject? 

Ptdk: At the time I wrote those papers there was a lively interest in non-metrizable 
linear spaces, stimulated by the needs of distribution theory and the fact that in op­
erator theory one often has to work with non-metrizable topologies. I was fascinated 
by the beautiful and profound result of Banacli to the effect that in complete normed 
linear spaces the solution of a linear equation is automatically a continuous function 
of the right hand side. The abstract core of this result is the Open Mapping The­
orem. My research was aimed at an understanding of this theorem and of the role 
played by completeness. I hoped to discover in what form and under what assump­
tions an analogous statement would hold for non-metrizable spaces. The first step 
is to re-formulate the Open Mapping Theorem. 

In its classical formulation, "a continuous linear mapping of a Banach space E onto 
a Banach space F is open", the completeness of E and of F is used in a different 
manner; in fact, the completeness of F may be replaced by a weaker condition, the 
Baire property. The starting point was a formulation eliminating the role of the 
image space. 

To this end, the classical Open Mapping Theorem may be formulated as follows: 
Consider a Banach space E and a normed linear space F with closed unit balls U 
and V respectively. Let T be a continuous linear mapping of E into F. If the closure 
of TU contains a neighbourhood of zero, let us say /3V, then the open mapping 
theorem says that TU itself contains a neighbourhood of zero, in fact TU contains 
fl'V for any (3' < (3. For brevity, it will be convenient to have a name for mappings 
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with this property : a mapping f will be called almost open, if, for each x and each 

neighbourhood U of a; the closure of f(U) is a neighbourhood of f(x). The classical 

Open Mapping Theorem may thus be formulated as follows. Every almost open 

bounded linear mapping of a Da/nach space into a normal space is open. 

A series of my papers was devoted to the problem of characterizing those locally 

convex topological linear spaces E such that any continuous and almost open linear 

mapping of E into some locally convex topological vector space is already open. 

The results are [7]; for normed spaces E this property is equivalent to completeness. 

In a general case, this property implies completeness but is not equivalent to it. 

Spaces with this property (called H-complete or P tak spaces) may be characterized 

by properties of their duals. The space E is H-complete if and only if every subspace 

M of the dual space Ed such that MC\U° is io*-closed for any neighbourhood of zero 

U is already IU*-closed. An analogous characterization of completeness (obtained 

independen t ly of A. Grothendieck) differs from this one in that this implication 

is postulated for hyperplanes M only By considering spaces C(T) of continuous 

functions in the compact open topology and relating topological properties of T and 

C(T) it was possible to construct T for which C(T) is complete but not H-complete: 

as well as a complete C(T) with an incomplete quotient. The theory and its further 

developments are described in detail in a section of the monograph on linear spaces 

by G. Kothe. 

Interviewer: Wha t is the connection between these results and your work on the 

method of non-d i scre te i n d u c t i o n in nonl inear analys is? 

Ptak: At a first glance I suppose it is unclear how my work in nonlinear analysis 

follows logically from a study of the Closed Graph Theorem. 

The investigation of the Closed Graph Theorem may be also pursued in another 

direction: by staying within the realm of metrizablo spaces but striving for a quan­

ti tative strengthening. The starting point was the so called Subtraction Theorem. 

a quanti tat ive version of the Open Mapping Theorem. In a note [14] published 

in 1956 the following quantitative improvement of the classical theorem was estab­

lished. Given two Banach spaces E and F with closed unit balls U and V and a 

linear mapping T: E —» F , ss that TU -f- aV D fiV for some numbers 0 < a < J 

then 

TU D ((j-a)V 

(This "optical illusion" suggests that the neighbourhoods are being subtracted, and 

it explains the name.) The classical assumption (TU)~ D :1V is thus weakened: 

elements of [3V do not need to be approximated by elements of TU arbitrarily well. 

It suffices to have a much loss precise approximation, the only essential condition 

being tha t a < p. 
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To obtain a nonlinear analogue it was necessary to find an appropriate generaliza­

tion of the condition a < (3. In the proof of tlie Subtraction Theorem it was already 

obvious that the assumption a < fi was used in the form § < I with the consequence 

that the geometric series with this quotient converge. 

It is not at all obvious how to obtain an analogue of the condition ^ < 1 in the 

absence of l inearity To obtain a suitable generalization it is necessary to interpret 

the quotient of the two numbers a, /3 as a quotient in the sense of composition of 

functions of the two linear functions on the positive axis a(t) = at and b(t) = fit. 

The smallness of g lias to be replaced by the requirement that the quotient function 

is a small function in the sense* that the sum of its iterates converges. As m a t t e r 

of speaking, the classical theory has shifted one level up, with the multiplication of 

numbers being replaced by a composition of functions [115]. 

A positive function w defined on the positive axis is said to be a small function 

(or a rate of convergence) if the series 

t + w(t) + w(w(t)) + ... = s(t) 

is convergent (in particular, if iv is the linear function w(t) = at then IU is small if 

and only if a < 1). The functions w and s are connected by the functional equation 

s(t) — t = s(iu(t)), the nonlinear analogue of the relation for the geometric series 

1 a 
- 1 1 — a 1 — a 

The nonlinear version of the Subtraction Theorem may now be formulated [80] as 

follows: 

Let (E, d) be a complete metric space and w a rate of convergence. For each t > 0 

let Z(t) be a subset of E and denote by Z(0) the limit of the family Z(-) 

Z(0) = п ( U z м 
s > 0 v r 

Suppose that 

for each t > 0. Then 

Z(t)c\J(Z(ш(t))j) 

Z(t)cJ{Z(0),s(t)) 

for each t > 0. 

These ideas form the basis of the method of a nondiscrcte induction [80], [142] 

which reduces the investigation of the convergence of iterative processes to the prob­

lem of finding a suitable rate of convergence w so that 

l&n+l - Xn\ < U)(\X71 - Xn-i\) 
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for all 7i. As a consequence this yields estimates for the solution £* 

k* - Xn\ ^ S(\xn ~ Xn-l l ) . 

The function w is obtained as the solution of a system of certain functional inequa­

tions; if these inequations describe the essential features of the process, the solution 

w and the corresponding s yield sharp estimates and optimal convergence criteria. 

Thus, for instance, the Newton process [79], [81] is described by 

w(t) = 
2(í2 + a)!/2 

The advantage of replacing the order of convergence (a mere number) by a function 

consists in a closer fit of the estimates. They can be sharp throughout the whole 

process, not only asymptotically 

Interviewer: Some of your theorems depend on combinatorial principles. Is c o m ­

binator ic s one of your favourite disciplines? 

Ptdk: I have never studied combinatorics systematically. There have been some 

rewarding instances, however, when I have managed to identify and clarify a com­

binatorial basis for the problems from other branches of mathematics . This has 

happened for two circles of problems. One is the question of interchanging repeated 

limits; its combinatorial core is far from obvious. 

Interviewer: We'll come back to that . For an application to matrices you had to 

relate the combinator ia l s t ruc tures of a matr ix a n d i t s p o w e r s . 

Ptdk: Yes, and an unusual approach to the notion of an oriented graph was helpful 

here. We define an oriented graph to be an additive mapping (p: exp(jV) —> exp(A r), 

tha t is, one which satisfies, for any A, B C N, 

ip(AuB) = <p(A)U(p(B) 

We say tha t (D is irreducible if there is no nontrivial A C N such tha t (f(A) C A. For 

such graphs one of the following alternative holds: 

1) <pq is a complete graph for sufficiently large q, or 

2) (D has a cyclic decomposition. 

Sedlacek and I subsequently discovered tha t the length of this cycle is equal to the 

least common multiple of the lengths of the cycles in <p. A slightly weaker version of 

this result appeared almost simultaneously in [R2]. 

We associate with a given matrix M a directed graph in the above sense by defining 

<p(A) = {j:3ieA,mij?0}. 
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We call this the graph of M. For a non-negative matrix M the graph of Mk is tlie 

kth i terate of the graph of M. The heart of a series of results about non-negative 

matrices is precisely the stated combinatorial result about graphs. 

Interviciuev. How are the nuclear was te d i sposa l prob lem, Fubini 's t h e o r e m 

and weak c o m p a c t n e s s related? 

Pl.dk: It is a little obscure how results on the interchange of limits, like Lebesgue's 

dominated convergence theorem and Fubini's theorem, connect with results on the 

combinatorial structure of families of finite sets . 

Tlie main result makes it possible to reduce theorems on the exchange of two limit 

operations to a combinatorial lemma on families of finite sets. This approach is based 

on a combinatorial existence theorem for convex means. It also makes it possible to 

eliminate tlie integration theory from results on weak compactness. 

I formulated the combinatorial principle in question in 1959 [28]. One way of 

stating it is in the form of tlie "nuclear waste disposal problem". 

We are given a set S and a certain amount of radioactive waste to be disposed 

of. The material is to be divided into a finite number of parts to be located at a 

finite number of suitably chosen points in S. Furthermore, we are given a family 

IV of subsets-of S\ we may think of these subsets as being protected areas to be 

treated with special consideration; care should be taken that the total amount of 

waste contained in each of tlie protected areas is as low as possible. 

In general, tlie sets of the family IV may overlap in general, since there will be 

many reasons for a subset of 5 to be included in IV; accordingly, a given point s G S 

will belong, in general, to more than one set w G IV. If we assume tha t the total 

mass to be distributed is one, a weight distribution may be viewed as a convex mean. 

Given a weiglit distribution A, denote, for each w G IV, by X(w) the total amount of 

waste contained in the set iv. The problem is to find weight distributions for which 

the maximum loacl X(w) as IU ranges over W is as small as possible. Obviously the 

infimum 

inf max X(w) 
A w 

contains important information about the combinatorial s tructure of the family IV. 

Families for which this infimum is zero are particularly important: their s tructure 

may be used to prove an extension theorem for separately continuous functions with 

many applications in analysis. This approach makes it possible to reduce theorems 

about the exchange of two limit operations to simple assertions about families of 

finite sets [28]. 

To state the theorem [42],[47], we need a notation: If T is a completely regular 

topological space, denote by C(T) tlie Banach space of all bounded continuous func­

tions on T. Clearly T may be identified with a subset of the dual space C(T)d taken 

345 



in its weak star topology; thus T is embedded in a space with an additional linear 

structure. 

Given two completely regular topological spaces S and T and a bounded separately 

continuous function f on 5 x T we may ask under what condition it may be extended 

to a separately continuous bilinear form in C(S)d x C(T)d. The theorem says that 

such an extension exists if and only if / satisfies the double limit condition of Banach-

Grothendieck. 

Two points should be stressed here: 

(1) the proof is purely combinatorial; 

(2) the countable character of the condition, the conclusion being a s tatement about 

topologies not metrizable in general. 

The extension theorem contains, as an immediate consequence, e.g. the theorem 

of Eberlein and the Krein theorem on convex hulls of weakly compact sets. 

Interviewer: Let's come back to problems on the spectral radius. You have spoken 

of H e r m i t i a n algebras. 

Ptdk: I succeeded in clarifying the algebraic essence of some basic facts in the 

theory of C*-algebras. It turns out that these results hold under the purely algebraic 

assumption tha t an algebra be Hermitian, that is, that the spectra of self-adjoint 

elements are real. 

The classical theorem of Gelfand and Najmark (improved by Glimm and Kadison) 

states tha t a Banach algebra with involution satisfying the condition \x*x\ = |.r*| \x\ 

for every x is a C* algebra, in other words, is isometrically isomorphic to a closed 

selfadjoint subalgebra of B('H) for a suitable Hilbert space ri. 

It turns out tha t a surprising number of the basic properties of C* algebras may 

be deduced from a much weaker assumption of a purely algebraic character. 

Consider a Banach algebra with an involution (an additive mapping x —> x* so 

tha t x** = x, (ax)* = a*x*, (xy)* — y*x*). No assumptions on the relation between 

the involution and the topology of the algebra are made, in particular, continuity 

of the involution is not assumed. The purely algebraic, assumption of hermiticity 

makes it possible to show—by purely algebraic methods—that the most important 

properties of C* algebras remain valid even for this wider class of algebras. 

A Banach algebra with an involution is said to bo hermitian if selfadjoint elements 

have real spectra. The theory is based on the investigation of the function x —> 

r(x*x)1/'2', the basic result is the following equivalence [68], [71]. A Banach algebra 

with involution is hermitian if and only if r(x) ^ r(x*.v.)1/'2 for every x. This condition 

represents an algebraic analogue of the C* condition \x*\ \x\ = \x*x\. (Indeed, the 

condition r(x) ^ r(x*x)1/'2 may be rewritten in the form r(x*)r(x) ^ r(x*x) and the 

condition |:r*| |:r| = \x*x\ is equivalent to the inequality \x*\ \x\ ^ \x*x\). In a similar 

manner we find tha t the function p(x) = r(x*x)1/'2 is a natural algebraic analogue 
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of the norm in a C*-algebra and tha t many metric properties of C*-algebras remain 

valid for hermitian algebras if the norm is replaced by p. One of the most important 

ones: a linear form / such tha t / ( / ) — I is a state if and only if it is dominated by 

p. Now p can be shown to be subadditive if and only if the algebra is Hermitian. It 

follows that , in a Hermitian algebra, the Hahn-Banach theorem may be applied to 

obtain sufficiently many states to construct a representation on Hilbert space. 

Interviewer: The spectral radius plays an essential role in the concept of the 

critical exponent. 

Ptcik: The motivation of this theory lies in an a t tempt to mathematically formulate 

some ideas concerning convergence of iterative procedures. Although we do possess 

theoretical criteria of convergence for many iterative processes, in numerical practice 

it is often simpler to ignore the criteria and start the computation; with some luck we 

observe that after a few steps the differences between the consecutive steps become 

smaller and smaller and the process converges. 

If, on the other hand, the sequence of the first n steps of the process shows no sign 

of convergence, we are confronted with the following problem: should we continue, 

in the hope of obtaining an improvement later on or does the behaviour of the first 

n steps justify the conclusion that the process diverges (and should, consequently, 

be abandoned)? To make this decision, it is necessary to have some estimates for 

the number of steps in the process sufficient to distinguish between convergence and 

divergence. To express it somewhat loosely, we are looking for a number q with the 

following property: if the process does not start converging before the G-th step then 

it is divergent. This leads, in a natural manner, to the notion of a critical exponent. 

In the particular case of a process xr+i = Axr + y in linear algebra, a number of 

results have been obtained. The precise definition [38] is as follows: 

The critical exponent of a Banach space E is the smallest integer q for which the 

following implication holds: if T e D(E) and \T\ ^ 1 then r{T) < 1 if and only if 

|F" | < 1. 

This definition appears first in the paper [38] which contains a proof tha t the 

critical exponent of a Hilbert space equals its dimension. An earlier result in a 

joint paper with J. Mafik may now be interpreted as the statement tha t the critical 

exponent of //.-dimensional i ^ space equals n2 — n + 1. 

The definition of the critical exponent admits a quantitative reformulation: given 

a Banach space with critical exponent q and a number 0 < r < 1, compute 

s u p { | T ' | ; | T | < l , r ( T K r } . 

For //-dimensional Hilbert space it is possible to identify the operator T for which 

the maximum is at tained [58]. It is a Toeplitz operator that corresponds to a Mobius 
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function which depends on r. There are deep connections with the theory of com­

plex functions and operator valued Mobius functions. Also, lower estimates for the 

spectral radius in terms of |F | and \Tn\ may be deduced from the theory [104]. 

Interviewed by Zdcnck Vavnn. The author is thankful to Professor N. I Youmj 

for translation of parts of the interview. 
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