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Czechoslovak Mathemat ica l Journal , 46 (121) 1996, P r a h a 

MULTIPLICATION GROUPS OF F R E E LOOPS II 

A L E S DRAPAL, P r a h a 

(Received December 6, 1993) 

This paper is a sequel to author 's work [1]. It is concerned with the structure of 

the multiplication group of a free loop. First we show tha t every non-identity permu­

tation from the multiplication group of a free loop W fixes at most two elements, and 

then we explicitly describe a set of permutations generating the point-wise stabilizer 

Mlt(IV)a,6 for arbitrary a, b G IV, a ^ b. 

In [4] Kepka and Niemenmaa asked whether there exists any loop Q such tha t 

Mlt(Q) contains a permutat ion fixing exactly two elements of Q, but no ip G Mlt(Q), 

idq / p fixes three or more elements. Our result answers this question affirmatively. 

However, their problem seems to remain open for finite loops. 

The notation and terminology of [1] will be used without explanation or apology 

in this paper. Our numbering here begins with Section 6; references to material in 

Sections 1 through 5 concern the relevant parts of [1]. 

6. LEFT-RIGHT SYMMETRY AND CANCELLATION 

First we augment the set of permutat ions determined by an element a of a quasi-

group Q by the (right) division Da: b —> a/b. The division Da can be defined for 

every a G Q, and D~l(b) = b\a. The permutat ion group Tot(Q) = (La,Ra,Da; 

a G Q) is known as the total multiplication group. If Q = Q ( - , / , \ , l ) is a loop, then 

the opposite loop Qop = Q(-op, /op, \ o p , 1) is defined by a -op b = b • a, a /op b = b\a, 

a \op b = b/a. 

If Qi and Q 2 are two loops, then p: Q\ —> Q 2 is called an antihomomorphism if 

it is a homomorphism of Q\ to Q°2
P. 

If iu is a loop word over the basis X, then wop denotes the loop word defined by 

(i) xop = x for every . T G I U { 1 } , 
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(ii) (u • v)op = vop • uop, (u/v)op = vop\uop and (u\v)op = vop/uop for any loop 

words u,v. 

Clearly, wop is a reduced word iff w is a reduced word. Thus for each a G IV there 
exists a unique aop G IV with Qx(aop) = (Ox(a))0/\ The loop Wop is again free 
and the mapping a —>• aop obviously establishes an antiisomorphism of IV onto IVop. 
Moreover, \a\ = |aop | for every a ' W. 

For e G IV we denote the set {Le,L~l, Re, R~1} by T(e) and the set {Le,L~l ,Re, 

R~l,De,D~1} by 0(e). For s G {-1,+1} we put (L^)op = #*„„, (It^)op = L%.v, 

(De)
op = £>"}, and (D~l)op = Dc«,.. Clearly we have 

6.1 Lemma. Let a; G IV, 0 ^ i ^ k be such that a; = (D;(a;_i), (D; G 0(e7). 

U i O - Then aop = p°p(aZi) f o r a i i 1 < * O and |aop| = \a{\ for all 0 ^ i <C k. 

The property of the free loop expressed in this lemma will be known as the left-right 
symmetry. 

If a and e are elements of IV, then there exist unique reduced loop words b, / over 

X such that b = Qx(a) and / = Qx(e)- Let (p G 0(e), say <p — Le (or ip — L~l or 

(p = Re or . . . ) . We will say that <p does not cancel at a if / • b (or f\b or b • / or .. .) 

is also a reduced loop word. 
The mappings <pi G O(e^), 1 ^ a G IV, i = 1, 2 are said to have complementary 

types, if — after a possible exchange of <Di and <̂ 2 — we have either (p\ = Lei and 
cp2 = L>e2, or <px = Hei and (p2 = L>~\ or <Di = Z,"1 and </>2 = H"1. 

6.2 Lemma. Let a,e G VV and <D G O(e) be such that (p does not cancel at a. 

Then a < p(a), \a\ + |e| = \<p(a)\ ^ \a\ and \p(a)\ = \a\ iff (D = Dx . 

6.3 Lemma. Let a,b,e,f G IV and p G 0(e), t/> £ 0(f) be such that tp(a) = 
ip(b), tp ^ ij), (p does not cancel at a and ip does not cancel at b. Then a = / , b = e, 

and <D_1 and %l>~1 have complementary types. 

6.4 Lemma. Let a,e G IV be such that p> G 0(e) does not cancel at a. Then p 

does not cancel at <D*(a) for each i ^ 0. 

6.5 Lemma. Let a,e G W be such that p G 0(c) does not cancel at a. Then 

p>~1 cancels at <p(a). 

Note that <D G 0(e) coincides with idw only when e = 1 and <D G T(e). 

6.6 Lemma. Let a,e G IV be such that idw / <P £ 0(e) cancels at a. Then one 
of the following possibilities holds: 

(i) a = 1 and <D G {Le, He, £>e, I);:
1}, or 
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(ii) a = e andpe {L~l,R~l,De,D~1}, or 

(iii) <p~l does not cancel at <p(a), or 

(iv) e = K(O), where K G 0(<p(a)), K does not cancel at a, and K and <p have 

complementary types. 

P r o o f . Let b, / and w be the loop words over X such tha t a = Qx(b), e = gx(f) 

and w is the composition of b and / induced by an action of <p upon a. If w is of the 

form u • 1 or 1 • u or u/1 or l\u, then clearly b = 1 = a, f = u, and (i) applies. If 

iv is of the form u/u or u\u, then b = u = f', a = e, and (ii) can be used. As w is 

not a reduced word, the only other possibility is tha t w is equal to one of u • (u\v), 

(v/u) • u, u\(u - v), (v - u)/u, u/(v\u) and (u/v)\u. Then v = gx(p(a)), and the 

case u = / is covered by (iii). The remaining case u = b corresponds to (iv) — for 

example w = b • (b\v) implies e = a\<p(a), <p = Re and K = D~}y D 

6.7 L e m m a . Let a,b,c,d,e G W and <p G 0(e) be such that c = <p(o), d = <p(b), 

1 £ {a,b,c,d,e} and \a\ + |b| = |c| + \d\. Then \c\ / \a\ and the inequality \c\ > \a\ 

yields that <p does not cancel at a, <p cancels at b, p~l does not cancel at d and p~l 

cancels at c. In particular, \c\ = \a\ + \e\ and \d\ = \b\ — |e| . 

P r o o f . Let \c\ ^ |a|. It follows from 6.2 tha t <p~l cancels at c. If <p did not 

cancel at b, we would have \c\ + |d| ^ |a| + |d| = |a| + |e| + |b| > |a| + |b|. This 

contradicts our hypothesis, and hence <p cancels at b. To prove tha t <p does not 

cancel at a, we shall s tar t from the opposite. Assuming tha t <p cancels at a, we 

obtain from 6.6(iv) tha t e = Hi (a), Hi G 0(c), Hi does not cancel at a and Hi and <p 

have complementary types. If p~Y cancels at d, then for similar reasons e = ^ ( b ) , 

H2 G 0(d) and H2 does not cancel at b and H2 and <p have complementary types. We 

have c ^ d, and hence Hi ^ K-2. AS e = Hi (a) = K-2(b), by 6.3 K~X and H^1 have 

also complementary types. However, this contradicts the fact that H; and <p are of 

complementary types for i = 1,2. Therefore <p~l cannot cancel at d. But then by 

6.2, |a| + |b | = |a| + |e| + |c/| = 2|a| + \c\ + \d\ / \c\ + |d| — a contradiction again. We 

have proved tha t <p does not cancel at c. The rest is clear. • 

7. L I F T I N G T H E UNIT 

The neutral element 1 vanishes in terms like a • 1, 1 • a, a G W, but it need not 

cancel in terms a \ l , 1/a, ( a \ l ) \ l , l/(l/a) etc.. This twofold role brings certain 

problems when dealing with the occurencies of 1 in reduced loop words. To deal 

with these difficulties, we construct for each element O G W the element a so tha t 

each occurence of 1 is substi tuted by y. 
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More formally, choose y with y £ W and put X = X U {y}. Let W be the free 

loop with the basis X. Define recursively a mapping a -> O of IV to W by 1 = y, 

~ = ~ for ~ E K , a o b = a - b , O^b = O\b and a//b = O/b. 

Clearly, O o b = a o b, O\^b = O^b and O//b = O//b. Moreover, |O| > 0 for any 

a eW. Pu t also Z~ = L-, Le[ = L^1, I~~ = H- etc. Note that for any O, b G IV the 

inequality O < b implies O < b and |O| < |b|. 

7.1 L e m m a . Let p G F(e), 1 ^ e G VV, e = (D(O). Then c / <~"(a) implies that 

either 

(i) O = 1 and <p G {Fe, Re}, or 

(ii) e = O and<p G { L _ 1 , H _ 1 } . 

P r o o f . Assume </? = Lf[ and use 1.1 and 1.2. D 

7.2 Corol lary . Let <p G F(e), 1 7̂  e G IV, e = <p(a). Then c ^ y>(a) iff 

{O,c} = { l , e } . 

7.3 L e m m a . Let a, b, c, d,c G W and <D G T(e) be such that c = p(a), d = p(b), 

a 7- b and e 7- 1. Suppose that c = (/?(O) and d = y?(b). Then \c\ + |d| < |O| + |b| 

implies \c\ + \d\ < |O| + |6|. 

P r o o f . We can assume that <p = F^1. It follows from 7.1, 2.1(c) and 2.2(c) 

that |O| + |b | - \c\ - |~| G {2|e|, 2|O|, 2|b |}. D 

7.4 L e m m a . Let a, b, c, d, c G W and p> G T(e) be such that c = ip(a), d = <p(b), 

a^b and e ^ 1. If\c\ + |J| < |O| + |6|, then 1 £ {O,b}. 

P r o o f . For (D = Lf1 this is a corollary of 3.1. D 

7.5 L e m m a . Let O,e G IV, p G 0 ( e ) be such (hat |v?(O)| ^ |O| ^ |(^_1(O) | . Then 

(p(a) = (/?_1 (O) and for idw ^ <p we have <D = JD^1 and either e = O o O, or e = O / 1, 

or e G I U {1} and O = 1. 

P r o o f . Assume that idw i1 ¥• Then O = 1 implies <p — Dfl with x G X U {1}, 

and so we can assume O 7̂  1 for the rest of the proof. Clearly, p and <p~l cancel at O. 

If (D_1 did not cancel at p(a), then p~l would not cancel at p~1(ip(a)) = O by 6.4. 

Thus (D_1 cancels at <p(a) and p cancels at p>~l(a). Fur thermore, Lf1 ^ <p 7- Rfl* 

as L a and Ha do no t cancel at a. The case p = Dff
l is covered by the hypothesis, 

and so we can assume e 7̂  O. By 6.6 e = H;(O), / = V 2, H? does not cancel at a. 

K\ G 0(<p(a)) and Av2 G 0(p~[ (a)). From 6.6 it also follows that Ki and <p are of 

complemen tary types. As the same holds for K2 and p>~[, we see that K,\ / K2. Now 
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6.3 applies to K\(a) = e = K,2(a), and we obtain p(a) = a = p)~1(a). To compose 

irreducibly e from a and a, we cannot use a/a or a\a. Thus e = a o a, and (D = D^a 

follows. • 

7.6 Corol lary . Let a,e £ IV, idry ^ <p £ 0(e) be such that either (p £ F(e), or 

ip = Dfl and 1 / a / e / a o a . Then there exists k ^ 0 such that |</^+1(a)| < |(/>*(a)| 

for eveTy 0 ^ i ^ fc - 2, |<p*(a)| ^ |</^_ 1(a) | if fc ^ 1, and \<pi+1(a)\ > | ^ ( a ) | foT 

eveTy i ^ k. In particular, if the above conditions hold, then the set {|<p*(a)|; * ^ 0} 

is never bounded. 

7.7 P r o p o s i t i o n . Let a,c £ IV and <p £ 0 ( e ) be such that idvj/ 7- <£. If 

(^^(a) = a foT some k ^ 1, then (D = Dfl and either a £ { l , e } , or e = a o a. If 

a £ { l , e } and e / 1 , then (Dfc(a) = a iif A; is even. In the other cases <pk(a) = a foT 

any integer k. 

8. F I X E D P O I N T S 

8.1 L e m m a . Let a, e £ IV be such that idw ^ < p 6 0(e) cancels at a. Zf |a| > |e|, 

then Lp~x does not cancel at p(a). In particular, \a\ = \p(a)\ + |e|. 

P r o o f . Consider the alternatives of 6.6. • 

8.2 L e m m a . Fori = 1,2 iet a, e; £ W, idw 7̂  <A £ 0 ( e ; ) , <£i / </?2, |a| > |e7|, 

anc/ suppose that <pi cancels at a. Then <p\ and p>2 have complementary types and 

a = ^x(e2) = (D " 1 ( e i ) . 

P r o o f . By 8.1, p^1 does not cancel at pi(a) for i = 1,2. The rest follows from 

6.3. • 

8.3 Corol lary. Let a5 £ IV, 0 ^ j *.: 2 and for i = 1,2 iet 1 ^ ez- £ IV, 

pi £ T(ei), pi(ai-\) = ai, ip2 ^ ^P\X - Suppose that p^1 and p2 cancel at a\ and 

\a\\ > |ez | , i = 1,2. Then a0 = e2 , a2 = e\ and either (Di = Lei, <p2 = R~^ and 

a,\ = e\ o e2, or p>\ = Rei, p2 = L " 1 and a2 = e2 o e i . 

8.4 L e m m a . Let aj £ VV, 0 ^ j ^ 2 and for i = 1,2 let a £ VV, idw 7̂  <fi £ 

0 ( e t ) , (Di(a2_i) = az-, (D2 7- (D^1. Zf <Di does not cancei at a0 and |a 0 | > |e 2 | , then p>2 

does not cancel at a\. 

P r o o f . Suppose tha t p2 cancels at aL. By 6.5 we can then use 8.2 for (p[ = (p^1, 

p'2 = p>2. As 8.2 yields a0 = p\v (a\) = e2 , we get a contradiction. D 
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8.5 L e m m a . Let O2 G IV, 0 ^ i ^ k be such that for every 1 ^ i ^ k we have 

pi(a{-i) = ai, idw / <p\ G 0(et), e{ G W and |O0| > |e? | . Further, let <pT+\ ^ p>i 

for each 1 ^ i ^ k — 1 and suppose that p\ does not cancel at O0. Then pi for all 

1 ^ i ^ k does not cancel at r/.7_i and |a;| = ( ^ |e ; | ) + |O0|. 
K j X t 

P r o o f . The lemma can be proved directly by induction — the inductive step 

is contained in 8.4. • 

8.6 L e m m a . Let O?, b?, c? G W, 0 ^ i ^ A; be such that A: ̂  2 and for every 1 ^ 

i ^ A; we iiave <Pi(at-\) = a{, pj(bi-\) = bi, <pi(d-\) = c?, pi G Ffe), 1 ^ ez- G IV. 

Further, let p^+i ¥" ^Pi f°r every 1 ^ i ^ k — 1. If O/, = O0, bfc = b0 and Ck = c0 , then 

00 = b0 or O0 = c0 or b0 = c0 . 

P r o o f . Assume that a^ = O0, b/c = b0, c/, = c0 and that O0, b0, c0 are pair wise 

distinct . Clearly, it suffices to obtain a contradiction for the case pk 9^ P\l • Assume 

tha t pk =fi p\ , and cyclically permute O;, bi, c? and pi so tha t |e i | = max{ |e , | : 

1 ^ i ^ k}. Denote |e i | by m. The rest of the proof is divided into four steps. The 

indices of Oz-, bi, c?-, e? and pi are computed modulo k. 

(i) Let 1 ^ i ^ k be such that \a,i\ > m. If pi+\ did not cancel at O;, we could 

apply 8.5 and obtain |O,,-| > |O,-|. This is not possible, and so pi+\ cancels at O,-. 

For a similar reason pjv cancels at O?-, too. Now 8.3 can be used, and we see tha t 

Oi-i = Cz'+i, Oi+i = O7, and either pi = L e . , pi+\ = Rl~i+1 and O; = e? o e 1 + i , or 

pi = Re., pi+\ = L~ + i and a; = a+\ o e{. 

(ii) Let |Oi| > ?7i. By (i) and the left-right symmetry we can assume tha t O0 = e2 , 

a\ = e\ o e2 , O2 = ei, p\ = L(, and p2 = R~0
l. As b0 ^ O0. we get from (i) that 

|b i | ^ 77i. Because p\ = LC l , |b0 | ^ 7?I is implied by (i), too. Thus p\ cancels at b0 

and p^1 cancels at bi. If |bi | = in and b0 ^ V then c\ is by 6.6 equal to K,(b0), where 

H G 0(b\) does not cancel at b0. But then |b i | / |b0 | + |ei | , and from 7.1 we obtain 

bo = 1. Hence |b i | = O? if and only if bo = 1. A n is complementary to Lei, and so if 

bo ^ V then by 6.6 eL equals b\//b0. Our argument can be repeated for c0 , c i . and 

as c0 / b0 holds, bo = 1 and bi = ei = c\//c0 can be assumed. If p2 = i t " 1 does 

not cancel at bi, then |b2 | > |b i | = m. By (i) this is not possible, and therefore p2 

cancels at b\. But |e2 | ^ /// implies that e2 cannot be of the form b2\\ei- We have 

b2 = (c\//c0)le2, and thus e2 = c\ = c\//c0 is the only way how p2 can cancel at 

b\ — C\//CQ. But then |c2 | > /// as e2 = c\//(c\//c0), and a contradiction follows from 

(i). We see tha t any of |Oi|, \b\ | and |Oi| must be less than or equal to m. 

(iii) Let |Oo| > 77i. Then we can apply (ii) for a[ = r/o, a'0 = Oi, <p[ = p~[ , 

<p2 — p~l e t c Thus 777 ^ |a0 | , and hence also 77/ ^ |b(,| and /// ^ |c0 | . 

(iv) By (ii) and (iii) <p\ cancels at O0, b0, c0, and p~[l cancels at Oi, bi, c\. Suppose 

tha t a = O0, p = p\ satisfy any of the conditions (i) and (ii) of 6.6. As b0 7̂  O0 ^ c0 
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and as (p\ G T(e), none of these two conditions can be satisfied also by a' = bo or by 

a! — c0 . Thus 6.6 allows us to assume that e\ = Hb(bo) = ^c(co), where Kb G 0(b\), 

KC G O(c i ) , H6 does not cancel at bo, ACC does not cancel at Co, Kb and (p\ have 

complementary types, and KC with (p\ have comp lementary types, too. By the latest 

two statements K^1 and K~1 cannot have complementary types. As bi ^ c\ implies 

n,b ^ KC, we get a contradiction by applying 6.3 to e\ = Kb(bo) = KC(CO). D 

8.7 Corol lary. Each non-identity permutation contained in Mlt(tV) fixes at 

most two elements ofW. 

9. C O M M O N FACTORS 

For any a, b G W, a 7- 1 / b, a ^ b we will say tha t a and O have a common factor 

w G W, if one of the following possibilities takes place. 

(i) There exist u,v G W and ^p G O(w) such tha t ^ cancels neither at u nor at 

v, and a = 4'(u), b = ^l)(v). 

(ii) There exist u G W and 0 G -T(u) such that a = w, b = ^(w) and t/j does not 

cancel at w. 

(iii) There exist u G IV and i/) G F(H) such that b = w, a = ty(w) and t/> does not 

cancel at w. 

9.1 L e m m a . Let a,b,c,d,e G VV, 1 ^ {a, &, c, d, e} , (D G 0 ( e ) be such that 

V?(c) = a, <p(d) = b and d < c. If kp does not cancel at c and \c\ + \d\ = |a| + |b|, then 

b < a, and a and b have no common factor. 

P r o o f . By 6.7, (p~l does not cancel at b, and hence by 6.2 and the hypothesis 

we have b < d < c < a. Suppose that w is a common factor of a and b. Following 

the definition, we shall distinguish three separate cases. Symbols u, v and ty have 

the same meaning as in the above definition. 

(i) If a = ^(u), b = ^p(v), then ip = ^p would imply tha t d = v, and (D would not 

cancel at d. This contradicts 6.7, and hence ^^) ^ p>. But then 6.3 implies c — //;, 

u = e, and 6.2 yields IU < b < c = w. 

(ii) If b = V'(a) a n d V; £ T(u) does not cancel at a, then a < b < a by 6.2. 

(iii) Let a = ty(b), V> ' T(u) and suppose that ^ does not cancel at b. Then Lp = ih 

is not possible, as c = b would follow. Hence <p ^ 'ip, and by 6.3 u = c and b = c. 

As d = (p~l(b) = (p~l(e) ^ 1, we obtain from <p~l G O(e) tha t (D_1 G {Le,Re}. As 

<p-1 and ^p~1 have complementary types, we see tha t 0 _ 1 = T)fl. However, this 

contradicts ^p G T(u). D 
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9.2 L e m m a . Let a , 6 , c , d , e G W be such that 1 ^ {a ,6 , e} , a / 6 and for 

(f = Lfl, c = (p(a), d = (D(6) let \a\ + |6| > \c\ + \d\. If a and 6 nave no common 

factor and \b\ ^ \a\, then a = e\c and e = dffb if (D = Le, and a = e o c and e = bffd 

P r o o f . This follows directly from 2.1(c) and 2.2(c). • 

Applying the left-right symmetry to 9.2, we obtain 

9.3 L e m m a . Let a,b,c,d,e G W be such that 1 ^ {a,6, e} , a ^ b and for 

(f = Rf1, c = (f(a), d = (D(6) let \a\ + |6| > \c\ + |d|. If a and 6 have no common 

factor and |6| ^ \a\, then a = cffe and e = b\d if if = Hr, and a = c o e and e = d\b 

if<P = R71. 

In the rest of this section wo state some further auxiliary assertions. 

The correspondence between a G W and a°v can be used to dualize the results 

obtained in [1] for the left translations of IV. We will do so explicitly for Lemmas 

2.1 and 2.2. We obtain 

9.4 L e m m a . Let a, 6, c, d, c G W be such that c = R€(o), d = Re(b), a ^ 6, and 

e ^ 1. Then exactly one of the following possibilities takes place. 

(a) \c\ + \d\ > \a\ + |6|. Then either 

(1) c = a o e, d = 6 o e or c = e, a = \, d = 6 o e or c = a o e, 6 = \, d = e, oT 

(2) e = 6^\d, 1 ^ d, and c = a o e or c = e, a = V or 

(3) e = a\c, 1 / c, and d = 6 o e or d = e, 6 = 1. 

(b) |c| + |d| = |a| + |6|. Then either 

(1) b = dffe, and c = a o e or c = e, a = 1, or 

(2) a = c//e, and d = 6 o e oT d = e, b = \, or 

(3) d = V e = 6 \ 1 , and c = a o e oT c = e, a = V (;i-

(4) c = 1, e = a\\, and d = boeord = e,b=\. 

(c) |c| + |d| < |a| + |6|. Then cither 

(1) a = c//e and 6 = dffe, or 

(2) e = b\d and a = cffe, or 

(3) e = a V and 6 = dffe. 

9.5 L e m m a . Let a, 6, c, d, c G IV be such that c = 7?e7
L(a), d = R~l(b), a / 6, 

and e ^ l . Then exactiy one of the following possibilities takes place. 

(a) |c| + |d| > |a| + |6|. Then either 

(1) c = affe and d = bffe, or 
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(2) e = d\b arid c = O//e, or 

(3) e = c\yO and d, = b//e. 

(b) |c | + |d| = \a\ + \b\. TЬen either 

(1) cl = b//e, and a = co e or a = e, c = 1, or 

(2) c = O//e, aIзd b = do e or b = e, d = 1, or 

(3) b = 1, e = ćf\l, and O = c o e or O = e, c = 1, or 

(4) O = 1, e = c ^ l , and b = d o e or b = e, d = 1. 

(c) |c | + |d| < |O| + |b |. Then either 

(1) a = co e, b = d o e or a. = e, c = 1, b = d o e or a = c o e, d = l, b = e, or 

(2) e = c/\\ò, 1 ф b, and a = c o e or a = e, c = 1, or 

(3) e = c^O, 1 ф a, and b = do e or b = e, d = 1. 

9.6 L e m m a . Let a,b,u,v,c,d,e Є W, a, ф b, 1 ф e, <p Є T(e) Ьe sizch that 

b = uo v, a Є {u,v}, c = <p(a), d = <p{b) and \c\ + \d,\ < \a\ + \b\. Then <p = L~l or 

P r o o f. The left-right symmetry allows us to assume <p = Lf1. If <p = Le, then 

l)y 2.1(c) e = dj/b and O = e^c = {d//{u o U))^c > a. If <p = L~x, u ф e, then 

Ьy 2.2(c) we have either O = b o c, or e = O//O1 with O = e o c or O = e, c = 1. If 

a = b o c = (г/, o i?) o c, then we get again O < O, whicli is a contradiction. If e = b/jd, 

then O < b < e ^ O also implies O < O. • 

9.7 L e m m a . Let Oг- Є W. 0 ^ ѓ ^ k be such that for every 1 ^ i <i k we have 

<PІ{UІ-I) = a.i, idw ф P>І Є O(ei), e7; Є IV. Suppose that pi cancels at O7;_i for no 

1 ^ г ^ k and that 1 ^ k. Then {<pk • • • p\)2(ao) ф Oo-

P r o o f . If <pi = v j_i_7- f ° r every 1 ^ ź ^ k, the define 5 as к + 1. Оth-

erwise denote Ьy 5 the least / ^ 1 with <pi Ф ^ ^ ^ . Then (<DA; • • • (pi) 2 — 

<Pk • • • ips<Pk+i-s • • • <Pi • Suppose that ,s — l ^ k/2. If к = 2t is even, then <pt = ^ ľ к • ^ 

A; = 2l + l is odd, then <pt+\ — Ч?7+\- As ( < ^ + i ) 2 ^ idiy Ьy 7.7, we see that s — l< k/2. 

Hence k + 1 ^ 2s and (v?A: • • • ^ i ) 2 = ^f1 • • • ^ľ-i (ч>k+i-s • • • ч>8)
2Ч>s-i • • • p>\- If 

k + 1 = 2.s, then (.pдv+i-s = Ps cloes not cancel at ak+i-s = <pk+i—s(ak-s) Ьy 6.4. If 

k ^ 2.s, then es < a.k-s ćind </\ч does not cancel at Oд.+i_s = <pk+i-s(ak-s) Ьy 8.4. Let 

/ Ьe tlie least integer such t h a t -s + 1 ^ i ^ k and p-,, cancels at <PІ-I . .. <ps{a,k+i-s)-

If 5 + 1 ^ i ^ A; + 1 — ,s, then obviously e7 < O/,+ i _ s . For k + 2 — s ^ i ^ k we 

liave ЄІ < aк+\-s Ьy eг- = eк+\-i- Thus eг < ak+i-s ^ <Л'-2 • • • ҷ>s(o>k+i-s) and 

8.4 can Ьe applied to O7; = (/)i(/?i_i(^_2...i f l; s(fl)+i- s)). Therefore <pi cancels at 

<PІ-І . . . <ps(aк+\-s) for no 5 ^ / ^ k, and hence O0 < (<Pk • • • Ч>\ ) 2(^o)- • 
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10. R E D U C T I O N 

For any a,b,c G IV define //,(a,b,c) = H~/cLaL/7
1Ha\c and v(a,b,c) — L~}hRa 

R~lLcja. If (D G Mlt(IV), we denote by ^^(a^,^ and vip(a,b,c) the permutat ions 

(f~1li((f(a),(f(b),ip(c))ip and Lp~lv(^(a), (f(b), (D(c))<p, respectively. 

10.1 L e m m a . Let a,b,c G IV, a ^ b, </?, TT G Mlt(IV). Tiien 

(i) Lt<^(a,b, c ) - 1 = L^(b, a,c) and ^ ( a , b, c ) _ 1 = v^(b , a ,c) ; 

(ii) v^(a,b, c)op = n^(a,b, c) and v(p(a,b,c)op — u^(a,b,c); 

(hi) 7TL^(a,b,c)7r -1 = lx^-i (7r(a),7r(b),7r(c)) and irv<p(a, b, c)n~l = 1/^-1(71-(a), 

7r(6),7r(c)). 

10.2 Corol lary . Let ip G Mlt(IV) a ,6 and n G Mlt(IV). TLen TT^TT"1 G (Lv(?r(a), 

7r(b),c), ^(7r(a) ,7r(b ) ,c) ; c G l f ,^ G Mlt(IV)) iff >/> G (Lv(a, b, c), ^ ( a , b, c) ; c G 

IV,(pG Mlt(IV)) . 

10.3 L e m m a . Let a,b,c G IV, a ^ b, (D G Mlt(IV) and tc G {Lv(a,b , c), 

.v^(a, b, c)}. Then K(a) — a, H(b) = b and tc(d) ^ d for every d € W, a ^ d^b. 

P r o o f . By direct computation we obtain n(a) — a, K,(b) = b. By S.6 it remains 

to prove tha t K / idry. It follows from lO.l(iii) that we can assume K G {/u(a,b,c), 

v(a,b,c)}. We have v(a,b,c) = n(a,b,c)°v for any a,b,c G W. Thus we need to 

verify tha t u.(a,b,c) ^ \c\w• Pu t (Di = R~^c, ip2 = L„, <p3 = L~l, <D4 = I?-ft\c- We 

have ifi ^ (D"1 whenever (D, / idiy, 1 ^ i,j ^ 4, and hence n(a,b,c) = idu r iff 

(fi — \&w for all 1 ^ i ^ 4 (use 1.5). However, this is not possible, as a / b. D 

Let 1 7- ei E W, <D; G T(e-l), 1 ^ i ^ k and let a 0 ,b 0 G IV, a0 ^ b0. By a.;,b;, 

1 ^ i ^ k denote the elements a7; = (D;(a;_i), b2- = (^(b;_i). We say tha t the sequence 

(fi, 1 ^ i ^ k reduces at {a 0 ,b 0 } whenever for some /. ^ 0 we can find a sequence 

^ j G T(fj), 1 ^ / j G VV, 1 ^ j ^ t such tha t for c0 = a0 , J0 = b0, Cj = ipj(cj-i) and 

dj = ipj(dj-i) we have 

(i) c t = a/c and dt - bk, 

(ii) E (hl + KI)< E (IH7I + N) , 
l ^ j < £ l^?'</c 

(iii) either there exist such w G IV, 7r G Mlt(IV) and K G {lt^(a0, b0, w)±l, 

VTr(ao,bo,w)±l} tha t ipk...<Pi — ^ • • • V ' l * , o r there exist uj G IV, 7r G 

Mlt(IV) and ^ G {/~in{ak,bk,w)±l,vn(ak,bk.,w)±l} such tha t <̂ fc . . . y>i = 

«Vt • • • ^1 • 

Note tha t we have not excluded the case t = 0. 
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Let now i / ? ! , . . . , ^ be a sequence of permutations such tha t p>k • • • <Pi fixes exactly 

two elements of IV and pi G T(eJ), 1 / e, G VV for each 1 ^ i ^ k. Let O0 7̂  60 be 

the points fixed by the permutat ion and let a; = (D,-(O;_i), b, = p>i(bi-i) for 1 ^ i ^ k 

(we have O^ = Oo and b^ = bo). We say that the sequence <Di,... ,pk reduces at its 

fixed points if there exist 1 ^ r,s ^ k such tha t the sequence pr,(pr+ir-'^s-ii^s 

reduces at {O r _i ,b r _i} (the indices being computed modulo k). 

Assume now tha t the sequence <Di , . . . , pk satisfies pi / <pj+i for all 1 ^ i ^ k — 1 

and put ip = tyk • • • <£i and n ( 0 ) = 5_ la*l + 1^1- As <D*.,... , pi are determined by 

-0 uniquely, n(V;) is well defined for any 0 G Mlt(IV) tha t fixes exactly two elements 

of IV. Suppose that n(ip) is the least possible with respect to the property V; ^ 

(n.7T(a0,b0,w),v7r(a0,b0,w); w G IV, TT G Mlt(IV)) (running over all possible choices 

of Oo and bo). The minimality condition posed on n(ip) together with 10.2 yield 

<£i 7̂  Pk1 • Pu t '0j = <£j-i .. .piipk • • -Vj f ° r a n y 1 ^ j ^ &• Clearly, ip\ = ip and 

n(V'j) = I^(V;) f ° r all 1 ^ i ^ ^:- Moreover, T/;J (/ (u,-K(aj-i,bj-i,w),v-n(aj-i,bj-i,w); 

w G IV, 7r G Mlt(JV)) — this follows again from 10.2. If the sequence pi,...,pk 

can be reduced at its fixed points, we can find 1 ^ j ^ k and ip' G Mlt(IV) 

such tha t V''(aj—1) = aj '-i> V'^bj-i) = bj-i* '^('0') < n(^), and for some H G 

{^7r(aj_i,b j_i ,n;) ,fV-(aj_i,b j_i , i t ;) ; 7T G Mlt(VV),uj G PV} we have -0j = ip'K or 

i/̂ - = K,0' . Thus we have proved 

10 .4 L e m m a . Suppose that every sequence pi G T(eJ), 1 / e t G IV, 1 ^ i ^ k 

such that (fk • • • Vi fixes exactly two elements of IV, pi ^ pj^ for 1 ^ i ^ k — 1 

and (£>/, ^- (p"1 reduces at its fixed points. Then for any a, b G IV, a 7-= b we iiave 

Mlt(W)aib = ( , v ( a , b , c ) , ^ ( a , b , c ) ; <p e Mlt(IV) and c G IV). 

The rest of this paper is devoted to the proof tha t each sequence pi satisfying the 

hypothesis of 10.4 can be reduced at its fixed points. Like in Sections 2, 3 and 4 we 

proceed by considering the norm sums \pj ... pi(a)\ + \pj . . . pi(b)\. 

10.5 L e m m a . Let O,,b?;,c,/ G IV, O, 7- bi, 0 ^ i ^ 2, e 7̂  1 7̂  f be such that 

k'o| + |fro| < \ai\ + |&i| > IO2I + \b2\, O2 = a i / / , 62 = &i / / , Oi = e • O0 and bi = e o b 0 . 

If bo = / or b2 = e, tLen fLe sequence Le. RJl can be reduced at {Oo,bo}-

P r o o f . From b0 = / it follows that b2 = bi// = (e-f)/f = e. As b2 = e similarly 

implies b0 = / , we see tha t the assumptions bo — f and b2 = e are equivalent. Under 

these assumptions we have |O()| -f | / | < |Oi| + |e| -f- | / | > IO2I + |e|, a2 = OL//, 

Oi = e • Oo and bi = e o / . We put V = ^ ^ n , — clearly ip(a0) = a2 and 

</,(/) = e. Further, RJ1LC = 0 L " 1 R(l{)RjlLe = iw(a0,f,e • a0). This proves the 

lemma whenever 1 G {a0,a2}. Suppose that Oo / l 5- O2- Then we have to show 

that | L a 2 ( / ) | + |L a 2 (O 0 ) | < |Oi| + |b i | . However, La.2(f) = Ox = e • O0, and hence it 
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suffices to prove that |O2| + |O0| < \b\\ = |e| + | / | . We have e ^ 1 ^ a2 and / ^ e\ybi, 

and thus 9.5(c) implies that either Oi = O2 o / , or / = O2\\Oi- Similarly, by 2.1(a) 

either Oi = eoa0, or e = a\//a0. Nevertheless, Oi = a2 of and Oi = e o a 0 cannot hold 

simultaneously, as O0 = / = b0 would follow. Thus a{ = e o a0 implies / = a2\a\, 

and we get |O2| + |O0| < |a21 + |Oi| = | / | . If e = a\//a0. then for Oi = O2 o / we obtain 

|oo| + \a2\ < |Oo| + \a\\ = \e\, while for / = O2V1 w e n a v e lfto| < M and \a2~\ < | / | . 

D 

10.6 L e m m a . Let ai,bi,e,f G W, a{ ^ bi, 0 ^ i ^ 2 be such that for (p\ G F(e), 

<p2 G T(f), e ^ 1 ^ f, p>\ ^ p~l it holds a5 = ipJ(aj^l), b:j = ipj(bj.\), j = 1,2. 

If \b2\ + |O2| < |b i | + |Oi| > I bo I + |O0|, then the sequence p>\, ip2 can be reduced at 

{a0,b0}. 

P r o o f . Taking into account the left-right symmetry, we can assume p)\ = Lfl. 

It follows from 2.3 tha t then ^p2 = Rf1 can be assumed as well. Thus there are four 

different cases to be investigated. However, the case p>\ = L~l, tp2 = RJl can be 

reduced to the case p>\ = L e , p>2 = Rf, as ( H T 1 ! ^ 1 ) " 1 = LeRf and (LeRf)op = 

Re»i> Lfop. 

If ip 1 = L~l and (p2 = Rf, then by 2.2(a) we can assume bi = e\yb0. Then 

fri 7̂  °2//f, and hence by 9.4(c) Oi = a2//f and / = b\\b2. Then e = Oi//O2 by 

2.2(a) and b\ = (a,\//a2)\b0 = ((a2//f)//a2)\b0 = ((a2//(b\\b2))//a2)\b0 leads to a 

contradiction . 

Therefore we can have <p\ = Le in the rest of the proof. By 2.1(a) we can assume 

tha t either bi = e o b0, or O0 = 1 and Oi = e = b\//b0. 

Let now <p2 — Rf a n d suppose first tha t Oi = e = bi //b0 and O0 = 1. If Oi = a2j/ f, 

then a2 = b\, f = b0 and b2 = b\ • f = b\ • b0, O2 = bi = bi • O0. This together 

with <p2ip\ = LblL^i
lRb[iLbl//bl) = Lblv(b0,l,b\) yields a reduction. If Oi / O2///, 

then / = a\\a2 and bi = b2//f by 9.4(c). However, / = Oi^O2 = (b\//b0)\a2 = 

((b2//f)//b0)\a2 leads to a contradiction. Thus we can suppose tha t bi = e o b0. 

Then bi 7̂  b2//f and 9.4(c) implies / = bi\\b2 and Oi = a2//f. Therefore we have 

a\ = a2//(b\\b2) = a2//((e o b0)\b2). By 2.1(a) either e = a{, or e = Oi//O0 — but 

clearly none of tha t can hold. 

Assuming (p2 = RJ1 let us again suppose first tha t a.\ = e = b\//b0 and O0 = 1. 

By 9.5(c) then either a,{ = / and bi = b2 o / , or / = O2\\Oi- If Oi = / = e and 

bi = b2 o / , then e = b\//b0 = (b2 o e)//b0. If / = O2\\O! = O2\\(bi//^o), then by 9.5(c) 

either b\ = f, or bi = b2 o / , none of which is possible. Thus we can assume that 

b! = eob0 . If bi = b2o/, then / = b0 and we can use 10.5. If Oi = O2o/, then by 10.5 

we can omit the case a,\ = e o a0. Thus for Oi = O2 o /' we get from 2.1(a) tha t either 

a\ = e, or e = a\//a0. Then bi is equal to one of (O2 o / ) o b0 and ((O2 o f)//a0) o b0. 

By 9.5(c) Oi = O2 o / , bi 7̂  b2 o / imply / G {b\, b2\b{}, and thus we always obtain 
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a contradiction in such a case. If a\ / a2 o / and e o b0 = b\ 7- b2 o / , then it follows 

from 9.5(c) that / = „i = b2\bi, and hence ai = b2^(e o b0). By 2.1(a) in such a 

case either e = „ i , or e = a\//a0 — a contradiction again. D 

1 1 . SEQUENCES CONTAINING THE UNIT ELEMENT 

11.1 L e m m a . Let c,d,e,g G W and <D G F(e) be such that 1 ^ e, d = <D(1), 

c = <^(g\l) and |d| + \c\ ^ |g | . Tnen c = 1 and either 

(i) d = g and ip G {£<,, R~^ } , or 

(ii) d = ( O \ \ l ) \ \ l and^G{L-^,R{gWll}. 

P r o o f . If p = Lf1, then we can use 3.1. If (D = I?*1, then <Dop = L±l,, 

(O^l ) o p = l / /go p , and we obtain the result again from 3.L D 

11.2 L e m m a . Let c,d,e,g,h G W and <p G F(e) be such that e / 1 / /J, 

d = p(l), c = (p(g\h) and \d\ + \c\ ^ \g\ + |/i | . If c ^ 1, then c = h, d = g and 

ip = Lg. If c= 1, then either 

(i) d = l//(g\\/i) and <p G { I t - ^ ^ i / / ^ / , ) } , or 

(ii) d = (g\\/i)\\l and <p G { ^ ^ ( ^ w i } -

P r o o f . Like above, employ 3.L D 

11 .3 L e m m a . Let ai, bi G IV, az ^ b7;, 0 ^ i ^ A; be such that k ^ 2. b0 = ai = 1, 

bi = a0\l, and for 1 ^ i ^ A: iet |a, | + |fo»| = |a 0 | + |b0 | = |a0 | , (^(a^- i ) = a{, 

(Pi(bi-i) = bi, <pi G T(ei), with 1 ^ er- G IV. Further, let p^+i / ^ ^ o r eRCn 

1 ^ i O - !• Then either there exists I ^ j ^ k — 1 such that the sequence 

p)j,..., <pk can be reduced at {a 7 _ i , bj_i}, or for i odd bi = a ? ; _ i \ l , at- = 1 and for i 

even a; = b;_i\l, bi = 1, 1 ^ i ^ k. 

P r o o f . Suppose tha t b7 = a 7 _ i \ V a, = 6,-1 = 1 and 1 ^ i ^ k — 1. Then 11.1 

can be applied for g = aT_i, c = e-.-+i, c = b7+i and d = flj+1. If d = (az-_ 1^1)^1, 

then a l + i = b7;\l and bl+i = 1. If d = a, then a7_i = a l + i = g, bt_i = bl+i = 1 and 

by 11.V ipi+i G {R^^Lg}. Applying 11+ to ip'1 we obtain ipr1 e {R~^,Lg}, too, 

and so (D;+i<Di = (LgR^)^. As LgRg^i = /i(g, VI), we see tha t the lemma can be 

proved by induction. D 

11.4 L e m m a . Let a ^ b , G IV, a,- ^ b7;, 0 ^ i ^ fc be such that k ^ 2, and for 

1 ^ i ^ k let \ai\ + |6i| = |a 0 | + |b0 | , (D,(a,_i) = ai} pl(bi-1) = bi, p{ G T(e{), with 

1 ^ a G IV. Furthermore, let (p~}x / </?,- for each 1 ^ i ^ k — 1. Suppose that there 
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exists 2 ^ j ^ k — 1 with bj = 1 so that bj-i — ej or b7+1 = e 7 + i . Then there exists 

1 ^ r ^ k such that at least one of the following possibilities is true: 

(i) r ^ k — 1, br — a r + i = 1 and either br+i = ar\l, or br+i = \//ar; 

(ii) r J> 1, br = a r _ i = 1 anc/ either br_i = a r
N \ l , oi' br_i = l//ar; 

(iii) r ^ k — 1, a r = br+i = 1 and either a r + i = br^l, or a r + i = l//br; 

(iv) r ^ 1, a- = br_i = 1 and either a r _ i = br\l, or a r_L = l//br. 

P r o o f . As we can consider p^1,..., p^1 in place of pi,. . . , pk, we can assume 

tha t ej = bj-i. Then clearly ^ 7 G {L^l_ ,R^X_ }, and by the left-right symme try 

we can choose the case <D7 = L^l_ . By 3.1 either a7 = b7_i\aj_i, or Oj_i = 1 and 

bj_i = l / / a j . In the latter case (ii) applies for r = j , and so a7 = bj_i^aj_i can be 

assumed . If a j_ i = 1, then (iii) holds for r = j — 1. Finally, for a j_i 7̂  1 use 11.2 

with (D = <Pj+i, e = e J + i , a = bj-i, /1 -= ctj-i- As <Dj + i ^ Lry = (DJ1, we see that (i) 

takes place for r = j . • 

11 .5 L e m m a . Let a?;,b; G IV, a; 7̂  b/, 0 ^ i $J k be such that k ^ 2, and for 

1 ^ i ^ k let \a{\ + |_>_| = |a0 | + |b0 |, (D;(az-_i) = a;, ipdh-i) = b;, <^ G T(e{), with 

1 ^ e.i G W. Further, let ip^+i / W f°r eacn 1 ^ l ^ k ~ V <Pk 7*- ^ I " 1 a i l (^ - ^ 

o/c = Oo> bk = b0. Then there exists no 0 ^ j ^ k WJ/L 1 = bj so tnat bJ+i = e J + L 

or bj_i = Cj (the indices being computed modulo k), or the sequence pi,.. . , pk can 

be reduced at its fixed points. 

P r o o f . Assume the contrary. First, cyclically permu te a/, b;, e;, pi so that the 

hypothesis of 11.4 is satisfied. Considering the four possibilities of 11.4, we see that 

by exchanging a7; and b; we can reduce (iii) and (iv) to (i) and (ii). As the inverse 

mappings p^1 can be used in place of pi, it is enough to consider jus t the case (i). 

Because of the left-right symmetry, we can choose the case br+i = a r \ l . Finally, 

using cyclic permu ta t ion we can assume r = 0. Then the hypothesis of 11.3 gets 

satisfied, and we ob tain |a0 | + |b0 | < | a i | + |b i | < . . . < |a/,| + |b/,| — a contradiction. 

• 

11.6 L e m m a . Let a,-,b; G IV, a/ ^ bi} 0 ^ i ^ k be such that k ^ 3, and for 

1 ^ i ^ A; let pi(a,i-i) = a?-, ^ ?(b /_i) = bi, pi G F(c?), with 1 7- e, G IV. Further, for 

each l ^ i ^ k - 1 let p^{ ^ p; and |a0 | + |b0 | < | a , | + |bL| = |a?-| + |b/| > K | + |b/,|. 

Then the sequence pi,. . . , pk-\ can be reduced at {a,, bj} for some 2 ^ j ^ A: — 3. 

or there exists no 1 ^ j ^ A; — 1 with bj = 1 such that b; + i = e J + i or bj-\ = ej. 

P r o o f . S tar t from the contrary and suppose that there exist 1 ^ j ^ k — 1 with 

bj = 1 such that bj+i = eJ + 1 or b7_i = ej. Then 7.4 implies that 2 ^ j ^ k — 2. 

Proceeding similarly as in the preceding proof, we see that we can assume existence 
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of such 2 ^ r ^ k — 2 that br = Or+i = V br+i = Or^l. Bu t then 1 E {OA;-i, b/c-i} 

by 11.3, and a con tradic tion follows from 7.4. • 

12. SEQUENCES WITHOUT THE UNIT ELEMENT AND WITH EQUAL NORM SUMS 

Let a,i,bi E W, 1 ^ O; ^ bl;^ 1, 0 ^ i ^ k, k > 1 be such that for 1 ^ i ^ k we 

have |O,| + |b;| = | a 0 | + |&o|, <fi{a-i-i) = a*, (D;(6;_i) = b,, <^ E T(ez-), with 1 ^ e{ E W. 

Moreover, let ip^-i ^ V?i f ° r e a C u I ^ i ^ k. 

We will deal with such situation throughout this section. First, inductively define 

c'i,di E {O7-, b{}, 0 ^ i ^ k so that {c?;,d;} = {Oz, b;} and 

(i) c 0 = Oo if | a i | > |O0 |, and c 0 = Oo if |&i| > |&o|; 

(ii) if 1 ^ i ^ k, then c,- = O7- if \<n\ > |Oz--i|, and a — h if \bi\ > |b i - i | . 

We deno te by J the set {0 ^ i ^ k — 1; a = bi and c l + i = O,+i } U { 0 ^ i ^ k — 1; 

a = ci-i and Ci+i = bi+i}. Clearly, we have 

12.1 L e m m a . 0 ^ i ^ k — 1 belongs to J iff (fi+i{di) ^ di+i. 

12.2 L e m m a . If i E J, tiien i ^ 1 and i + 1 ^ J, i — 1 ^ J. For any i E J we have 

c,_i = ei+i, di+i = ei and either (fi = L c . , (D,+i = R-~+1, a = e , o e i + i , d»_i = e ^ d ; 

and c i + i = dil/ei+iy or (p{ = i?.e., ^ i + i = L " ^ , c; = e i + i o e;, d,_i = dif/a and 

Ci+i = ei+i\di. 

P r o o f . Consider an arbi trary i E J. By the definition, ci = Oi iff Co = Oo, and 

hence i ^ 1. By 6.7, ip~l and ^i+i cancel at a, and hence 8.3 can be applied. It 

follows that Ci mus t be of the form ei o a+i or a+\ o e7;. By the left-right symme try 

we can restrict ourselves to the case a — ^i°^i+i- By 8.3 pi = Le., (D;+i = R~l

 x and 

by 6.7 (f~1{di) = e;^d; and (/?7;+i(dz-) = diffei+i. If ^ r l ( d ; ) = c,_i, then i - 1 E J by 

12.1, and a-\ E {e7;_i oa, ei o c ? _ i } by the preceding par t of the proof. While this is 

и no t the case, we have ip{ (d,) = d;_i, and for the very same reason ipi+i{di) = d,-

as well. Thus i - 1 £ J and i + 1 £ J. • 

For every i E J we define 7r?; = Da, if <Di = Lei, and TT?- = LJJ.1 if +>i = H(i. 

If i E J, then 12.2 implies that 7rj does not cancel at a-\, 7r,(c2_i) = c,-+i and 

7Ti(di_i) = d i + i . 

We now put Iv = {0 ^ i ^ A:; i £ J} and r = card(Iv) - 1. Clearly Iv n J = 0. 

K U J = {i; 0 ^ i ^ k} and by 12.2 r ^ k/2- F o r e a c n * € -^> z' < & w e define 

/-j(i) = i + 1 if i + 1 E Iv, and /3{i) = i + 2 if i + 1 E J. Thus /3(i) = m i n { j ; j E Iv 

and j > i} is always the "successor" of i in Iv". 

For every i E Iv", i > 0 put t/'; = TTZ-I if z — 1 E J, and Tpi = ^ if i — 1 E Jv\ 
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12.3 L e m m a . Let i G K, i < k. Then ipp{i)(ci) — c ^ , i/^(i)(<i) = d 
\ci\ + \di\ = |c£(i)| -f- M/3(t)| and p>p(i) does not cancel at Ci. Moreover, ipi ^ V 
wJienever i > 0. 

ć(i) 

P r o o f . If (3(i) - 1 G K, then ?/>/?(-) = ^i+i does not cancel at ct- = (D^ (c;+i) by 
6.7. For (3(i) — 1 G J we have </'/j(i) = 7^+1, and thus by the observations preceding 
the lemma it remains to prove only that tpi ^ V'̂ /V To do that we need to consider 
just the case i — 1 G J and /J(y') - 1 G J. By the left-right symmetry we can choose 
the case 7rr_i = Dd-_1 and Wi+\ — D^1 . Then by 12.2 we have Ci = Jz-_i//e; = e 7 + 2 

and ci+2 = ei+2\di+i. Therefore ci+2 = (Ji_i//e7)\\c/?+i, and hence Jr_i ^ di+{. 
• 

12.4 L e m m a . O/, / O0 or bk ^ b0. 

P r o o f . Put Ki — '0/5-(o) for each 1 ^ i ^ r and assume O0 = O/c and b0 = bk-
Then ck = Hr...t€i(c0) ^ dk = « r . . . K>i(d0), {c/̂ JA-} = {c0,do}> and hence c0 = 

(K,r ... Hi)2(c0). However, by 12.3 and 9.7 this is not possible. • 

12.5 Remark . For 2 ^ A:' ^ k the sequences O- = O7-, bz- = b,, 0 ^ i ^ k' 
satisfy the conditions introduced at the beginning of this section. Clearly, c\ — c{ 

and d!{ = d{ for all 0 < i <C k'. 

12.6 Lemma. If tJjei"e exists j G Iv" witJj dj < Cj and j ^ k, then for all 

k ^ i ^ j + 1 tJie eJejJiejjt cl?- has no common factor with c? and d{ < Ci. 

P r o o f . By 12.5 we can assume i = A;. The lemma then follows from 12.3 and 

9.1. • 

12.7 Lemma. Let 0 ^ j O - 1, j G Jv be such that dj < Cj and suppose that 

there exists p G T(e), 1 ^ e G W with p ^ p^Y and \p(ak)\ + \p(bk)\ < \ak\ + \h\. 

Then j = A: - 1 ajjd there exist O, h G W such that either ck-i — dk//h and J/,_i = 

dkl/g, or Ck-\ = h\dh and dk-\ = g\dk. 

P r o o f . By 12.6, di and c-, liave no common factor for any i G K, j + 1 -$ i -$ A;. 

By the left-right symmetry p = Lf1 can be assumed, and so 9.2 can be used. Put 

g = p(ck) and h = p(dk)- As dk < Ck, we obtain from 9.2 that either p = Le 

and c/e = e\g, or p — L~x, e = „jt//i and c/, = e o a. However, ck = e^g implies 

V̂/e = L~l = cD-1, and so we have (D = L~l. Then <£/, = i?^, p^l(ck) = J/.///*', 

cD" 1 ^) = dkl/g and by 12.V A: - 1 G A\ As c^_i and <4_i have a common factor 

dk, we see that k — 1 = j . • 
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12.8 Lemma. For each 0 ^ i ^ k put a- = ak-i, b[ = bk-i and then generically 

define K', J', c[ and d[, 0 ^ i <C k. Then i G K' iff k-ie K, i G J' iff k - i G J 

and c[ = dk-i for i G K, while c\ = Ck-i for i G J. 

P r o o f . This is easy • 

1 3 . SEQUENCES WITH A PLATEAU 

Let di, bi G IV, a,i ̂  b,, 0 ^ i ^ k f 1, k ^ 2 be such that for 1 ^ i ^ k we have 
|«o| + |bo| < K l + I&il = |«;| + N > |afc+i| + |6fc+i|, a{ ^ 1 ^ bt- and for 1 ^ i ^ fc+1 
we have </?i(o{_i) = a;, pi(bi-\) = bi, (pi G T(ei), where 1 ^ et G IV. Further, let 

pJ~+\ 7̂  ¥i f° r e a c n 1 ^ i ^ &• 
The results of the preceding section can be used for a,, b,, 1 ^ i ^ k. To facilitate 

applications of these results, we define in a corresponding way the elements ct-,J; G 
{a-i,bi}; i.e. {ci,di} = {ai,bi} for 1 ^ i ^ k and 

(i) ci = ai if |a2| > |Oi|, and ci = bi if I&2I > \b\\\ 
(ii) if 2 ^ i ^ k, then c, = a?: if |a,| > |a7;_i|, and a = bi if |b;| > |6;_i|. 

We also put K = {k} U {1 -<: i <, k-l; c?; = a, and c7;+i = a7+i} U {1 ^ i ^ A; — 1; 
c{ = bi and c,+i = b{+\}. 

For r/7- < Ci, k 7- i G K we can use 12.7. However, 12.7 can be used also when 

Cj < di and 1 ^ i G A'. In that case we follow 12.8 and consider the sequence 

V̂ /T+p • • • i^f1- Thus 12.7 and 12.8 together yield 

13.1 Lemma, Let j G A' be such that either j / k and dj < Cj, or j 7̂  1 and 
Cj < dj. Then there exist f,g,h G IV such that either aj = f//g and bj = f//h, or 
°j — fj\f and bj = h\f. Moreover, j = k — 1 if dj < Cj, and j = 2 if Cj < dj. 

13.2 Lemma. Suppose that there exist f,g,h G IV and 1 ^ j ^ k such that 

either a.j = f//g and bj = f ////, or a,j = g\f and bj = h\f. Then k ^ 3 and the 

sequence (p\,..., (pk+\ can be reduced at {an, bo}. 

P r o o f . The left-right symmetry allows us to choose the case a,j = g\f, 
bj — h\f - As the inverse sequence <p,v+i' • • •, <P\l could be considered in place 
of p\,..., pk+\, we can omit the case j = k. Thus pj+\ G {Lg,L}x} and we can 
choose the case <Pj+i = Lg. Then dj+\ = aj+\ = f, Cj+\ = bj+i = g o (h\f) and 
thus dj+\ < Cj+\. If j f 1 < k, then j f 1 = k - 1 by 13.1. Moreover, 13.1 also 
implies that bj+i cannot equal g o (h\f) if j f 1 < k. Therefore k — j + 1 is true. 
As / and g o (h\f) have no common factor, <Pk+\ = ^/7\\f by 9.2 and 9.3. 
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Assume first fc ^ 3. Then 12.2 yields 2 ^ fc - 1 G N, and so ck-\ = bk-\ = h\f 

implies pk-\ = L~l. Thus 6fc_2 = / < afc_2 = h o (O\\f) and k - 2 <£ K gives fc ^ 4, 

(D/c_2 = - R ^ / , O/c_3 = b and 6/c_3 = g. Then |O/c_3| + |oA-_3| < |Ofc| + | ^ | and we see 

tha t k - 2 e K. But by 13.1 from ck-2 = bk-2 < ak-2 = dk_2 = h o (OW/) w e g e t 

fc — 2 = 1. Furthermore, from 9.2 and 9.3 we obtain pi = Rg\f. As O0 = h, b0 = g 

and p±p3p2p\ = R^lfLgL^Rg^ = L*(O, li, f ) , we can proceed to the case fc = 2. 

If fc = 2, then Oi = g\f, bx = h\f and <p2 = Lg. For px = R±l 9.4(a) and 9.5(a) 

show tha t only the cases O0 = 1, Oi = 60W6i, V̂ i = ^ i and b0 = 1, bi = OoWai> 

(Di = Rbx need to be considered. But Oi = b0\bv implies b\ = f = h\f and 

bi = aoW a i hnplies Oi = / = g\f. Thus p\ = Lf1 and from 2.1(a) we get pi = L"1. 

By 2.2(a) we have to consider two cases. First, let ei = b0//bx and Oi = eiW^o- Then 

g = ei = b0//(h\f), but this contradicts bj+i = g o (h\f). Hence ei = O0/Oi, 

bi = ei\\bo, and therefore h = eu f = b0, P\ = L~v, V' = PiP2P\ = R^LgL'1 

and ip(a0) = h = a0//(g\f) = R~\f(a0), il>(f) = g = R
g\f(f)-

 J t n o w remains to 

observe tha t Rg\fip = Rg\fii(g, /i, f)Rg~\f and V> = R~^fRg\f-ip. D 

13.3 L e m m a , fc ^ 3 and the sequence p\,..., ^ + 1 ean be reduced at {O0, b0}. 

P r o o f . Because of the left-right symmetry p\ = Lf1 can be assumed. We 

can also assume tha t |O2| < |Oi|, i.e. d\ = a\. If p2 = Lf1, then d\ < c\ by 4.2, 

and 13.1 together with 13.2 apply. Thus we can assume (p2 = Rf1. For di < c\ 

we can again use 13.1 and 13.2, and hence we need only to consider the cases when 

d\ < c\ does not hold. Let first p>2 = He2. Then Oi = a2//e2 and b2 = b\ o e2 

by 9.5(b). If p\ = Lei, then by 2.1(a) either bi = Oi o b0, or Oi = 61/60 = e i , or 

61 = (a\//a0) o 60, or 61 = a\//a0. Neglecting the cases with cli = Oi < 61 = ci , 

we thus have Oo = 1, Oi = O2/e2, 60 = e2 , bi = O2 and 62 = O2 o e2 . Then 

d2 = a2 < c2 = O2 o e2 and 13.1 can be applied if fc ^ 2. For fc = 2 use 9.6. We get 

(D3 = L~\, and so $ = p3p2p\ = i / ( e 2 , l , a 2 ) , I/J(1) = 1 and ^ (e 2 ) = e2 . If p\ = L"1, 

then 61 = (a0//ai)\b0 by 2.2(a), and hence di < ci. 

Let now p2 = i t " 1 . Then Oi = O2 oe 2 and 62 = b\//e2 by 9.5(b). If <Di = Lei, then 

we shall distinguish several cases according to 2.1(a). If ei = 61/60, then Oi 7̂  61/60, 

and hence Oi = eioO0 = (b\//b0)oa0. But then O2 = 61/60 and 13.2 can be applied. If 

e1 = O1/O0 and 61 = (Oi/Oo)ob0 or bi = O1/O0, then we get dv = Oi < bi = cx . This 

is also t rue if Oo = 1, Oi = ei and bi = Oi ob0. In the remaining cases Oi = ei oa 0 and 

either bx = ei ob0, or 61 = e i . Therefore O2 = ei , Oo = e2 and either b2 = (O2o60)/O0 , 

or 62 = a2//a0. Thus c2 = b2 > a2 = OI
2, and for 2 7̂  fc we can use 13.1. Hence fc = 2 

will be assumed. By 2.1(c) (D3 / Le3, suppose first tha t p3 = L"1. Then 62 7̂  e3 o b3 

andO 2 7̂  {62oO3, (62 /63)oO3 , 6 2 / 6 3 } . By 2.2(c) 62 = a2//a3, 60 = 1 = 63, a o = a 3 and 

we obtain p3p2p>\ — L~x,, R~yLa2 = v(l,a0,a2). Further, p>3 = Re3 is not possible, 
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as 9.4(c) implies a<i — a3//ao or ao = O2\«3 — both of which are contradictory to 

a2 = a>2 o ao- Finally, from 9.5(c) we also obtain tha t ps ^ It"1. This settles all the 

cases induced by pi = Lei and we can assume (Di = L71. As ai 7̂  e i \ a o , we obtain 

from 2.2(a) tha t bi = (ai//ao)\bo, and hence d\ = a\ <b\ = c\. D 

1 4 . TWO-POINT STABILIZERS 

Recall tha t by IV we denote the free loop with the basis X = X U {y} (see 

Section 7). Denote further by jr the epimorphism VV —» VV defined by ir(x) = x for 

x G X, and n(y) = 1. Clearly 7r(a) = a for all a G W. 

The epimorphism 7T induces an epimorphism II : Mlt(VV) -> Mlt(VV), I I (L a ) = 

L-(a), n ( H a ) = H7r(ft) for all a G IV. We easily get 

14 .1 L e m m a . U(p)(7r(a)) = n(p(a)) for any a G TV and p G Ml t (W) . 

14 .2 C o r o l l a r y . I I ( / I^(a , b,c)) = kq7(^)(7r(a),7r(b),7r(c)) a n d II( /v^(a, b, c)) = 

<vn (<p )(??"(#<) 1 n(b), 7T(c)), for any a,b,c G IV and p £ Mlt(IV) . 

14 .3 L e m m a . Let ai, bi G IV, a, 7-= b;, 0 ^ i ^ k -f 1 be such that k ^ V and foT 

eveTy 1 ^ i ^ k + 1 we have pi(ai-i) = a*, (D,(b,_i) = bi, pi G F(ez) with 1 7- er- G IV. 

Furthermore, let p^Y / <D, and |a0 | + |&o| < K l + \h\ = |a»| + |6;| > | a i + i | + | b , + i | 

for each 1 ^ i ^ k. Then p\,..., <Dfc+i can be reduced at {a^, bj} for some 0 ^ j ^ k. 

P r o o f . By 10.6 we have A: ^ 2. Suppose that {b i ,b l + i} = { l , e l + i } for some 

0 ^ i ^ k. Then e z + i = bi or b?:+1 = e ; + i , and 11.6 yields a reduction . If {br-, bz-+i} 7̂  

{V e l + i } for all 0 ^ i ^ k, then by 7.2 we have pi(ai-i) = aT- and (D;(bi_i) = bi for all 

1 ^ i ^ k+1. By 7.3 we can therefore find integers 5 and r such tha t 0 ^ s ^ s+r ^ k 

and | a s | + |b s | < | a s + , | + |bs+? : | > | a s + r + i | -f- |6 s+r+i | for every 1 ^ i ^ r. By 13.3 the 

sequence v?s+i, • • •, <Ds+r+i can be reduced at {a s , bs}. Examining the proofs of 13.2 

and 13.3 we see tha t (D s + r + i . . . ips+\ is equal either to K or to Kp or to pK, where K 

is a permutat ion tha t can be expressed in a respective / t - or /v-form, and ip G T(e) 

for some e G IV. Hence <£s+r+i • • -y?s+i equals I I ( K ) or U(K)U(P) or U(P)U(K) and 

with respect to 14.2 we obtain that ps+i,... , (D5+r+i reduces at { a 5 , b s } , too. D 

14 .4 T h e o r e m . Let VV be a free loop with a basis X 7̂  0. For any a,b,c G W and 

p G Mlt(VV) put ^ ( a , b , c ) = ( ^ - 1 H - \ ) W ( c ) L ^ ( a ) L ~ ( \ ) H v ? ( a ) W ( c ) ( ^ and t v ( a , b , c ) = 

0 V L^c)/^b)R^a)R{f{h)L^{c)/^a)p. If a,b G IV and a 7̂  b, then Mlt ( IV ) a 

(u.(p(a,b,c),v(p(a,b,c)', p G Mlt(VV) and c G IV). Aforeovei;, foT any idw 7̂  V' £ 

Mlt(IV)a > 6 and any c G IV we have ip(c) = c iff c e {a, b}. 
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P r o o f . By Lemma 10.4 it is enough to prove that whenever <D2- € T(e,) for 

1 7̂  e{, e W, 1 ^ i ^ k satisfy p\ ^ (D^1, (D, ^ (Dr^ and '0i = <pk ... ip\ fixes exactly 
two elements of W, then the sequence <Di,...,<Djt reduces at its fixed points. For 

2 ^ j ^ k put t/̂ j = V?j-i .. .p\pk . - - <Pj- Let a0, bo £ IV be such that V;i(ao) = floi 
^i(bo) = bo, «o ^ bo and for 1 ^ i ^ k put a,- = v??- . . .<pi(a0), b, = <pi . . .p\(b0). 
Then clearly ipj(aj-\) = Oj_i, i/;i(bj-i) = bj-i> ao = ft/v and bo = b/c. Let us assume 
that the sequence <pi,... ,<Pk cannot be reduced at its fixed points, and suppose first 
that there exist 1 ^ i\ < i2 ^ A such that |aZl | + |b7;J ^ |a2-2| + |b;2|. This implies 
that there exist 0 ^ j ^ A—1 and r < k such that for m = max{|a;| + |b t |; 1 ^ i ^ k} 
and any 1 ^ i ^ r we have |a^| + \bj\ < |aj+i| -f- |bj+i| = m > |a.j+r+i| 4- |bj+ r+i| (the 
indices are computed modulo A:). However, in such a case a contradiction follows from 
14.3. Hence |a,| + |br| = |a0| + |bo| holds for all 1 ^ i ^ k. By 11.5 and 7.2 we can also 
assume (Dz-(aj_i) = at- and (Di(b;_i) = b; for all 1 ^ i -$ A:. If |a t l | + |b{11 ̂  |aT-2| 4- |b;2| 
for some 1 ^ ii < i2 ^ A, we get a contradiction by the preceding part of the proof. 
However, |a t | + |b;| = |an| + |bo| for all 1 ^ i ^ A is not possible by 12.4. • 
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