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Czechoslovak Mathemat ica l Journal , 46 (121) 1996, P r a h a 

ON C O M P L E T E LATTICE ORDERED GROUPS 

W I T H STRONG UNITS 

JAN JAKUBIK, Kosice 

(Received January 4, 1994) 

A theorem of Cantor-Bernstein type has been proved for Boolean cr-algebras by 

Sikorski [5] and Tarski [2] (cf. also Sikorski [6], pp. 90 and 193). 

Next, a theorem of such type was proved by the author [3] for lattice ordered 

groups which are complete and orthogonally complete. 

For a lattice ordered group G we denote by £{G) the underlying lattice. 

In the present paper we prove the following result. 

(A) Let G\ and G2 be complete divisible lattice ordered groups having strong 
units ui and u2, respectively. Suppose that 

(i) there exists an isomorphism (Di of ?{G\) into £{G2) such that 
(Pi{£{G\)) is a convex sublattice of £{G2); 

(ii) there exists an isomorphism ip2 of £{G2) into £{G\) such that 

^2(^(^2)) is a convex sublattice of l(Gi). 

Then there exists one isomorhpism <D of the lattice ordered group G\ onto G2 such 
that <p(ui) = u2. 

If G\ and G2 are lattice ordered groups satisfying the conditions from (A) then 
they need not be orthogonally complete. Hence the consideration of the present 
paper cannot be subsummed under that of [3]. 

By means of examples we show that neither the assumption of completeness nor 
the assumption of the existence of strong unit can be omitted in (A). 

On the other hand, the question whether (A) remains valid without assuming that 
G\ and G2 are divisible is open. 
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1. P R E L I M I N A R I E S AND AUXILIARY RESULTS 

Let L be a lattice with the least element 0. For 0 / X C L we put 

XL = {y G L: y A x = 0 for each x G X } . 

The system {X1-: 0 / A" C L] will be denoted by t?\(L); it is partially ordered by 

the set theoretical inclusion. 

Now, let e be an element of L such that e A a > 0 whenever 0 < a G L. For 

0 7̂  K C [0, e] let K* be defined analogously as XL above with the distinction tha t 

L is replaced by [0,e]. For each P G 2?\(L) we put 

<p(P) = P n [ 0 , e ] . 

1.1. L e m m a . Let P G «^i(L). Then ip(P) G «^i([0,e]). 

P r o o f . P u t X = P ± . T h e n P = K±. Denote KL = Kn[0,e]. We have 0 7̂  X\. 

If p G </?(P) then p A x\ = 0 for each xi G Ki, whence <p(P) C X{. Assume tha t 

<^(P) / K*. Hence there is x\ G Ki \ <D(P). Thus x\ £ P. This yields tha t there 

exists x e X such that x\ Ax > 0. Pu t x\ Ax Ae = y. Then 0 < y G Ki and, at the 

same time, y ^ x\, which is a contradiction . Therefore <D(P) G «^i([0,e]). D 

1.2. L e m m a . <D is an isomorphism of &\(L) onto <^i([0,e]). 

P r o o f . According to I T , <p is a mapping ol &\(L) into /i^i([0,e]). 

a) Let P, X and Ki be as above. First we shall show that 

(1) A-f = X 1 . 

In fact, the relation A"i C X gives X± D XL. By way of contradiction, suppose 

tha t (1) does not hold. Hence there exists y G X± \ XL. Then there is x G X with 

y A x > 0. Thus y Ax Ae > 0. But y Ae G Kx, .r A a G Ki and so y A x A e = 0. 

which is a contradiction. 

The relation (1) yields that 

(ip(X))^ = XL for each X G ^ i ( L ) . 

Hence 

(2) {<f(X))L± = X for each A G ^i(L). 
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b) Let Z e «^i([0,e]). Denote 

z- = p, p- = X. 

Hence X D Z and so <p(X) D Z. Assume tha t <p(X) / Z. Thus there is x e <p(X)\Z. 

Clearly Z* C P , yielding tha t x/\z* = 0 for each z* e Z*. We obtain x G (Z*)* = Z, 

which is a contradiction. Therefore <p is a bijection. 

c) Let K,Y G ^ i ( F ) . If X C Y, then clearly v?(K) C <D(Y). Conversely, if 

<p(X) = ^{Y), then (2) implies tha t X C Y. Therefore in view of b), (/? is an 

isomorphism of &\(L) onto ^ ([0, e]). D 

For lattice ordered groups we apply the s tandard notation; the group operation 

will be written additively. Let G be a lattice ordered group. For l / I C G put 

Xs = {g e G:\g\A\x\ =0 for each x G X}. 

The set Xs is a polar of G; the system of all polars of G will be denoted by £?(G). 

This system is considered to be partially ordered by the set theoretical inclusion. 

For each Y G &(G) we put px(Y) = Y n G+. 

1.3. L e m m a . <pi is an isomorphism of £P(G) onto <^ i (G + ) . 

The proof is a routine, it will be omitted. 

If G is a lattice ordered group, then to simplify the expression we often say "the 

lattice G" instead of "the lattice £(G)". Also, the meaning of the expression "the 

lattice G+" is clear. 

1.4. L e m m a . Let Gi and G2 be lattice ordered groups. Suppose that <p is an 

isomorphism of the lattice G+ into the lattice G^ such that <p(0) = 0 and <p(G^) is 

a convex sublattice of the lattice G j . Then there exists an isomorphism <pi of the 

lattice Gi into the lattice G2 such that <pi(x) = <p(x) for each x G G+ and <pi (G{) is 

a convex sublattice of the lattice G2. 

P r o o f . Let x G G. Pu t 

(3) <pi(x) =<p(x+) -<p(x~), 

where, as usual, x+ = xVO and x~ = — (xA0). Hence <pi(x) = <p(x) for each x G G + . 

a) Since x+ A x~ = 0, we have 

(4) <p(x+) A<p(x~) = 0. 
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From this we immediately obtain 

(5) (^i(x)r = ^ + ) , (<Pi(x))~ = V(s-) . 

If 2/1,2/2,^1,^2 are elements of G2 such that y\ Ay2 = 0 = ziA~2 andH i -H2 = z\—z2, 

then clearly Hi = z\ and u2 = z2. Hence (3), (4) and (5) yield tha t <p\ is injective. 

b) Let xux2 e G1 ? Hi = (f\(x\), y2 = ipi(x2), 2/ € G2 , 2/1 ^ y < 2/2- Hence 

0 ^ g + ^ ( y 2
+ ) , O ^ u - ^ ( i / f ) . 

Thus there are elements T^, :r2 G G+ such that 

2/+ = vC^i), 2/~ =v?(4)-

Since y+ A y~ = 0, we have .r'j A x2 = 0. Put x3 = x[ - x'2. Then 3;^ = x[ and 

.rj" = x'2. Thus (^1(2:3) = 2/. Therefore <p(G\) is a convex subset of G 2 . 

c) Let Xi and g; (i = 1,2) be as in b) with the distinction tha t we do not suppose 

the validity of the relation gi ^ y2. Pu t 

Z\ = .T+ V:T+, Z2 = X~ VX2. 

Then 2/1,2/2 ' [—^(-2), ^(^ l ) ] - This yields that both //j V y2 and 2/1 A y2 belong to 

the interval [—(p(z2),cp(z\)]. Hence according to b), <P\(G\) i>s a sublattice of G2 . 

d) Again, let Xi and yi (i = 1,2) be as in c). If .rj <J x2, then clearly Hi ^ y2. 

Assume tha t gi ^ y2. Hence 

vt < 2/2"' -Vi < -. 'I7-

Since <p is an isomorphism of G + into G2 , from (5) we infer that 

./•/" ^ x^, -x~ ^ - . r .7 . 

Hence according to a) and c), ^1 is an isomorphism of C(G\) into C(G2). D 

Let 0 < e G G. The element e is said to be a weak unit of G if, whenever 0 < g G G, 

then e A O > 0. Next, e is called a strong unit in G, if for each g G G there exists a 

positive integer 7i such that |O| <J ne. Each strong unit is a weak unit. 

A nonempty set A" of strictly positive elements of G is called orthogonal if x\ A.r2 = 

0 whenever x\ and x2 are distinct elements of A'. The lattice ordered group G is 

said to be orthogonally complete if each its orthogonal subset has a supremum. 
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2. P R O O F OF THEOREM (A) 

2.1. Lemma. Let G be a complete lattice ordered group. There exists a 

complete lattice ordered group G' such that 

(i) G is a convex ^-subgroup of G'; 
(ii) G' is orthogonally complete; 

(iii) if 0 < x G G', then there exists an orthogonal subset {.T;}i<=1 of G such that 

x — \J Xi is valid in G'. 
iei 

P r o o f . Cf. [2], 2.20. • 

2.2. Lemma. Let G and G' be as in 2.1. If G is divisible, then G' is divisible 

as well. 

P r o o f . Assume that G is divisible. Let n be a positive integer. It suffices to 
verify that for each 0 < x G G' there exists y G G' such that ny = x. Let {T2-}rGt be 
as in 2.L For each i G I there exists H; G G with nyi = X{. The system {yi}iei i-s 

orthogonal, hence there is y G G' with y = \J yi. Thus 
iei 

ny = n\J yi = \f ny{ = x. 
iei iei 

• 

2.3. Lemma. Let G be a lattice ordered group which is complete and divisible. 

Then we can define a multiplication of elements of G with reals such that G turns 

out to be a vector lattice. 

P r o o f . Cf., e.g., [1], Theorem 4.9, Corollary 2. • 

2.4. Lemma. Let G, G' be as in 2.1 and let H be an orthogonally complete 
lattice ordered group. Let p be an isomorphism of the lattice G+ into the lattice H+ 

such that <p(Q) — 0 and p(G+) is a convex sublattice of the lattice H+. Let {xi}ie/ 
and {yj}jej be orthogonal subsets ofG such that \J Xi — \J ijj is valid in G'. Then 

iei jeJ 
\J (p(xi) = V p(yj) holds in H. 

iei jeJ 

P r o o f . Both the sets {(p(xi)}iei and {(p(yj)}jej are orthogonal in H. Hence 
there exist yx and y2 in H such that 

2/1 = V ^ ( ^ ) ' y~2 = V V(VJ)-
iei jeJ 
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Also, there is 0 < x G G' with 

x=\J x{= \J Vj. 
iei jeJ 

This yields tha t 

x= \J (xiMjj). 

(ij)eixj 

Pu t K = {(i,j) E I x J: Xi A ijj 7- 0}. Hence K / 0 and the set {xi A yj}(ij)ei< 

is orthogonal . Therefore the set {ip(xi) A lp(yj)}(ij)eK is orthogonal as well. Hence 

there exists 7/3 G H such that 

2/3 = V &(xi)Aip(yj)). 

(ij)eK 

Clearly H3 ^ y\. Let i G I. We have 

(1) a* = Xi A x = Xi A y \J yjj = \J (xi Ayj). 
jeJ jeJ 

According to the assumption, (^([0,:^]) = [0,ip(xi)]. Hence from (1) we obtain 

(!') <p(xi) = V ipfa A yj) = \J ((p(xi) A <p(yj)). 
ieJ jeJ 

This yields tha t Hi ^ u3- Summarizing, we obtain 1/1 = y3. Similarly, 7/2 = 2/3 and 

hence Hi = H2, completing the proof. • 

Let us apply the same assumptions as in 2.4. If x G G', x = \f £;, where {xi}iei 
iei 

is an orthogonal subset of G, then we put 

<PiM = V V(xi)-
iei 

Next, let (Di(0) = 0. 

2.5 . L e m m a , pi is a convex isomorphism of the lattice G' into the lattice 

H+. For each x G G+, pi(x) = <p(x). 

P r o o f . In view of 2.4, the mapping <Di is correctly defined. Clearly ipi(x) = 

(p(x) for each x G G+. 

a) Let 0 < z G H, x G G"+ , z ^ ipi(x). Under the notation as above we have 

z = zAipi(x) = z A y\J p(xi)) = \J(zA(p(xi)). 
iei iei 
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Let i G I. The element z A <p(xi) belongs to the interval 

(2) [0,p(xi)] = <p([0,Xi]). 

Hence there is U G [0, Xj\ such tha t <p(U) = zA<p(xi). The system of nonzero elements 

of the set {U}iej is orthogonal and 

z = \J <p(U). 
iei 

Thus z G <pi(G'~v). Therefore <pi(G'+) is a convex subset of H+. 

b) Suppose tha t x,y G G' amd tha t {xi}iej and {yj)j£j are orthogonal subsets 

of G such tha t the relations 

x =\J Xi, y=\J yj 
iei jeJ 

are valid in G'. Next, suppose that <pi(x) = <pi(y), i.e., 

(3) \J<p(xi)= \J rtVj)-
iei jeJ 

Let i G I. Then the relation 

(4) ip(xi) = \J (<p(xi)A<p(yj) 

jeJ 

is valid and thus, according to (2), 

(5) Xi = \J (xi Ayj). 

jeJ 

This yields tha t x ^ y. Similarly we obtain tha t y ^ x. Therefore y?i is injective. 

c) Let x, y be as in b) with the distinction that we do not assume tha t the validity 

of (3). If a; ^ y, then clearly <pi(x) ^ <Pi(y). Conversely, let <pi(x) ^ <Pi(y)- Then for 

each i G I the relation (4) holds; by applying (2) we obtain tha t (5) is valid. Thus 

x ^ y. 

d) Again, let x,y G G'. If G ^ {0}, then there is z G G' with x < z,y < z. Hence 

<Pi(x) < <Pi(z),<Pi(y) < <Pi(z). Thus both the elements pi(x) V <Pi(y),<Pi(x) A <pi(y) 

belong to the interval [0,(^i(c)]. Therefore according to a), <pi(G' + ) is a sublattice 

of H+. This completes the proof. D 
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Now let Gi and cpi (i = 1,2) satisfy the assumptions of (A). Denote 

<pio(z) = </>iOO - ^i(o), <p2o(y) = v>i(;y) - ^2(0) 

for each x G G\ and each y G G2. Hence y?io is an isomorphism of t(G\) into t(G2) 

and (Dio(O) = 0; also, p>\o(G\) is a convex sublattice of f(G2). The situation for p>20 

is analogous. Thus without loss of generality we can suppose that tp\ (0) = 0 and 
cD2(0)=0. 

For i G {1,2} let G\ be a lattice ordered group such that the relation between G{ 

and G\ is the same as the relation between G and G' in 2.L Further, let tpt = y>i |G+. 
We define mappings 

(pt\ : G\ —•> G'2 and p>t\ : G2 —> G[ 

analogously as we did above for G and H. 

If ip is an isomorphism of a lattice L\ into a lattice L2 such that tp(L\) is a convex 
sublattice of L2, then V' is said to be a convex lattice isomorphism. 

From 2.5 we obtain 

2.6. Lemma. Both (pt\ and (pt\ are convex lattice isomorphisms. If x G Gt 

and y eGt, then (pt\(x) = p>t (x) and vt\(y) = ^(y)-

2.7. Lemma. Let us apply the notation as above. There exists a convex 

isomorphism (pl2 of t(G[) into i(G'2) such that (p\2(x) = <pt\(x) for each x G G*. 
Analogously, there exists a convex isomorphism ip22 of C.(G2) into t(G[) such that 

V22(y) = vt\(y) f°r each y t G2^-

P r o o f . This is a consequence of 2.6 and 1.4. D 

2.8. Lemma. There exists an isomorphism p of the lattice ordered group G[ 

onto the lattice ordered group G2. 

P r o o f . This follows from 2.7 and [3]. D 

Denote u2 = ip(u\). Since u\ is a strong unit in G\, it is a weak unit in G[. Hence 
u'2 is a weak unit in G2. Lot G'2l be the ^-subgroup of G'2 consisting of all elements 
of G2 which are bounded with respect to u'2\ i.e., G21 is the set of all g € G'2 such 
that there exists a positive integer n with —nu!2 ^ g ^ uu2. Thus u2 is a strong unit 
of G21. 

2.9. Lemma. There exists an isomorphism tp[ of G\ onto G21 such that 

p>l(u\) = u'2. 
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P r o o f . We have <D([0,Hi]) = [0,it2]. Next, u\ is a weak unit in G[ and u'2 is a 
weak unit in G2. Thus the assertion follows from 1.3, 2.3 and from [4], Chap. XIII, 
Section 3.12. D 

2.10. Lemma. There exists an isomorphism ^p2 of G2 onto G21 such that 

cp2(H2) = U 2 . 

P r o o f . Since it2 and u'2 are weak units in G2, we infer from 1.2 that the partially 
ordered sets ^i([0,H2]) and <^i([0,it2]) are isomorphic. Hence by applying 2.3 and 
[4], loc. cit., we obtain the desired result. D 

The validity of (A) follows from 2.9 and 2.10. D 

2.11. Corollary. Let G\ and G2 be complete divisible lattice ordered groups 

having strong units. If t(G\) and ^(G2) are isomorphic, then G\ and G2 are isomor­

phic. 

2.12.1. Example. Let A be the additive group of all real functions defined 
on the set of all reals with the partial order defined componentwise. Next, let B be 
the ("-subgroup of A consisting of all functions which are bounded. Put G\ = B and 
G2 = A x B. Both Gi and G2 are divisible and complete. The conditions (i) and (ii) 
from (A) are satisfied. Gi has a strong unit, but G2 has no strong unit, hence Gi 
is not isomorphic to G2. Therefore the condition of existence of strong units cannot 

be omitted in (A). 

2.12.2. Example. Let R be the additive group of all reals with the natural 
linear order and let Gi be the subgroup of R consisting of all rationals. Next, let G2 

be the ^-subgroup of R consisting of all x £ R which have the form x = r\ + r2g, 
where y is a fixed irrational number and n , r2 run over Gi. Then ^(Gi) and £(G2) 
are isomorphic, but Gi and G2 fail to be isomorphic. Both Gi and G2 are divisible 
and have strong units. Neither Gi nor G2 is complete. 
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