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MULTIPLICATION GROUPS OF FREE LOOPS II
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This paper is a sequel to author’s work [1]. It is concerned with the structure of
the multiplication group of a free loop. First we show that every non-identity permu-
tation from the multiplication group of a free loop W fixes at most two elements, and
then we explicitly describe a set of permutations generating the point-wise stabilizer
MIt(W),, for arbitrary a,b € W, a # b.

In [4] Kepka and Niemenmaa asked whether there exists any loop @ such that
MIt(Q) contains a permutation fixing exactly two elements of @, but no ¢ € Mlt(Q),
idg # ¢ fixes three or more elements. Our result answers this question affirmatively.
However, their problem seems to remain open for finite loops.

The notation and terminology of [1] will be used without explanation or apology
in this paper. Our numbering here begins with Section 6; references to material in
Sections 1 through 5 concern the relevant parts of [1].

6. LEFT-RIGHT SYMMETRY AND CANCELLATION

First we augment the set of permutations determined by an element a of a quasi-
group @ by the (right) division D,: b — a/b. The division D, can be defined for
every a € @, and D;1(b) = b\a. The permutation group Tot(Q) = (L., Ra, Da;
a € Q) is known as the total multiplication group. If Q@ = Q(-,/,\,1) is a loop, then
the opposite loop Q°P = Q(-°P, /°P,\°", 1) is defined by a -°» b="b-a, a /°P b = b\a,
a\"b="b/a.

If @, and @, are two loops, then ¢: Q) — Q. is called an antihomomorphism if
it is a homomorphism of Q; to Q3".

If w is a loop word over the basis X, then w°” denotes the loop word defined by

(i) 2°? = a for every v € X U {1},
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(i) (u-v)°P = v°P - u?, (u/v)°P = v°P\u? and (u\v)°? = v°P/u°? for any loop
words u, v.

Clearly, w°? is a reduced word iff w is a reduced word. Thus for each a € W there
exists a unique a’®? € W with px(a®?) = (ox(a))°”. The loop W°P is again frec
and the mapping a — a°? obviously establishes an antiisomorphism of W onto WP,
Moreover, |a|] = |a®?| for every a € W.

For e € W we denote the set {Le, L7!, R, R} by T'(e) and the set {L., L
R;Y,D.,D;'} by O(e). For ¢ € {—1,+1} we put (L)°? = R%.,, (R5)°P

(D.)°? = D_.}, and (D-')°? = D.uv. Clearly we have

®
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~
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6.1 Lemma. Leta; € W, 0 < ¢ < k be such that a; = ¢i(ai—1), @i € Ofe;),
1 <i< k. Then al? = ¢"(a”,) for all 1 < i < k and |ai?| = |a;| for all 0 < i < k.

i—1

The property of the free loop expressed in this lemma will be known as the left-right
symmetry.

If a and e are elements of W, then there exist unique reduced loop words b, f over
X such that b = px(a) and f = gx(e). Let ¢ € O(e), say ¢ = L (or ¢ = L7} or
@ = Re or ...). We will say that ¢ does not cancel at a if f-b (or f\borb- for...)
is also a reduced loop word.

The mappings ¢; € O(e;), 1 #e; € W, ¢ = 1,2 are said to have complementary
types, if — after a possible exchange of ¢ and ¢, -— we have either ¢; = L., and
@y = De,, 0r @1 = Re, and @y = D!, or o1 = L7 and ¢y = R}

€1

6.2 Lemma. Leta,e € W and ¢ € O(e) be such that ¢ does not cancel at a.
Then a < p(a), |a] + |e| = |¢(a)| > |a] and |p(a)| = |a] iff p = DE.

6.3 Lemma. Let a,b,e,f € W and ¢ € O(e), v» € O(f) be such that ¢(a) =
Y(b), ¢ # 1, ¢ does not cancel at a and v does not cancel at b. Then a = f, b =e,

1

and ¢~ and ¥~ have complementary types.

6.4 Lemma. Let a,e € W be such that p € O(¢) does not cancel at a. Then ¢
does not cancel at i(a) for each i > 0.

6.5 Lemma. Let a,e € W be such that ¢ € O(c) does not cancel at a. Then

o~ cancels at p(a).

Note that ¢ € O(e) coincides with idy only when e =1 and ¢ € T'(e).

6.6 Lemma. Leta,e € W be such that idy # ¢ € O(e) cancels at a. Then one
of the following possibilities holds:

(1) a = 1 aﬂd @ € {Leny‘,DeaDgl}f or
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(iil) a=e and ¢ € {L7', R, De,D 1 or

(iii) ¢~ does not cancel at (a), o

(iv) e = k(a), where k € O(yp (a)), k does not cancel at a, and k and ¢ have
complementary types.

Proof. Letb, f and w be the loop words over X such that a = px (b), e = 0x(f)
and w is the composition of b and f induced by an action of ¢ upon a. If w is of the
form w -1 or 1-u or u/l or 1\u, then clearly b = 1 = a, f = u, and (i) applies. If
w is of the form u/u or u\u, then b = u = f, a = e, and (ii) can be used. As w is
not a reduced word, the only other possibility is that w is equal to one of u - (u\v),
(v/u) - u, u\(u - v), (v-u)/u, u/(v\uv) and (u/v)\u. Then v = px(¢(a)), and the
case u = f is covered by (iii). The remaining case u = b corresponds to (iv) — for
example w = b (b\v) implies e = a\p(a), ¢ = R and k = D;(la). O

6.7 Lemma. Leta,b,c,d,c € W and ¢ € O(e) be such that ¢ = ¢(a), d = ¢(b),
1 ¢ {a,b,c,d,e} and |a|] + |b] = |c| + |d|. Then |c| # |a| and the inequality |c| > |a|
yields that ¢ does not cancel at a, ¢ cancels at b, ¢~ does not cancel at d and o~ !
cancels at c. In particular, |c| = |a| + |e| and |d| = |b] — |e|.

Proof. Let |c| > |a|. It follows from 6.2 that ¢~! cancels at c. If ¢ did not
cancel at b, we would have |c| + |d| > |a| + |d| = |a| + |e| + |b] > |a| + |b]. This
contradicts our hypothesis, and hence ¢ cancels at b. To prove that ¢ does not
cancel at a, we shall start from the opposite. Assuming that ¢ cancels at a, we
obtain from 6.6(iv) that e = k| (a), k1 € O(c), k1 does not cancel at a and k; and ¢

have complementary types. If o1

cancels at d, then for similar reasons e = k2 (),
K2 € O(d) and Ky does not cancel at b and k2 and ¢ have complementary types. We
have ¢ # d, and hence K1 # k2. As e = ri(a) = k2(b), by 6.3 k7! and x; ' have
also complementary types. However, this contradicts the fact that x; and ¢ are of
complementary types for i = 1,2. Therefore ¢! cannot cancel at d. But then by
6.2, |a| + [0 = |a| + |e| + |d| = 2|a] + |¢| + |d| # |c| + |d| — a contradiction again. We
have proved that ¢ does not cancel at ¢. The rest is clear. O

7. LIFTING THE UNIT

The neutral element 1 vanishes in terms like ¢ - 1, 1 - a, ¢ € W, but it need not
cancel in terms a\l, 1/a, («\1)\1, 1/(1/a) etc. This twofold role brings certain
problems when dealing with the occurencies of 1 in reduced loop words. To deal
with these difficulties, we construct for each clement « € W the element a so that
cach occurence of 1 is substituted by y.



More formally, choose y with y ¢ W and put X = X U {y}. Let W be the free
loop with the basis X. Define recursively a mapping ¢ — @ of W to W by 1 = y,
z=xforz € X,a0b=ua-b, a\b=a\band afb=a/b.

Clearly, aob = aob, a\b = a\b and afb = a//b. Moreover, [a| > 0 for any
a€W. Putalso L, = L, Le' = LZ', R. = R etc. Note that for any a,b € W the
inequality a < b implies a < b and |a| < [b].

7.1 Lemma. Let p € T(e). 1 #e € W, c = p(a). Then ¢ # p(a) implies that
either

(i) a=1and ¢ € {L., R}, or
(i) e=aand p € {L7Y, R7'}.

Proof. Assume ¢ = L*! and use 1.1 and 1.2. O

7.2 Corollary. Let ¢ € T(e), 1 # e € W, ¢ = ¢(a). Then ¢ # o(a) iff
{a,c} = {1,¢}.

7.3 Lemma. Let a,b,c,d,c € W and ¢ € T(e) be such that ¢ = p(a), d = ¢(b),
a #bande # 1. Suppose that ¢ = p(a) and d = p(b). Then |c| + |d| < |a| + |b|
implies |c| + |d| < |a| + [b].

Proof. We can assume that ¢ = L*!'. It follows from 7.1, 2.1(c) and 2.2(c)
that |a| + |b] — |c| — |d| € {2]e|.2|al, 2|b|}. a

7.4 Lemma. Leta,b,c,d,c € W and ¢ € T(e) be such that ¢ = p(a), d = (D).
a#bande# 1. If |c| + |d| < |a] +|b], then 1 ¢ {a,b}.

Proof. For ¢ = L¥! this is a corollary of 3.1. O

7.5 Lemma. Leta,e € W, p € O(e) be such that |o(a)| < |a] = |¢~'(a)|. Then

¢(a) = ¢~ (a) and for idy # ¢ we have ¢ = DX! and cither e = aoa, ore =a # 1.

ore€ XU{l} anda=1.

Proof. Assume that idw # ¢. Then a = 1 implies ¢ = DF! with 2 € X U {1},

1

and so we can assume a # 1 for the rest of the proof. Clearly, p and ¢ ™" cancel at a.

-1

If ¢~ ! did not cancel at ¢(a), then ¢~ would not cancel at p~!(p(a)) = a by 6.4.

—1 cancels at @(a) and  cancels at p~'(a). Furthermore, L¥! # o # REL,

Thus ¢
as L, and R, do not cancel at a. The case ¢ = D! is covered by the hypothesis,
and so we can assume € # a. By 6.6 e = r;(a), I = 1,2, r; does not cancel at a.
k1 € O(p(a)) and Ky € O(¢~'(a)). From 6.6 it also follows that x; and ¢ are of

complementary types. As the same holds for ks and ¢ 7!, we see that xk, # ry. Now
p Yy tyl ¥
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6.3 applies to x1(a) = e = ry(a), and we obtain ¢(a) = a = ¢~ 1(a). To compose
irreducibly e from a and a, we cannot use a/a or a\a. Thus e = aoa, and ¢ = D%}

aoa

follows. a

7.6 Corollary. Let a,e € W, idw # ¢ € O(e) be such that either ¢ € T'(e), or
@ =D*! and 1 # a # e # aoa. Then there exists k > 0 such that |pi*t1(a)| < |p*(a)]
for every 0 < i < b — 2, |p*(a)] < |@*a)| if k > 1, and |¢**1(a)|] > |¢i(a)| for
every i > k. In particular, if the above conditions hold, then the set {|;7(_aj|, i >0}

is never bounded.

7.7 Proposition. Let a,c € W and ¢ € O(e) be such that idw # ¢. If
¢k(a) = a for some k > 1, then p = DX and either a € {1,e}, ore = aoa. If
a € {1,e} and e # 1, then p*(a) = a iff k is even. In the other cases p*(a) = a for
any integer k.

8. FIXED POINTS

8.1 Lemma. Leta,e € W be such thatidw # ¢ € O(e) cancels at a. If [a| > |e|,

then =1 does not cancel at ¢(a). In particular, |a] = |p(a)| + |e|.

Proof. Consider the alternatives of 6.6. O

8.2 Lemma. Fori=1,2let a,e; € W, idw # p; € O(ei), p1 # a2, |a] > |ei],
and suppose that ¢; cancels at a. Then ¢, and @, have complementary types and
a=¢7 (e2) =93 (e1).

Proof. By81, (,0;-1 does not cancel at ¢;(a) for i = 1,2. The rest follows from
6.3. O

8.3 Corollary. Letaj € W,0 < j < 2andfori=121let1 # e; € W,
@i € T(ei), wi(ai—1) = ai, pa # 97" Suppose that ¢7! and @y cancel at a; and
lai| > |es], i = 1,2. Then ag = ez, az = e and either ¢, = L, p3 = R;} and
ap=ecroey, or ¢y = R, p2 =L

1 _
e andaz; =eyoey.

8.4 Lemma. Leta; e W,0< j<2andfori=12lete; € W,idw # p; €
O(e;), wilai—1) = ai, p2 # @7'. If o1 does not cancel at ag and |ag| > |ea], then ¢,
does not cancel at a;.

Proof. Suppose that ¢, cancels at a;. By 6.5 we can then use 8.2 for ¢} = ¢!,
©h = 2. As 8.2 yields ap = @] ' (a1) = e,. we get a contradiction. O



8.5 Lemma. Leta; € W, 0 < i <k be such that for every 1 < i < k we have
wi(a;—1) = a;, idw # ¢; € O(e;), e; € W and |ag| > |ei]. Further, let Lp;ll # i
for each 1 < i < k — 1 and suppose that ¢, does not cancel at ag. Then ; for all
1 < i < k does not cancel at a;— and |a;| = (5 |c;]) + |aol.

1<j<i

Proof. The lemma can he proved directly by induction — the inductive step

is contained in 8.4. O

8.6 Lemma. Let a;,b;,c; € W, 0 <7<k besuch that k > 2 and for every 1 <
i < hk we have g;(ai—1) = a;, ¢i(bi—1) = bi, wi(ci—y) = ¢, i € T(ei), 1 £ e; € W,
Further, let cp;rll # @; forevery 1 <i < k—1. If a). = ag, by = by and ¢, = cg. then
ag = by or ag = cg or by = ¢p.

Proof. Assume that ai = ag, by = bo, cx = ¢y and that ag, bg, co are pairwise
distinct. Clearly, it suffices to obtain a contradiction for the case @y # apl_l. Assuime
that ¢ # cpl'l, and cyclically permute a;, b;, ¢; and p; so that |e;| = max{|e;|:
1 < i < k}. Denote |er| by m. The rest of the proof is divided into four steps. The
indices of a;, b;, ¢i, e; and @; are computed modulo k.

(i) Let 1 < i < Kk be such that |a;] > m. If ¢;4; did not cancel at a;, we could
apply 8.5 and obtain |a;] > |a;|. This is not possible, and so ;11 cancels at a;.
For a similar reason goi_l cancels at a;, too. Now 8.3 can be used, and we see that
Qi1 = €i+1, Giy1 = €4, and cither ¢; = L.,, @iy = ]?:’_ﬁrl and a; = e¢; 0 €4, O
wi = Re,, piy1 = L;frl

(ii) Let a1 > m. By (i) and the left-right symmetry we can assume that ag = e,

and a; = e;y1 o e;.

ap =ejoey, ax =e€;, ¢ =L, and o = 1?;_,1. As by # ag. we get from (i) that
IE] < m. Because p; = L. !m| < m is implied by (i), too. Thus ¢; cancels at by
and 991—l cancels at by. If ]EI = m and by # 1, then ¢ is by 6.6 equal to ~(bg), where
w € O(by) does not cancel at by. But then [by| # |bo| + |¢1], and from 7.1 we obtain
bo = 1. Hence |b;| = m if and only if by = 1. Dy, is complementary to L., . and so if
bp # 1, then by 6.6 ¢ cquals by Jby. Our argument can be repeated for o, ;. and
as ¢g # b holds, bg = 1 and b, = ey = ¢; [/co can he assumed. If @y = Ral does
not cancel at by, then |bs]| > [b)] = m. By (i) this is not possible, and therefore ¢
cancels at b;. But |es] < m implies that ey cannot he of the form by\e;. We have
by = (c1)/co)/e2. and thus ex = e = ¢ J/cg is the only way how ¢, can cancel at
by = ¢1J/co- But then [ca] > m as ez = ¢y J/(c1//co), and a contradiction follows from
(i). We see that any of |a;|, |b| and |c| must be less than or equal to .

(iii) Let |ag| > m. Then we can apply (i) for «f = ao. af = a1, ¢} = ¢
05 = vy

(iv) By (ii) and (iii) ¢, cancels at ag, bo, ¢, and g;fl cancels at ay, by, ;. Suppose

bo| and m > |cql.

etc. Thus m > |ag|, and hence also m >

that a = ag, ¢ = ¢, satisfy any of the conditions (i) and (ii) of 6.6. As by # ag # o
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and as ¢; € T'(e), none of these two conditions can be satisfied also by a’ = by or by
a' = ¢o. Thus 6.6 allows us to assume that e; = rny(bg) = kc(co), where ky € O(by),
ke € O(c1), Ky does not cancel at by, k. does not cancel at cyg, Ky and ¢, have
complementary types, and k. with ¢; have complementary types, too. By the latest
two statements r;b_l and k2! cannot have complementary types. As by # ¢, implies
Ky 7 ke, we get a contradiction by applying 6.3 to e; = kp(by) = Kke(co). O

8.7 Corollary. Each non-identity permutation contained in MIt(W) fixes at
most two elements of W.

9. COMMON FACTORS

For any a,b € W, a # 1 # b, a # b we will say that a and b have a common factor
w € W, if one of the following possibilities takes place.

(i) There exist u,v € W and ¢ € O(w) such that 1 cancels neither at u nor at
v, and a = ¥Y(u), b = P (v).
(i1) There exist w € W and ¢ € T'(u) such that a = w, b = ¥(w) and ¢ does not
cancel at w.
(iii) There exist w € W and ¥ € T'(u) such that b = w, a = ¥(w) and ¥ does not
cancel at w.

9.1 Lemma. Let a,b,c,d,e € W, 1 ¢ {a,b,c,d,e}, ¢ € O(e) be such that
w(c) = a, p(d) =band d < c. If p does not cancel at ¢ and |c| + |d| = |a| + |b|, then
b < a, and a and b have no common factor.

Proof. By 6.7, o1 does not cancel at b, and hence by 6.2 and the hypothesis
we have b < d < ¢ < a. Suppose that w is a common factor of a and b. Following
the definition, we shall distinguish three separate cases. Symbols u, v and ¥ have
the same meaning as in the above definition.

(1) If a = ¥ (u), b = (v), then ¢ = v would imply that d = v, and ¢ would not,
cancel at d. This contradicts 6.7, and hence ¥ # . But then 6.3 implies ¢ = w,
u=-e,and 6.2 yields w < b < ¢ = w.

(ii) If b = ¢ (a) and ¥ € T'(u) does not cancel at a, then a < b < a by 6.2.

(iii) Let a = ¥(b), ¥ € T(u) and suppose that 1) does not cancel at b. Then ¢ =
is not possible, as ¢ = b would follow. Hence ¢ # v, and by 6.3 u = c and b = .
As d =71 (b) = ¢7!(e) # 1, we obtain from ¢~ € O(e) that p=! € {L¢,R.}. As
¢~ ! and ¥~! have complementary types, we see that y~' = DF!. However, this
contradicts ¥ € T'(u). a



9.2 Lemma. Let a,b,c.d,e € W be such that 1 ¢ {a,b,e}, a # b and for
o = LE, ¢ = p(a), d = p(b) let |a| + |b] > |c| + |d|. If a and b have no common
factor and |b| < |a|, thena = ¢\cande=djJbif o = L., anda=eocand e =j/d
ifo=L7

Proof. This follows directly from 2.1(c) and 2.2(c). a

Applying the left-right symmetry to 9.2, we obtain

9.3 Lemma. Let a,b,c,d,e € W be such that 1 ¢ {a,b,e}, a # b and for
0 = R, ¢ = ¢(a), d = p(b) let |a| + |b] > |c| + |d|. If a and b have no common
factor and |b| < |al, then a = ¢/le ande =b\d if o = R., and a = coe and e = d\b
ifo=R 1.

In the rest of this section we state some further auxiliary assertions.

The correspondence between a € W and a°” can be used to dualize the results

obtained in [1] for the left translations of W. We will do so explicitly for Lemmas
2.1 and 2.2. We obtain

9.4 Lemma. Leta,b,c,d,¢c € W be such that ¢ = R.(a), d = R.(b), a # b, and
e # 1. Then exactly one of the following possibilities takes place.
(a) |c| + |d| > |a| + [b]. Then cither
(1) c=aoce,d=boeorc=e,a=1,d=boeorc=ace,b=1,d=e, or
(2) e=b\d,1#d, andc=aoceorc=e,a=1. or
(3) e=a\¢,1#c,andd=boeord=e, b=1.
(b) le| +|d| = |a| + |b]. Then cither
(1) b=dffe,andc=aoceorc=e,a=1,or
(2) a=cfle,andd=boeord=e,b=1,or
3) d=1,e=0b0\1,andc=aoeorc=e,a=1, or
(4) c=1,e=a\l,andd=boeord=ce,b=1.
(c) |e| +1d| < la] +|b]. Then cither
(1) a=cfle and b=dJe, or
(2) e=0\d and a = cjfe. or
(3) e=a\c and b =dje.

9.5 Lemma. Let a,b,c,d.c € W be such that ¢ = R-'(a), d = R7Y(D), a # ).
and e # 1. Then exactly one of the following possibilitics takes place.

(a) |c| +|d| > |a|] +|b]. Then cither
(1) c=affe andd="bJe, or
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(2) e=d\b and c=aje, or
(3) e=c\a andd="bJe.
(b) e +|d] = |a| + |b]. Then either
(1) d=bjJe,anda=coeora=e,c=1,or
(2) c=ajfe,;andb=doecorb=e,d=1, or
3 b=1,e=d\l,anda=coeora=e,c=1, or
(4) a=1l,e=c\1l,andb=doeorb=e d=1.
(¢) |c| +|d| < la| + |b]. Then either
(1) a=coe,b=doeora=e,c=1,b=doeora=coe,d=1,b=e, or
(2) e=d\b,1#b,anda=coeora=e,c=1, or
3) e=c\a,1#a,andb=doecorb=e,d=1.

9.6 Lemma. Let a,b,u,v,c,d,e € W, a # b, 1 # e, o € T(e) be such that
b=wuowv,ac€ {u,v}, c=pla),d=¢b) and |c| + |d| < |a|] + |b]. Then ¢ = L' or
¢=R;".

Proof. The left-right symmetry allows us to assume ¢ = L¥!. If ¢ = L., then
by 2.1(c) e = djfb and a = e\c = (dff(uov))\c > a. If ¢ = L7, u # e, then
by 2.2(c) we have either a = boc, or e = bJ/Jd with a = eoccora =e, c=1. If
a=boc=(uow)oc, then we get again a < a, which is a contradiction. If e = b//d,
then a < b < e < a also implies a < a. O

9.7 Lemma. Leta; € W. 0 < i <k be such that for every 1 < i < k we have
wilai—1) = aq, idw # @; € O(e;), e; € W. Suppose that ¢; cancels at a;_; for no
1 <i< kandthat 1 < k. Then (py ... ¢1)%(ao) # ao.

Proof. 1If p; = 99/11—1‘ for every 1 < 7 < k, the define s as £ + 1. Oth-
erwise denote by s the least i > 1 with ¢; # up,;ll_i. Then (¢p...1)% =
Ok PsPhtl—s - - - 1. Suppose that s—1 > k/2. If k = 2t is even, then ¢, = cp;ll. If
k= 2t+1isodd, then ;1) = apf_:l. As (re1)? #idy by 7.7, we see that s—1 < k/2.
Hence A+ 1 > 2s and (gr ... 91)? = o7 07! (Orgis - 0) 2051 ... If
k+1=2s, then pri1—5 = . does not cancel at apy)—s = @rr1—-s(ar—s) by 6.4. If
k > 2s. then e; < ax—, and ¢, does not cancel at axq1—s = Pry1—s(ar—s) by 8.4. Let
i be the least integer such that s +1 <i <k and ¢; cancels at @;—1 ... ps(Qrt1-5)-
fs+1<i<hk+1—s, then obviously e; < agyi—s. For h+2 -5 < i <k we
have e; < agt1—s by €; = expi—i. Thus e; < arg1-s € @iz ... @s(ary1-5) and
8.4 can be applied to a; = @ipi—1(pi—a...@s(ary1—s)). Therefore ¢; cancels at
©ic1 - ps(arrr1—s) for no s <i <k, and hence ag < (@ ... ¢1)%(ao). O
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10. REDUCTION

For any a,b,c € W define p(a,b,c) = Rb_\chaL,',"R,,\C and v(a,b,c) = L:/lhR(,
R;]Lc/a. If ¢ € MIt(W), we denote by p,(a,b,c) and vy,(a,b,c) the permutations

e~ u(p(a), p(b),¢(c))p and ¢~ 'v(p(a), p(b),¢(c))p, respectively.

10.1 Lemma. Leta,b,c€ W,a#b, o,m € MIt(W). Then

(1) pela,b,c)™ = pp(bya,c) and vy(a,b,c)™t = v, (b, a,c);
(ii) vp(a,b,c)’? = py(a,b,c) and vy(a,b, )P = p,(a, b, c);

(iil) mpp(a,b,e)r™t = pp-i(w(a), 7(b),7(c)) and wv,(a,b,c)r?

(), m(c)).

= Vyp-1(m(a),

10.2 Corollary. Let) € MIt(W)a and m € MIt(W). Then npn~t € (uy,(7(a),
m(b),c), vo(m(a),n(b),c); c € W,p € MIt(W)) iff ) € (u,(a,b,c),vy(a,b,c); ¢ €
W, € MIt(W)).

10.3 Lemma. Let a,b,c € W, a # b, ¢ € MIt(W) and & € {u,(a,b,c).
vy(a,b,c)}. Then k(a) = a, x(b) = b and k(d) # d for every d € W, a #d #b.

Proof. By direct computation we obtain x(a) = a, k(b) = b. By 8.6 it remains
to prove that xk # idw. It follows from 10.1(iii) that we can assume k € {u(a,b,c),
v(a,b,c)}. We have v(a,b,c) = u(a,b,c)°? for any a,b,c € W. Thus we need to
verify that u(a,b,c) # idw. Put ¢; = Rb”\lc._ w2 = La, @3 = Lb'l, w4 = Ry\.. We
have ¢; # «pj_l whenever ¢; # idw, 1 < i,j < 4, and hence u(a,b,c) = idy iff
@; = idw for all 1 <7 < 4 (use 1.5). However, this is not possible, as a # b. a

Let 1 #£e; € W, p; € T(e;), 1 <@ < kand let ag,bgp € W, ap # by. By a;, b;,
1 <1 < k denote the elements a; = p;(a;—1), bi = @;(bi~). We say that the sequence
i, 1 <1 < k reduces at {ag,bo} whenever for some t > 0 we can find a sequence
Y; € T(f;), 1# f; € W, 1< j < tsuch that for ¢o = ag, dg = bo, ¢; = ¥;(cj—1) and
d; = ¢;(dj—1) we have
(i) ¢t = a and d; = by,

i) 3 (egl+1dl) < 3 (lail +[bal),

1<G<t 1<i<k
(iii) either there exist such w € W, 7 € MIt(W) and ~ € {ux(ao,bo,w)*",

vr(ao,bo, w)*} that ¢p...o1 = ... Y1k, or there exist w € W, m €
MIt(W) and x € {[L,r((l.k,l)k,’w)il,V,r((l.k,l)/\-,U')il} such that ¢r ... =
:‘\]’l/)t . -1/)1‘

Note that we have not excluded the case t = 0.
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Let now o1, ..., @k be a sequence of permutations such that ¢y ... ¢ fixes exactly
two elements of W and ¢; € T'(e;), 1l #¢; € W foreach 1 < ¢ < k Let ag # by be
the points fixed by the permutation and let a; = ¢;(ai—1), bi = pi(bi—1) for 1 < i < k
(we have ap = ap and by = by). We say that the sequence ¢, ..., px reduces at its
fized points if there exist 1 < »,s < k such that the sequence ¢ , ry1,.. ., Ps—1,¥s
reduces at {a,—1,0,—1} (the indices being computed modulo k).

Assume now that the sequence 1, ..., @, satisfies ¢; # cp;ll foralll1<i<k-1
and put ¥ = g ... and n(¥) = S |ai| +|bi|. As @k, ..., are determined by

1<i<k

¥ uniquely, n(v) is well defined for z;n;/ 1 € MIt(W) that fixes exactly two elements
of W. Suppose that n(¢) is the least possible with respect to the property ¢ ¢
(1x (ao, bo, w), Vx(ag, bo,w); w € W, € MIt(W)) (running over all possible choices
of ap and bp). The minimality condition posed on n(y) together with 10.2 yield
P # ‘P;I Put ¥; = ¢j_1...¢19k ... for any 1 < j < k. Clearly, 91 = 9 and
n(y;) =n(y) forall1 < j < A Moreover, ¥; ¢ (pir(aj—1,bj—1,w),vx(aj—1,bj_1,w);
w € W,r € MIt(W)) — this follows again from 10.2. If the sequence ¢y,..., ¥k
can be reduced at its fixed points, we can find 1 < j < k and ¢’ € MIt(W)
such that ¢/'(a;—1) = aj—1, ¢¥'(bj=1) = bj_1, n(¥') < n(v), and for some ~ €
{ptr(aj—1,0j—1,w), v (aj—1,05—1,w); 7 € MIt(W),w € W} we have ¥; = ¥'x or
¥ = xp’. Thus we have proved

10.4 Lemma. Suppose that every sequence ¢; € T'(e;), 1 76 e;, €W, 1<i<k
such that ¢y, ... fixes exactly two elements of W, o; # gpi+1 forl1 <i< k-
and oy # cpl_l reduces at its fixed points. Then for any a,b € W,a # b we Imve
MIt(W)ap = (pp(a,b,¢),vp(a, b,c); ¢ € MI(W) and c € W).

The rest of this paper is devoted to the proof that each sequence ; satisfying the
hypothesis of 10.4 can be reduced at its fixed points. Like in Sections 2, 3 and 4 we
proceed by considering the norm sums |¢; ... ¢1(a)| + |p; ... p1(b)].

10.5 Lemma. Let a;,b;,¢.f € W, a; #b;, 0<i <2,e#1# f be such that
laol + [bo] < lar| +[b1] > laz| + [ba, a2 = a1/ f. b2 = bl/f, ap =e-ag and by = eobo.
If by = f or by = e, then the scquence L. RIT‘ can be reduced at {ao,bo}.

Proof. Fromby = fitfollowsthat by = b,/f = (e-f)/f = e. Asby = e similarly
implies by = f, we see that the assumptions by = f and by = e are equivalent. Under
these assumptions we have |ag| + |f] < |ai| + le| + |f] > laz| + lel, a2 = a\/f,
ay = e¢-ap and by = eo f. We put ¢ = R 'L,, — clearly ¢(ag) = a and
O(f) = e. Further, Rf_lL = NvL"Rm,R 'Lo = yw(ag, f,e - ag). This proves the

e

a2

lemma whenever 1 € {ap,az}. Suppose that ag # 1 # a>. Then we have to show
that |La, (f)] 4 |Las (a0)| < |ai| + [bs|. However, L,,(f) = a; = e - ag, and hence it
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suffices to prove that |az| + |ag| < [b1] = |e| +|f]. We have e # 1 # ay and f # e\b,,
and thus 9.5(c) implies that either a; = az o f, or f = ax\«a,. Similarly, by 2.1(a)
either a; = eoag, or e = a; JJay. Nevertheless, a; = a0 f and a; = eoag cannot hold
simultaneously, as ag = f = by would follow. Thus a; = e o qp implies f = ax\ay,

and we get |az| + |ao| < |az|+ |ai| = [f]. If e = a; Jao. then for a; = ag o f we obtain
lao] + |az] < |ao] + |ai| = |e|, while for f = az\a1 we have |ag| < |e| and [az] < |f].
a

10.6 Lemma. Let a;,b;,e, f € W, a; # b;, 0 < i <2 be such that for p; € T(e),
2 € T(f), e #1# f, o1 # ;' it holds a; = @j(a;j_1), bj = ¢;(bj—1), j = 1,2.
If |ba| + |az| < |bi| + |a1]| > |bo| + |aol|, then the sequence ¢, py can be reduced at
{ao,bo}.

Proof. Taking into account the left-right symmetry, we can assume ¢; = L*!.
It follows from 2.3 that then ¢, = R?l can be assumed as well. Thus there are four
different cases to be investigated. However, the case ¢ = L71, @y = Rf"1 can be
reduced to the case 1 = L. 92 = Ry, as (Rf_lL;')‘1 = L.Ry and (L.R;)°? =
Reur Lfop .

If o1 = L7' and ¢, = Ry, then by 2.2(a) we can assume b; = e\by. Then
by # by//f, and hence by 9.4(¢) a1 = az//f and f = b;\b2. Then e = a;//as by
2.2(a) and b; = (a1 a2)\bo = ((a2/ f)Ja2)\bo = ((a2/(b1\b2))/a2)\bo leads to a
contradiction.

Therefore we can have ¢; = L. in the rest of the proof. By 2.1(a) we can assume
that either by = eo by, or ap = 1 and a; = e = by J/by.

Let now ¢ = Ry and suppose first that a; = e =0, [y and ag = 1. If a; = a2/ f,
then ay = by, f = bp and by = by - f = by - by, az = by = by - ag.- This together
with @y = LblL;lle(,Lbl//,,“ = Ly, v(bo, 1,b1) yields a reduction. If ay # az// f,
then f = a;\a2 and b, = by//f by 9.4(c). However. f = a;\az = (b1 Jbo)\a2 =
((b2/] f)Jbo)\az2 leads to a contradiction. Thus we can suppose that b, = e o bg.
Then by # by//f and 9.4(c) implies f = b;\by and «; = az//f. Therefore we have
ay = az J(b1\b2) = azJ/((e o by)\b2). By 2.1(a) either ¢ = ay, or e = a; fap — but
clearly none of that can hold.

Assuming ¢ = R;l let us again suppose first that a; = ¢ = by J/bo and ag = 1.
By 9.5(c) then either a; = f and by = bao f, or f = ax\a;. If a1y = f = e and
by = byo f,then e = b, Jbp = (byoe)Jbo. If f = ay\a1 = az\(b;//bo), then by 9.5(c)
either by = f, or b, = by o f. none of which is possible. Thus we can assume that
by = eoby. If by = byo f, then f = by and we can use 10.5. If a; = aso f, then by 10.5
we can omit the case a; = e oagy. Thus for a; = as o f we get from 2.1(a) that either
a; = e, or e = ay flag. Then b, is equal to one of (ay o f) o by and ((az o f)/ao) o bo.
By 9.5(c) ay = ayo f, by # byo f imply f € {b;,02\01}, and thus we always obtain
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a contradiction in such a case. If a; # ay 0 f and eo by = by # by o f, then it follows
from 9.5(c) that f = a; = by\\b1, and hence a; = by\\(e 0 bp). By 2.1(a) in such a
case either e = ay, or e = a1 Jap — a contradiction again. O

11. SEQUENCES CONTAINING THE UNIT ELEMENT

11.1 Lemma. Let c,d,e,g € W and ¢ € T(e) be such that 1 # e, d = ¢(1),
¢ =¢(g\1) and |d| + |c| < |g|. Then ¢ =1 and either

(i) d=gandp e {Lg,Rg_\\ll}, or
(i1) d = (g\1)\1 and ¢ € {Lg_\\ll,R(g\\l)\\l}.

Proof. If p = L¥!, then we can use 3.1. If p = R¥!  then p°P L:et,ﬁ.,
(9\1)°? = 1//g°?, and we obtain the result again from 3.1. O

11.2 Lemma. Let c,d,e,g,h € W and ¢ € T(e) be such that e # 1 # h,
d = 1), c=p(g\h) and |d| + |c| < |g| +|h|. If ¢ # 1, then ¢ = h, d = ¢g and
¢ = Lgy. If c =1, then either

(i) d=1)(g\h) and ¢ € {Rg_\\lhyLl//(g\\h)}; or
(i) d=(g\h)\1 and ¢ € {L \\,, Rigyny\1}-

Proof. Like above, employ 3.1. (]

11.3 Lemma. Leta;,b; € W,a; #b;,0< i< kDbesuchthatk >2,byg=a; =1,
by = ao\1, and for 1 < i < k let |a;| + |bi] = |ao| + |bo] = |ao|, pi(ai-1) = ai,
wi(bi—1) = bi, p; € T(e;), with 1 # e; € W. Further, let cp;rll # ; for each
1 < ¢ < k— 1. Then either there exists 1 < j < k — 1 such that the sequence
@j, .-,k can be reduced at {aj_q1,bj—1}. or for i odd b; = a;—1\1, @; = 1 and for i
evena; =b;—1\1, 0, =1,1 <i<k.

Proof. Suppose that b; = a;-1\1, a; =bi-; =1 and 1 <7< k—1. Then 11.1
can be applied for g = ai—y, ¢ = €41, ¢ = bip; and d = aj4;. If d = (a;-1\1)\1,
then a;41 = 0;\1 and b;y; = 1. If d = g, then a;—; = @41 = ¢, bimy = biy; = 1 and
by 11.1, @iy € {R;\\Il,Lg}. Applying 11.1 to ;' we obtain ¢; ' € {R;\\ll,Lg}, too,
and S0 Y419 = (LgRg\\l)il. As LyRg\; = n(g,1,1), we see that the lemma can be
proved by induction. a

11.4 Lemma. Let a;,b; € W, a; # b;, 0 < i < k be such that k > 2, and for
1 <1 <k let |ag| + [bi] = |ao| + bol, @i(ai—1) = ai, pi(bi—1) = bi, i € T(e;), with
1 # e; € W. Furthermore, let <,9i_+ll # @; for each 1 < i < k — 1. Suppose that there
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exists 2 < j < k—1 with b; =1 so that bj_; = ej or bj;.\ = e;41. Then there exists
1 < r < k such that at least one of the following possibilities is true:
(i) r<k—1,b, = ar41 = 1 and either b,y = a,\1, or b, ;1 = 1/ a,;
(it) » > 1, b, = ap—1 = 1 and either b,_y = a,\1, or b,_y = 1//a,;
(iil) » < k=1, ar = b4y = 1 and either a,4+1 = b, \1, or a,4+1 = 1//b,;
(iv) » > 1, ar = b,—1 = 1 and either a,—; = b,\1, or a,—; = 1/b,.
Proof. As we can consider ap,zl, ey apl—l in place of ¢y, . .., ok, we can assume
that ¢; = bj—1. Then clearly ¢; € {Lb_1 Rb_;l_l}’ and by the left-right symmetry

ji—17770,

we can choose the case ¢; = L,Til_l‘ By 3.1 either a; = bj—1\aj—1, or aj—; = 1 and
bj—1 = 1//a;. In the latter case (ii) applies for » = j, and so a; = bj—1\aj—1 can be
assumed. If aj_; = 1, then (iii) holds for r = j — 1. Finally, for aj_; # 1 use 11.2
with oy = pjp, e=ejp1, 9=0j_1, h=aj_1. As¢j #L, = cp]._l, we see that (i)

takes place for r = j. O

11.5 Lemma. Let a;,0; € W, a; # b;, 0 <1 <k be such that k > 2, and for
1 < i <k let |a;| + |bi] = |ao] + |bol, wi(ai—1) = ai. @i(bi—1) = b;, @; € T(e;), with
1 # e; € W. Further, let ',9;_', # p; foreach 1 < i < k-1, g # <pl_l and let
ay = ag, by = bg. Then there exists no 0 < j < k with 1 = b so that bjy; = ej4
or bj_; = ¢; (the indices being computed modulo k). or the sequence ¢y, ..., ¢y can
be reduced at its fixed points.

Proof. Assume the contrary. First, cyclically permute a;, b;, e;, ¢; so that the
hypothesis of 11.4 is satisfied. Considering the four possibilities of 11.4, we see that
by exchanging a; and b; we can reduce (iii) and (iv) to (i) and (ii). As the inverse
mappings goi"l can be used in place of ;, it is enough to consider just the case (i).
Because of the left-right synunetry, we can choose the case 0,41 = a,\1. Finally.
using cyclic permutation we can assume r = 0. Then the hypothesis of 11.3 gets
ol < |ar| + 01| < ... < |ax] + |bx] — a contradiction.

O

satisfied, and we obtain |ag| +

11.6 Lemma. Let a;,b; € W, a; # b;, 0 < i < k be such that k > 3. and for
1<i<klet pi(ai—1) = ai, gi(bi—1) = bi, @i € T'(e;). with 1 # e; € W. Further. for
cachl1 <1< h—1 let 39;:1 # i and |ag| + o] < |ar| + 101} = Jai| +|bi] > Jar| + |bx]-
Then the sequence ¢y, ...,pr—1 can be reduced at {a;,b;} for some 2 < j < h — 3.
or there exists no 1 < j < k — 1 with b; = 1 such that bjy| = ¢j4 or bj_; =¢;.

Proof. Start from the contrary and suppose that there exist 1 < j < A —1 with
b; = 1 such that bjy; = ¢j4, or bj—; = e;. Then 7.4 implies that 2 < j < b - 2.
Proceeding similarly as in the preceding proof, we see that we can assume existence
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of such 2 <r < k—2that b, = a,1; =1, byy; = a,\1. But then 1 € {ap_1,bx_1}
by 11.3, and a contradiction follows from 7.4. O

12. SEQUENCES WITHOUT THE UNIT ELEMENT AND WITH EQUAL NORM SUMS

Let a;, 0, e W, 1#a; #b; #1,0<1i < k, £ > 1 be such that for 1 <7 <k we
have |a;|+|b:| = |ao|+|bol, @i(ai—1) = ai, i(bi—1) =i, p; € T'(e;), with 1 # e; € W.
Moreover, let 4,0:_11 # p; for each 1 <@ < k.

We will deal with such situation throughout this section. First, inductively define
civd; € {ai,bi}, 0 <@ < ksothat {c¢;,di} = {a;,b;} and

(i) co = ag if |CL1| > |a0|, and ¢g = bg if |b1| > ll)oi;

(i) if 1 <4 <k, then ¢; = a; if |a;| > |ai=1], and ¢; = b; if [b;]| > [bi—1].

We denote by J the set {0 <i<k—1;¢; =b; and ¢ipq = aig JU{0 < i <k —1;
¢; = a; and ¢iy1 = biyq }. Clearly, we have

12.1 Lemma. 0 < ¢ <k — 1 belongs to J iff p,41(d;) # dit1.

12.2 Lemma. Ifi€ J,theni>1landi+1¢ J, i—1¢ J. Foranyi € J we have
Ci—1 = €341, di+1 = e; and either i = Lei, Yit1 = RC—;LU
and ciyy = diffeirr, or 9; = R, piy1 = L%,

Ciy1 = €i+1\\di'

ci = ejoeip1, dim1 = e;\d;
Ci = €41 © €5, di—l = di//ei and

Proof. Consider an arbitrary ¢ € J. By the definition, ¢; = a; iff ¢g = ag, and
hence i > 1. By 6.7, @fl and ;41 cancel at ¢;, and hence 8.3 can be applied. It
follows that ¢; must be of the form e; o e;4; or e;41 o e;. By the left-right symmetry
we can restrict ourselves to the case ¢; = ¢;0e;41. By 8.3 ¢; = Le,, piy1 = R;:l and
by 6.7 goi—l(di) =e;\d; and @iy (d;) = d;fJeiy. If Lp;l(di) =c¢;_1, theni—1€ J by
12.1, and ¢;—1 € {ei—10e;,e;0¢;_1} by the preceding part of the proof. While this is
not the case, we have ¢; ! (d;) = d;_, and for the very same reason @;y(d;) = d; |
aswell. Thusi—1¢ Jandi+1¢ J. O

For every ¢ € J we define m; = Dy, if ¢; = Le,, and 7; = D;‘_l if o; = 17, .
If i € J, then 12.2 implies that m; does not cancel at ¢;—q1, mi(ci—1) = ¢y and
mi(di—1) = diga.

We now put X = {0 <i<h;i¢J}andr =card(V) — 1. Clearly ' nJ = 0.
KNuJ={i;0<1i<k}and by 122 r > k/2. For each i € IV, i < k we dcline
piy=i+1ifi+1€ K,and 3(i) =i+2ifi+ 1€ J. Thus (i) = min{j; j€ I
and j > i} is always the “successor” of 7 in IV.

Foreveryi € K,i>0put ¢, =m_1ifi—1€ J,and ¢; = p; if i — 1 € K.
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12.3 Lemma. Let l € I\', Z < k Theu wﬁ(i)(('i) = C,d(i)) 1,[}5(1)((11) = d;g(,‘),
lei] + [dil = lepy| + |dpg)| and pg) does not cancel at c;. Moreover, ; # z,"vg(ll.)
whenever i > 0.

Proof. If B(i)—1 € K, then ¢g(;) = @ip1 does not cancel at ¢; = cp,-;ll (cit1) by
6.7. For (i) — 1 € J we have '5(;y = 41, and thus by the observations preceding
the lemma it remains to prove only that ¢; # z/)ﬁ‘(li)‘ To do that we need to consider
just the case i — 1 € J and (i) — 1 € J. By the left-right symmetry we can choose

the case m;i—; = Dy, _,

and m4, = D;_IH. Then by 12.2 we have ¢; = di—1 JJe; = €42
and ¢;12 = €;42\diy1. Therefore c;yo = (di—) Je:)\di+1, and hence d;_; # diy,.

O

12.4 Lemma. ay # ag or by # bg.

Proof. Put k; = ¢gi( for each 1 <7 < r and assume ag = ay and by = by.
Then ¢ = kr...K1(co) # di = Kr...K1(do), {cx.di} = {co,do}, and hence ¢y =
(Kr...51)%(co). However, by 12.3 and 9.7 this is not possible. a

12.5 Remark. For 2 < &' < k the sequences a} = a;, b, = b;, 0 < @ < A/

satisfy the conditions introduced at the beginning of this section. Clearly, ¢} = ¢;
and d; = d; for all 0 < i <A,

12.6 Lemma. If there cxists j € I with d; < ¢; and j # k, then for all
k>1i>j+ 1 the element d; has no common factor with ¢; and d; < ¢;.

Proof. By 12.5 we can assume ¢ = k. The lemma then follows from 12.3 and
9.1. O

12.7 Lemma. Let0<j < k-—1,j € K besuch that dj < c; and suppose that
there exists ¢ € T(e), 1 # e € W with ¢ # ¢ " and |@(ax)| + |(b)| < |ax| + [bx].
Then j = k — 1 and there exist g,h € W such that cither ¢,—y = di/h and dj.—, =
di[lg, or ck—1 = h\di and dy—, = g\d.

Proof. By 12.6, d; and ¢; have no common factor for any ¢ € IV, j +1 < i < A.
By the left-right symmetry ¢ = L*! can be assumed, and so 9.2 can be used. Put
g = plek) and h = p(dy). As di < ¢, we obtain from 9.2 that either ¢ = L.
and ¢, = e\g, or ¢ = L7!, ¢ = diJJh and ¢x = ¢ o g. However, ¢, = e\g implies
or = L7 = ¢!, and so we have ¢ = L' Then ¢ = R,, ¢ (ck) = di//h,
ka__l(dk) =dy /g and by 12.1, k — 1 € . As ¢;—; and dj—; have a common factor
dy, we see that k — 1 = j. O
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12.8 Lemma. For each 0 < i < k put a; = ax—_;, b, = bi—; and then generically
define K', J', ¢t and d., 0 < ¢ < k. Theni € K' iffk—ie K,ie J if k—ie J
and ¢ = dy—; fori € I, while ¢, = cx_; fori € J.

Proof. This is easy. O

13. SEQUENCES WITH A PLATEAU

Let a;,0; € W, a; #b;, 0<i < k+1, k> 2 be such that for 1 < ¢ < k¥ we have
lao| + [bo| < |ai|+|b1| = |ai| +|i| > |ak+1|+[brs1], @i #1 F#biand for 1 <i < h+1
we have ¢;(ai—1) = ai, wi(bi—)) = b;, @i € T(e;), where 1 # e; € W. Further, let
«p,._+11 # @; foreach 1 < i < k.

The results of the preceding section can be used for a;,b;, 1 <1 < k. To facilitate
applications of these results, we define in a corresponding way the elements ¢;,d; €
{ai, b:}; t.e. {ci,di} ={a;,b;} for 1 <i <k and

(i) 1 = a; if Jag| > |a1], and ¢; = by if |ba] > |by;

(i1) if 2 < i <k, then ¢; = a; if |a;| > |ai—1], and ¢; = b; if |b;] > |bi—1].

We also put I = {k}U{l <i<k-1;¢ =q;and ¢y = aip1}U{l <@ < k-1;
¢; =b; and ¢y = biy1 }-

For d; < ¢;, k # 1 € I we can use 12.7. However, 12.7 can be used also when
c; < di and 1 # 1 € K. In that case we follow 12.8 and consider the sequence
c,:k_,il sy ' Thus 12.7 and 12.8 together yield

13.1 Lemma. Let j € I be such that either j # k and d; < c¢j, or j # 1 and
¢j < dj. Then there exist f,g,h € W such that either a; = f//g and bj = f//h, or
aj = g\ f and b; = h\ f. Moreover, j =k —1ifd; < ¢j, and j =2 if ¢; < d;.

13.2 Lemma. Suppose that there exist f,g,h € W and 1 < j < k such that
cither aj = f//g and b; = f//h. or aj = g\ f and b; = h\f. Then k < 3 and the

sequence @y, ..., pr+1 can be reduced at {ag,bo}.
Proof. The left-right symmetry allows us to choose the case a; = g¢\f,
b; = h\f. As the inverse sequence 4,9,11, e ‘4,91"1 could be considered in place

of ¢1,...,¢k+1, we can omit the case j = k. Thus ¢j+1 € {Ly,L,} and we can
choose the case pj1; = Ly. Then djyy = aj+1 = f, ¢j31 = bj+1 = go (h\f) and
thus dj41 < ¢j41. I j+1 <k, then j+1 =4k —1 by 13.1. Moreover, 13.1 also
implies that b;4; cannot equal g o (h\f) if j + 1 < k. Therefore k = j + 1 is true.
As f and g o (h\\f) have no common factor, pry1 = R,:\{f by 9.2 and 9.3.
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Assume first £ > 3. Then 12.2 yields 2 < k-1 € I, and 50 ck—1 = by = h\ f
implies pr_1 = L,:l. Thus bx_» = f < ak—2 =ho(g\f) and k —2 ¢ K gives k > 4,
Pk—2 = Rg\f, ak—3 = h and by _3 = g. Then |ar_3| + |by_3| < |ak| + |bx| and we see
that k — 2 € I{. But by 13.1 from cx—2 = bx—2 < ap—2 = dx—2 = ho (g\f) we get
k —2 = 1. Furthermore, from 9.2 and 9.3 we obtain ¢; = Ry\s. Asap =h, bg =g
and p4p3p201 = R;\ingL,:le\\f = u(g, h, f), we can proceed to the case k = 2.

If k = 2, then a; = g\\f, by = h\f and @y = L,. For ¢; = RE! 9.4(a) and 9.5(a)
show that only the cases ap = 1, a; = bo\b1, ¢1 = R,, and by = 1, b; = aog\ay,
@1 = Ry, need to be considered. But a; = bo\b; implies by = f = h\f and
b1 = ap\a; implies a; = f = ¢g\\f. Thus ¢; = Leil1 and from 2.1(a) we get p; = L;ll.
By 2.2(a) we have to consider two cases. First, let e; = 0o//b; and a; = e;\ap. Then
g = e; = bof/(h\f), but this contradicts bj4+; = ¢ o (h\f). Hence e; = ag/a,.
by = e1\bo, and therefore h = ey, f = by, 1 = LE[, P = P3P = R;\{ngL,:l
and Y(ag) = h = ao/(g\f) = R;\\lf(ao), Y(f) =9 = Rg_\\lf(f)‘ It now remains to

observe that Ry s = Ry\ (9, b, f)R,(; and ¥ = R\ Ry 9. o
13.3 Lemma. k < 3 and the sequence ¢, ...,¢r+1 can be reduced at {ao,bo}.
Proof. Because of the left-right symmetry ¢, = Lgtll can be assumed. We

can also assume that |ay| < |ay|, i.e. dy = ay. If @y = Lil, then d; < ¢; by 4.2,
and 13.1 together with 13.2 apply. Thus we can assume ¢y = szl. For d; < ¢;
we can again use 13.1 and 13.2, and hence we need only to consider the cases when
dy < c¢; does not hold. Let first 9o = Re,. Then a; = az//ez and by = b; o ey
by 9.5(b). If ¢; = L.,, then by 2.1(a) either b; = a; o by, or a; = by /by = ey, or
by = (a1f/ao) o bo, or by = a;//ag. Neglecting the cases with d; = a; < by = ¢y,
we thus have ag = 1, a1 = ayffes, b = €2, by = a, and by = ay o e2. Then
dy = az < c3 = azoey and 13.1 can be applied if & # 2. For k = 2 use 9.6. We get
@3 = L7}, and so ¥ = @3pap) = v(ez, 1,a2), ¥(1) = 1 and ¢(ey) = ep. If oy = L',
then by = (ap/a1)\bo by 2.2(a), and hence d; < ¢;.

Let now ¢ = R_}'. Then a; = azoey and by = by ez by 9.5(b). If 1 = Le,, then
we shall distinguish several cases according to 2.1(a). If e; = b; /by, then a; # by //bo,
and hence a; = ejoag = (by J/bp)oag. But then as = b, /by and 13.2 can be applied. If
e1 = ay Jlap and by = (a; JJag)oby or by = a; J/ag, then we get d; = a; < by = ¢;. This
is also true if ag = 1, a; = e; and by = ajobg. In the remaining cases a; = e; oag and
either b, = ejobg, or by = e;. Therefore az = €1, ap = e, and either by = (az0bp) Jao,
or by = ay/flag. Thus ¢z = by > ay = dp, and for 2 # k we can use 13.1. Hence k = 2
will be assumed. By 2.1(c) w3 # Le,, suppose first that ¢3 = Le_sl. Then by # e3o0b3
and az # {b20ag, (b2 J/b3)oasz, b,/ bs}. By 2.2(c) by = azf/as, bp =1 = b3, ap = a3 and
we obtain @3p2p1 = L;zl//aul?;“‘ L., = v(1,a0,as). Further, p3 = R., is not possible,
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as 9.4(c) implies ay = azffag or ap = az\\ag — both of which are contradictory to
a; = ag o ag. Finally, from 9.5(c) we also obtain that p3 # R;l. This settles all the
cases induced by ¢; = L., and we can assume ¢; = L;l. As a; # e1\ao, we obtain
from 2.2(a) that by = (a1 /ao)\bo, and hence d; = a; < b1 = 1. O

14. TWO-POINT STABILIZERS

Recall that by W we denote the free loop with the basis X = X U {y} (see
Section 7). Denote further by 7 the epimorphism W — W defined by n(z) = x for
v € X, and m(y) = 1. Clearly n(a) = a foralla € W.

The epimorphism 7 induces an epimorphism IT: Mlt(W) — Mlt(W), II(L,) =
Lr(ays II(Ra) = Ry(q) for alla € W. We easily get

14.1 Lemma. TII(¢)(7(a)) = 7(¢(a)) for any a € W and » € MIt(W).

14.2 Corollary. II(uy,(a,b,c)) = pn)(r(a), 7(b),m(c)) and II(v,(a,b,c)) =
vii(ey (m(a), m(b), (c)), for any a,b,c € W and ¢ € MIt(W).

14.3 Lemma. Let a;,b; € W, a; # b;, 0 <i < k+1 be such that k > 1, and for
everyl <i < k+1 we have 9;(a;-1) = ai, pi(bi—1) = bi, p; € T(e;) withl #e; € W.
Furthermore, let ¢ # ¢; and |ao| + |bo| < |a1] + [01] = |as| + [bi] > |aiz1| + |bit1]
for each1 < i < k. Then ¢y, ..., k41 can be reduced at {a;,b;} for some 0 < j < k.

Proof. By 10.6 we have k > 2. Suppose that {b;,b;y1} = {1,€:+1} for some
0 <i< k. Then ej41 = b; or biy1 = e;41, and 11.6 yields a reduction. If {b;,b;y1} #
{1,€:i41} for all 0 < i < &, then by 7.2 we have p;(a;_1) = a; and p;(b;—,) = b; for all
1 <7< k+1. By 7.3 we can therefore find integers s and r such that 0 < s < s+r < k
and |as| +bs| < |asyi| + |Dsyil > |@sgri1| + |Derrsr1] for every 1 <i < r. By 13.3 the
SeqUeNCe Psi1, - - -, Psrri1 can be reduced at {as,bs}. Examining the proofs of 13.2

and 13.3 we see that ©.y,41 ... ps11 is equal either to x or to kp or to ¢k, where x
is a permutation that can be expressed in a respective pu— or v—form, and ¢ € T(e)
for some e € W. Hence @oi,4 ... 0.1 equals II(k) or TI(k)(¢) or I(p)I(x) and
with respect to 14.2 we obtain that @si1,...,@s+r+1 reduces at {as, bs}, too. O

14.4 Theorem. LetW be a free loop with a basis X # §). For any a,b,c € W and
@ € MIt(W) put pp(a,b,c) = o7 R o Do) Lo Be(ane(e@ and ve(a,b,c) =
¢ Ll oy Be@ Ry Lo o e- If a,b € W and a # b, then MIt(W)a,
(e(a,b,c),v,(a,b,c); o € MI(W) and ¢ € W). Moreover, for any idyw # ¢ €
MIt(W)a, and any ¢ € W we have (c) = c iff ¢ € {a,b}.



Proof. By Lemma 10.4 it is enough to prove that whenever ¢; € T'(e;) for
1#e €W, 1< 1< ksatisfy ¢ # <p,:1, wi # ap;ﬂl and Y1 = ¢y ... 1 fixes exactly
two elements of W, then the sequence 1, ..., @, reduces at its fixed points. For
2<j<kput ¥; =9j_1...¢19k...pj. Let ag,bg € W be such that ¥ (ag) = ao,
¥1(bo) = bo, ap # bo and for 1 < ¢ < k put a; = ¢i...91(a0), bi = @i ...p1(bo).
Then clearly ¥;(aj—1) = aj_1, ¥j(bj—1) = bj_1, ap = a) and by = by. Let us assume
that the sequence ¢y, ..., ¢, cannot be reduced at its fixed points, and suppose first
that there exist 1 < ¢; < i < & such that |a;, | + |bi,| # |ai,| + |bi,|. This implies
that there exist 0 < j < k—1 and r < k such that for m = max{|a;|+|b:|; 1 <i < k}
and any 1 < < r we have |a;| +|b;] < |ajyi| +1bj4i] = m > |ajprq1] + [0jprs1]| (the
indices are computed modulo k). However, in such a case a contradiction follows from
14.3. Hence |a;|+|bi| = |ao|+ |bo] holds for all 1 < i < k. By 11.5 and 7.2 we can also
assume @;(a;_1) = a; and @;(b—1) = b; for all 1 < i < k. If |ag, | + |bs, | # |as, ) + |Ds, |
for some 1 < 1; < iy < k, we get a contradiction by the preceding part of the proof.
However, |a;| + |bi| = |ao| + |bo| for all 1 < i < k is not possible by 12.4. O
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