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0. PRELIMINARIES

All spaces are assumed to be Tychonoff. If f: X — Y is a function, then f:
B(X) — B(Y) denotes the Stone-Cech extension of f. The Greek letters a,v, A
and ¢ will denote infinite cardinal numbers. If o and 7 are cardinal numbers, then
[a]Y = {A C a: |A] = v}. As usual §() is identified with the set of ultrafilters on «
and the remainder a* = () \ « is the set of free ultrafilters on a. If A C «, then
clga)(4) = {p € B(e): A € p}, which will be denoted by A and A* = 4\ A. We
say that f: v — fB(a) is a strong embedding for v < a if there is a partition {A,:
& < v} of a such that f(¢) € Aé for each £ < 7. The norm of p € a* is defined by
llpll = min{|A|: A € p}. The set of uniform ultrafilters on a is U(a) = {p € a*:
llpll = a}. The Rudin-Keisler (pre-)order on a* is defined by p <grx ¢ if there
exists o: @ — « such that (q) = p, for p,q € a*. The Rudin-Keisler order induces
an equivalence relation on a* by defining p ~rx ¢ if p <ry ¢ and q¢ <grg p, for
p,q € a*. It is not hard to prove that p =g ¢ iff there is a bijection o: a = « such
that &(p) = ¢. The equivalence class of p € o* is called the type of p and it is denoted
by Tri(p) = {q € a*: ¢ =gk p}. For p,q € o*, p <gpx g means that p <rx ¢ and
p is not ~gi-equivalent to ¢. For § # M C a*, we let Prg(M) = {q € a*;
dp € M(q <rik p)}. Notice that if p <gi ¢ for p,q € a*, then ||p|| < ||gl|; hence, if
q =~gri p € U(a), then g € U(a). For p,q € a*, their tensor product is defined by

p@g={ACaxa: {{<a: {(<a:(§() € A} € q} €p}.

Notice that p ® ¢ is an ultrafilter on a X a and can be considered as an ultrafilter
on « via a fixed bijection between a and a x a. Observe that ||p ® q|| = ||p|lllg|| for
p,q € a*. It is pointed out in [Ka] that p <px p® ¢ and ¢ <gpx p® q for p,q € a*.
The following result is essential in the application of ® (for a proof see [CN, 16.5)):
the case @ = w was also proved by Booth [Bo].
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Theorem 0.1. (Blass [Bl;]). Let p,q € a* withp€e U(y). Ife: v = Tri(q) is a
strong embedding, then p ® q =gk &(p).

It is not difficult to see that @ is not an associative operation. However, Booth [Bo]
noticed that ® induces a semigroup structure on the set of types of w* by defining
Tri(p) ® Tri(q) = Trr(p ® q) for p,q € w*. Hence, if p € w*, then p" stands for
any point in Tri (p)" for 1 < n < w. Booth [Bo] also defined the power Try (p)¥
for each p € w* and each v < w, as follows: for every w < v < w; fix and increasing
sequence (v(n))n<w of ordinals in w; so that

(1) w(n) =nfor n < w;

(2) if v is a limit ordinal, then v(n) 7 v;

(3) if v = p+ m, where p is a limit ordinal and 1 < m < w, then v(n) = u(n) +m
for each n < w.

Let p € w* and w < v < wy, and assume Ty (p)* has been defined for all p < v.
If v is a limit ordinal, then we define Tri (p)” = Tri(f(p)), where f: w — w*
is an embedding such that f(n) € Tri(p)*™ for each n < w. If v = p + 1, then
Tri (p)” = Tri(p)*®TriK(p). As above, p” stands for an arbitrary point in Try (p)”
for each p € w* and each v < wy.

We omit the proof of the following straightforward lemma.

Lemma 0.2. If f: w — (B(w) has infinite image, then there is a one-to-one func-
tion 0: w — w such that f oo: w — [(w) is an embedding (i.e., f o o is one-to-one
and (f o o)[w] is a discrete subset of B(w)).

Z. Frolik [F3] noticed that if e: w — w* is an embedding, then p <gx é(p) for
every p € w*; that is, no type is produced by itself. Frolik’s result and Theorem 9.2
(b) of [CN] imply:

Lemma 0.3. If f: w — ((w) is an embedding and p € w*, then p <rr f(p).

Bernstein [B] introduced the class of p-compact spaces for p € w*. Later, Saks
[Sa], Woods [W] and Kannan and Soundararajan [KS] considered the notion of p-
compactness for various p € a* at the same time:

Definition 0.4. Let § # M C a*. A space X is M-compact if for every f:
a— X, f(p) € X forallpe M.

If p € U(a), then we simply write p-compact instead of {p}-compact. The basic
properties of M-compactness are stated in the next theorem (for a proof see [V 2]):
Bernstein [B] proved the same result for p € w*.

Theorem 0.5. Let ) # M C a*. Then
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(1) every compact space is M -compact;

(2) M-compactness is closed under arbitrary products;

(3) M-compactness is closed-hereditary;

(4) if f: X = Y is a continuous surjection and X is M-compact, then Y is M-
compact.

It follows from clause (1)—(3) of Theorem 0.5 that, for every space X, the space
Bu(X) ={Y: X CY C B(X), Y is M-compact} is the (M-compact)-reflection
of X which satisfies the following properties:

(1) X is a dense subspace of By (X);

(2) Bm(X) is M-compact;

(3) if f: X = Z is continuous and Z is M-compact, then f[Bux(X)] C Z;

(4) up to a homeomorphism fixing X pointwise the space Bu (X) is the only space
with properties (1), (2) and (3).

For p € U(a), we write 3,(X) instead of B,3(X). For a space X and for § #
M C a*, there is an alternative definition of Bas(a) which will be very useful: By
transfinite induction, we define

Xo=X and X,,:{f(p)lf:a-—)UXg,peM} for n<a*.
£€<n

It is not hard to see that Ap(X) = |J X,. Hence, we have that M C fx(a) and
n<a+

|Bm ()] € 2% -|M|*, for each 0 # M C o*.
In [G-F4], Comfort introduced the next (pre-)order on w*.

Definition 0.6. For p,q € a*, we define p <. ¢ if every g-compact space is
p-compact.

For p,q € a*, we say that p =, ¢ if p <. ¢ and ¢ <. p. We have that =, is an
equivalence relation on w* and the ~.-equivalence class of p € a* is called the C-type
of p and is denoted by T.(p). The connection between < gx and <. were established
in [G — Fy). The next outstanding properties are the following:

Lemma 0.7.

(1) <rx C <. and <rx#<e;

(2) if p € w*, then T.(p) can be filled out with exactly 2 types;

(3) if p € w*, then p* € T.(p) for every v < wy;

(4) 1fp,q € a*, then p <. ¢ & Bp(a) C fqe(a) & p € B4(a);

(5) if p <c q for p,q € a*, then ||p|| < |lqll;

(6) pr € Bu(a)\ a for @ # M C a*, then Tri(p) C Prx(p) € Am(a) and
T.(p) € Pe(p) € Bu(a).
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Observe that a space X is M-compact, for @ # M C o*, iff f(p) € X for every f:
v — X with v < a, and for every p € U(y) N T.(q) with ¢ € M.

It is convenient to have the definition of initially a-compactness at our disposal
([St] and [G-F,] offer a good survey on initially a-compact spaces), as follows:

Definition 0.8. (Smirnov [Sm]). A space X is initially a-compact if every open
cover % of X with |%| < a has a finite subcover.

The authors of [GFW] introduced the notion of a-boundedness and Comfort [0]
and Vaughan [V;] generalized this concept as follows.

Definition 0.9. A space X is < a-bounded if clx(A) is a compact for each
A C X with |4] < a.

Notice that a-boudedness coincides with < a*-boudedness for each cardinal a.
It is shown in [G-F,] that a space X is < a-bounded iff X is p-compact for every
p € o* \ U(a). Hence, every space X has a unique (< a-bounded)-reflection which
will be denoted by B, (X).

1. QUASI M-COMPACT SPACES

We start this section with the following definition due to Kombarov [K»] and
Savchenko [S] which generalizes, in a very natural fashion, M-compactness.

Definition 1.1. Let @ # M C o*. A space X is quasi M -compact if for every
f:a— X thereis p € M such that f(p) € X.

In this paper, for § # M C a*, we shall use the name of quasi M-compact instead
of the name of M-compact given by Kombarov in [K2], since the name of M-compact
is reserved for the concept stated in Definition 0.4. Kombarov [K;] also introduced
the notion of weakly M-compactness, for @ # M C w*, but it is shown in [G-F2] that
weakly M-compacntess coincides with quasi cl,» (M )-compactness.

If p € U(a), then quasi {p}-compactness coincides with p-compactness. If M, N C
o* and 0 # M C N, then every quasi M-compact space is quasi N-compact. In par-
ticular, quasi w*-compactness is precisely the concept of countably compactness (see
[K2]). For @ # M C a*, we have that M-compactness implies quasi M-compactness.
But these two concepts are different; indeed, we saw in Theorem 0.5 (2) that M-
compactness is productive for every § # M C U(a), and it is well-known that
countably compactness is not finitely productive (see [GJ, 9.15]). We shall show, in
Example 2.8, that quasi Try (p)-compactness fails to be preserved under finite prod-
ucts for each p € w* (see [K2]). In the next theorem we give a necessary condition to
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gain the quasi M-compactness of the product of two quasi M-compact spaces. We
need a lemma.

Lemma 1.2. (Ginsburg-Saks [GS]). Let p € U(a), X = [[ X; and f: a — X.
iel
Then f(p) = x = (x;)ics iff T; 0 f(p) = x; for every i € I, where ;: X — X; is the
projection map for each i € I.

Theorem 1.3. Let M and N be nonempty subsets of a* such that for every
p € M there is ¢ € N such that p <. q. Then if X is N-compact and Y is quasi
M -compact, then X x Y is quasi M-compact.

Proof. Let f:a— X xY and consider fo =mof:a— X and f; =m0 f:
a—Y, wheremg: X xY = X and m;: X XY — Y are the projection maps. By
assumption, there exists p € M such that f;(p) € Y. Choose ¢ € N such that
p <c q. Since X is g-compact, then X is p-compact and hence fo(p) € X. From 1.2
it then follows that f(p) € X x Y. O

In what follows, for a cardinal «, €, will denote the class of all spaces X with the
property that for every initially a-compact space Y, X x Y is initially a-compact.
For a = w, the class €, was introduced and studied by Frolik [F,]. The author [F4]
also characterized the spaces of €,, (see [V2, Theorem 3.11]). Our next aim is to give
a characterization of the spaces in €, in terms of p-limits for an arbitrary cardinal
a. The following concept is fundamental for our purposes. We need some notation
and the next lemmas.

For a cardinal o, # = {M;: ¢ € I} will denote an arbitrary set of nonempty
subsets of a*, and if w < v < @, then (v, a) will denote a set {M,: v < ) < a}
of nonempty subsets of a* such that M C U(X) for every vy < A < a.

A slight generalization of quasi M-compactness is the following:

Definition 1.4. Let # = {M;: i € I}. Then a space X is said to be quasi
M -compact if X is quasi M;-compact for each ¢ € 1.

If ) # M C U(a), then quasi { M }-compactness agrees with quasi M-compactness,
and if #Z = {{p:}: ps € U(Vi),w < v < ,t € I}, then X is quasi «Z-compact iff X
is p;-compact for all ¢ € I. If p <. ¢ for p,q € w*, then B,(w) is p-compact, but it is
not quasi {{p}, {¢}}-compact since 3,(w) cannot be g-compact.

It should be mentioned that for a space X the following conditions are equivalent
(for a proof see [St]):

(1) X is initially a-compact;
(2) for every w < v < «a and for every f: vy — X there is p € U(v) such that
flp) € X;
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(3) for every w < v < a and for every one-to-one function f:y — X there is
p € U(y) such that f(p) € X.
(4) for every regular cardinal v with w < v < « and for every one-to-one function
f: v = X there is p € U(y) such that f(p) € X.
In our context we have:

Lemma 1.5. X is initially a-compact iff there is a set .#(w,c) of nonempty
subsets of a* such that X is quasi 4 (w, a)-compact.

The proof of the following result is immediate.

Lemma 1.6. If ) # K C o* and X = aU K C B(a) is initially a-compact, then
K NU(y) # 0 for every cardinal v such that w < v < a.

For cardinal «, we let
&(a)={K: KCa" and aUK isinitially a-compact},

and forw < v €< o, (v,0) = {Uy) N K: K € &/(a)}. Notice, by 1.6, that if
w <y < aand K € &(a), then Uy) N K # 0. We set A, = J{Z(7,0):
w < v < a}. Henceforth, if K € &/(a), then I(K) will denote the subspace a U I\ of
B(a). Now, we shall show that the sets .Z, characterizes the spaces of €., First an
easy lemma.

Lemma 1.7. If f: Y — Z is a continuous function, Y is compact and X C Z is
initially a-compact, then f~1(X) is initially a-compact.

Theorem 1.8. For a space X the following conditions are equivalent.
(1) X is quasi #-compact;

(2) X € Cy;

(3) X x I(K) is initially a-compact for each K € & (a).

Proof. (1)=(2). Let Y be initially a-compact and let f: v — X x Y, where
w<y<a Set fo=mpof:y—>Xand fy=mof:y—=Y,wheremg: X xY = X
and 7 : X XY — Y stand for the projection maps. Since Y is initially a-compact,
by 1.7, fT1(Y) C B(y) is initially a-compact. We then have that aUfri(Y) U(a/\\'y)
is initially a-compact and U(7) N[aU FT (V) U (a\ 7)] = U(y) N F7(Y). Since X
is quasi [U(v) N f7(Y)]-compact there is p € U(y) N fT1(Y) such that fo(p) € X.
Hence, by 1.2, f(p) € X x Y, since fi(p) € Y.

(2) = (3). This is evident.

B)=(1). Let w<v<aUMMNK € &(y,a) and f: v - X. Let g: v —
X x I(K) be defined by g(§) = (f(£),€) for each ¢ < a. Since X x I(K) is initially
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a-compact there is p € U() such that g(p) = (z,¢q) € X x I(K). It then follows
that f(p) =2 € X and p =g € U(y) N K. Therefore, X is quasi </ (7, a)-compact.
O

Next, we shall prove that a cardinal number « is singular if and only if B, (a) € €,.
First some preliminary results.

Lemma 1.9. (Stephenson-Vaughan [SV]). Let a be a singular cardinal and let
X be a space. If X is initially k-compact for each w < k < «, then X is initially
a-compact.

The next lemma is a special case of the Theorem 2.2 of [SV] (see [Sa, 5.2]). For
the sake of completeness we include a proof.

Lemma 1.10. If X is < a-bounded and Y is initially a-compact, then X XY is
initially k-compact for every w < kK < Q.

Proof. Let k be a cardinal such that w < Kk < @ and let f: k = X x Y.
Set fo=mpof:k = X and fy =m0 f: kK = Y. Since Y is initially x-compact,
there is p € U(k) such that f1(p) € Y. The < a-boundedness of X implies that
fo(p) € cl(f[k]) € X. Thus, by 1.2, we have that f(p) € X x Y. This shows that
X x Y is initially k-compact. ||

In [GT], several topological conditions are shown to be equivalent to the singularity
of a cardinal number. In particular, we have:

Lemma 1.11. For a cardinal «, the following an equivalent.
(1) a is singular;
(2) Bq is initially a-compact.

The next theorem is an immediate consequence of 1.9, 1.10 and 1.11.

Theorem 1.12. For a cardinal a, the following statements are equivalent.
(1) « is singular;

(2) every < a-bounded space lies in €,;

(3) Ba(a) € Cq;

(4) Ba(X) € €, for every space X .

We know that if « is a regular cardinal, then B, () = B(a) \ U(a) and it cannot
be initially a-compact. It is pointed out implicitly in [SS, proof of 4.11] that if
a is a strong limit singular cardinal, then initial a-compactness agrees with < a-
boundedness (see [G-F1, 2.4]). This result implies the following.
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Theorem 1.13. If « is a strong limit singular cardinal, then every initially a-
compact space is a member of €.

We turn now to study when Bp(a) € €, for @ # M C o*. The proof of the next
easy lemma is omitted.

Lemma 1.14. For § # M C o* and ¢ € U(y) for w < v < a, the following
conditions are equivalent.

(1) Bum(a) is g-compact;

(2) g € Bu(e);

(3) Te(g) N Bu(e) # 0.

Applying 1.8 and 1.14, we have:

Theorem 1.15. For § # M C a*, the following are equivalent.

(1) IBM(a) €&y

(2) Bm(e) x I(K) is initially a-compact for each K € &/ (a);

(3) for every K € &/(«) and for every w < v < a there is ¢ € U(y) N K such that
Bum (@) is g-compact;

(4) for every K € &/(a) and for every w < v < a, Su(@) N K NU(y) # 0.

Proof. (1) = (2) is evident and (3) & (4) follows from 1.14. (2) = (4).
Let K € &/(a). Since fp(a) x I(K) is initially a-compact and Sa(a) N I(LK) is
homeomorphic to the diagonal of Bp(a) x I(K), we have that SBa(a) N I(L) is
initially a-compact. By lemma 1.6., we have that 8y (o) N I(I{)NU(y) # O for each
wgyKa.

(3) = (1). According to 1.8, it is enough to prove that Sas () is quasi .#,-compact.
Let K € &/(a) and w < v < a. By assumption, there is ¢ € fa(a) N K NU(y) such
that B (a) is g-compact. Thus B (@) is quasi .#,-compact. a

The equivalences between clauses (1) and (2) of the next lemma is a direct conse-
quence of 1.6 and the equivalence among the others may be established by an easy
argument: the case M = {p} for p € U(a) is stated in [G-F3]. We recall the reader
that p € U(a) is called decomposable if for every w < v < « there is ¢ € U(y) such
that ¢ <rk p: for further information about decomposable ultrafilters the reader is
referred to [BS].

Lemma 1.16. For § # M C U(«), the following are equivalent,
(1) Pm () is initially a-compact;

(2) Bm(a)NU(y) #0 for every w < v < o

(3) there are p € M and q € T.(p) such that q is decomposable;
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(4) there is p € U(a) decomposable such that By () is p-compact.

It is shown in [G-F4] that all powers of space X are initially a-compact iff there is
p € U(a) decomposable such that X is p-compact, and we proved in [G-F3] that if
a is a strong limit and p € U(a) is indecomposable, then 3,(c) is a p-compact space
which is not initially a-compact: we also remarked in [G-F3] that in the Core model
K aspace X is p-compact, for p € U(a), iff all powers of X are initially a-compact.

Lemma 1.17. Let p € U(a),w < v € a and o: v — U(a) a strong embedding.
If p <pi o(§) for each € < vy, then p <ri 5(q) for each g € U(y).

Proof. Let {A¢: £ <~} be a partition of a such that o(§) € A; for each § < .

Then there is f¢: A¢ — a such that f¢(o(€)) = p for each £ <. If f = {J fe, then
£<y
f(&(q)) = p for each g € U(y). O

Lemma 1.18. For every p € w* there is K € &/ (w) such that p <gry q for every
ge k.

Proof. Let p € w*. Define Ky = Trk(p) and, by transfinite induction, let

K, {é(p)|e:w— |J K, is an embedding} for v < w;. Then, we put K = |J Kv.
p<lv rv<w)
First, we shall verify that K € &/ (w). Suppose that wU K is not countably compact.

Then, there exists an embedding e: w — w U K such that éw*] N (wU K) = 0.
Set A = {n < w:eln) € w}and B = {n < w:e(n) € K}. If A € p, then
é(p) € Trr(p) = Ko C K which is impossible. Thus B € p. Without loss of
generality, we may assume that B = w. For each n < w choose v,, < w; such that
e(n) € K,, and set v = sup{v,,: n < p}. By definition, we have that é(p) € K, C I
which is a contradiction. Therefore, K € «(w). We shall prove that K satisfies the
required condition. Assume that p <gx r for every r € I, N U(a) and for every

i <v<w:. Let ¢ € K, NU(a). Then, there is an embedding ¢: w = |J K, such
pu<v
that &(p) = ¢. By induction hypothesis, we have that p <grx o(n) for every n < w.

Applying Lemma 1.17, we obtain that p <gry 7(p) = ¢. a

Theorem 1.19. If Bp(w) € €, for @ # M C w*, then By (w) = B(w).

Proof. Assume that Sy(w) € €, for 8 # M C w*. Fix p € w*. By 1.18,
there is ' € &/(w) such that p <grx v for all r € K. It follows from 1.8 that
Bn(w) is quasi K-compact and hence there is ¢ € Sp(w) N I{. By Lemma 0.7 (6),
p € Pri(q) C Bm(a). Thus, Bu(w) = B(w). O

For a singular cardinal «, we have the following:
(1) Ba(a) € €4, by 1.12;
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(2) Ba(a@) = Bn(a), where N = a* \ U(a) (see [G-F;, Theorem 1.3]); and
(3) Ba(a) # B(a) (see [GT, Corollary 2.4 (b)]).
This leads us to ask:

Question 1.20. Let a > w be a regular cardinal. Is there § # M C o* such
that By (@) € €4 and Bu(a) # B(a)?

The following example shows that there exists § # M C w* such that |3 (w)| =
22" and By (w) # B(w).

Lemma 1.21. Let § # M C w*. If p is a weak P-point of w* and p € S (w).
then p <rg q for some q € M.

Proof. We indicate in the preliminary section that By (w) = |U X,, where
_ vr<wi
o =wand X, ={f(q) | frw—> U Xu,qg € M} for 0 < v < w;. By a slight
pn<v
modification of the Xs, we obtain that Sy (w) = | Z,, where Zy = w, 2, =

r<wy

QMPRK(‘I) and Z, = {f(q) | frw = L<J Zy, flw] Cw*, g € M and f(q) ¢ flw]}

for 1 < v < w;. Assume that p € By (w) and p is a weak P-point. Let v be the
least ordinal v < w; such that p € Z,. Since p is a weak P-point of w*, we have that

v=1landsop€ | Prr(q). =
qEM

Example 1.22. K. Kunen [Ku] proved that there is a set W of weak P-points
of w* such that [W| = 22" and the elements of W are pairwise RK-incomparable.
Choose M C W so that |M| = |W \ M| = 22" and enumerate M as {p¢: & < 22" }.
Then, 2%° = |M| = |fu(w)| = |8(w)| and, by Lemma 1.21, W\ M C B(w) \ Bar(w).

The author introduced in [G-F5] the notion of (7y, M)-compactness for a cardinal
1 <vyand 0 # M C w*, and proved that X" is countably compact iff X is (v, M)-
compact for some § # M C w*. The situation for cardinal numbers higher that w is
completely similar as it is stated in the following two results.

Definition 1.23. Let § # M C U(a) and v a cardinal. A space X is said to be
(v, M)-compact if for every y-sequence (f¢)¢<y of functions in ®X, there is p € M
such that f¢(p) € X for each ¢ < 7.

As a direct sequence from 1.2 we have:

Theorem 1.24. Let X be a space and v a cardinal. Then X7 is initially a-
compact iff for each cardinal § with w < 0 < a, there is O # Ms C U(0) such that X
is (v, Ms)-compact.
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Theorem 1.25. Let § # M C U(a), let 1 < v be a cardinal number and let X
be a (v, M )-space.

(1) If IM| < v, then there is p € M such that X is p-compact.

(2) If there exist p € U(a) and a surjection o: a = « such that M C o~ (p), then
X is p-compact.

2. ALMOST M-COMPACT SPACES

It follows from the definition that quasi M-compactness implies quasi Pgy (M)-
compactness for § # M C a*. The next theorem establishes the similarity between
these two concepts.

Theorem 2.1. Let ) # M C U(a). A space X is quasi Pry(M)-compact if and
only if for every f: « — X there isp € M and o: o — « such that 5(p) € a* and
f(a(p) € X.

For § # M C U(a), we simply say almost M-compact space instead of quasi
Pry (M)-space (2.1 justifies the name almost M-compact). Thus, an almost p-
compact space is a quasi Pgry (p)-space for p € U(a). We shall give in 2.3 an example
of an almost p-compact space which is not p-compact.

Theorem 2.2. If X, is initially a-compact and | X¢| < 2% for £ < 2%, then there
is p € U(a) such that X, is almost p-compact for each £ < 2<.

Proof. Wehavethat | (J X¢|< 2% Since X¢ is initially a-compact, for every
g<2n

f:a— X¢, there is py € U(a) such that f(ps) € X, for each £ < 2*. We have that
Hps| f:a— X, & < 2%} < 2%, Hence, by Theorem 10.9 of [CN], there is p € U(«)
such that py <grx p for every f: a = X, and for every £ < 2%. We claim that X,
is almost p-compact for every £ < 2%. Indeed, fix £ < 2* and f: a = X¢. Since

ps <RK D, there is o: a = a such that 5(p) = py and so f(5(p)) € X¢. O

For every p € w*, we have that p-compactness = quasi Trx (p)-compactness =
almost p-compactness = quasi T.(p)-compactness = countable compactness. The
following three examples and theorem show that they are different each other except
for the case when p € w* is RI{-minimal (in this case we have that quasi Trx (p)-
compactness coincides with almost p-compactness).

Example 2.3. For each p € w*, there is an almost p-compact space I', which
is not p-compact. Fix p € w*. The space I', will be constructed inside 3(w) by
induction and by a well-known standard method. Put I'y = w and assume that I';,
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“has been defined for each p < v < w;. Then, define I', = {f(g) | frw = U T,
- p<lv
is an embedding, f(q) # p, ¢ € Trx(p)}. We set I,= U I.. Since p ¢ [, the

r<wi
space I', is not p-compact. Now, in order to prove that I'p is almost p-compact we

let f: w — I, be such that f[w] is infinite. By 0.2, there is a one-to-one function
0:w — w such that foo:w — I', is an embedding. So we may find ¢ € Try (p)

such that f(&(q)) # p. Since (foo)w] € | I, for some v < wi, we have that
p<v

f(5(q)) €T, CTpand 5(q) € Tri(p). This shows that T, is quasi Trx (p)-compact
and so I', is almost p-compact.

Example 2.4. If p € U(w), then A, = B(w) \ Te(p) is a countably compact
space which is not quasi T¢(p)-compact. Indeed, since |Prx (p)| < 2, the space A,
is countably compact (it is well-known that for every subspace X of 8(w) such that
|X] € 2¥, B(w) \ X is countably compact). If f: w = w is an arbitrary bijection,

then f[T.(p)] C Te(p) C B(w) \ A,

Example 2.5. For p € w*, the space Q, = f(w)\ Pric (p) is quasi T.(p)-compact
and is not almost p-compact. It is evident that 2, cannot be almost p-compact.
Now, let f: w — €, be with infinite image. By 0.2, there is a one-to one function
0:w — w such that fo :w — , is an embedding. Then, by 0.3, either p <gy
p* <rx f(G(?)) or f(G(p?)) ~rk p*. In both cases we have that f(@(p?)) € Q,
and &(p?) € Tri (p*) C Te(p).

Theorem 2.6. For p € w*, the following are equivalent,
(1) p is RK-minimal;
(2) quasi Tri (p)-compactness and almost p-compactness are the same.

Proof. Only (2) = (1) requires proof. Suppose that p is not RK-minimal.
Then there is ¢ € w* such that ¢ <gy p. Consider the space X = B(w) \ Tri (p).
This space cannot be quasi Try (p)-compact. We shall verify that the space is almost
p-compact. Indeed, let f: w — X be with infinite image. By 0.2, we may choose a
one-to-one function 0: w — w such that f oo: w — X is an embedding. If there is
an infinite A C w such that f o g[A] C w, then fo 5(14 NTri(q)] € Trr(q) C X.
If (f o o[w]) Nw is finite, by Lemma 0.3, then we have that p <gx f(F(p)) € X and
7(p) € Tri(p)- O

The following example shows that almost p-compactness is not preserved by finite
products, for p € w*. Nevertheless, we proved in Theorem 1.3 above that the product
of a p-compact space and an almost p-compact space is almost p-compact as well for
every p € U(a). We need a lemma.
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Lemma 2.7. (Blass [Bly]). Let f,¢g: w — w* be embeddings and let p € w*. If
{n <w: f(n) <rk g(n)} € p, then f(p) <rx g(p).

Example 2.8. For every p € w*, there is quasi Tr (p)-compact space C, such
that C, x C} is not countably compact. Fix p € w*, we proceed as in the example
9.15 of [GJ]. Let w = AUB, where |A| = |B| =wand ANB =0. Let §: A— Bbea
bijection and define 7: 3(¢) — B(o) by T'ﬁ(A) =4 and Tlﬁ(B) = 6~1. Observe that
q =R 7(q) for ¢ € w*. It suffices to construct a quasi Trx (p)-compact space C}, so
that Cp x Cp, N {(g,7(q)): ¢ € w*} = 0 (see [GJ, 9.15]). We proceed by induction.
Let Cp = w and assume that C, = {p(v,£): £ < 2} C w* has been defined for each
v < 6 < w; so that:

(1) p(v,€) = fe(q(v,€)) for some q(v,€) € Tri(p), for ff € F,, v < and £ <2,
where if v = p+ 1, then #, = {f | f: w = X, is an embedding} and if v is a
limit ordinal, then #, = {f | f: w = |J X, is an embedding with f(n) € X,,,

pu<v
for each n < w and p, 7 v}, and {f{: £ <2¥} is an enumeration of #,;

(2) p(v,€) # 7(p(v,€)) for v <@ and £ < ¢ < 2¢;
3) p(u,¢) <mrr p(v,€) for u < v < @ and &, ¢ < 2¢.
We consider two cases.

Case I 6 = p+ 1. In this case, we let Fp = {f¢ | f¢: w - X, is an embedding,
€ < 2¢} and put p(6,0) = fi(p). Suppose that, for each £ < ¢ < 2%, p(6, £) has been
defined so that p(6,£) = fg(q(() £)) for some ¢(6,€&) € Trik(p) and (1)—(3) hold for
v < 8, for £ <2 and for {p(6,&): £ < ¢ < 2¥}. Since |[{7(p(0,&)): £ < (}| < 2* and
|Tric(p)] = 2, there is q(8,¢) € Tri (p) such that p(6,¢) = f¢(a(6,¢)) # 7(p(6,¢))
for every £ < ¢. In order to verify (3) we fix v < p and £, ( < 2¥. By definition, we
have that f¢(n) <rx fg(n) for each n < w. From 2.7 it then follows that

p(v,€) = F¢(a(v,€)) <ri F£(a(6,)) = p(6,¢).
Case II. 0 is a limit ordinal. We put %y = {fg | fg: w— |J X, is an embedding
v<o

with f¢(n) € X,, for each n < w,vn 7 v,& < 2¢}. Define p(6,0) = fé(p) and
assume that for each £ < ¢ < 2¥,p(6,£) has been defined so that p(6,£) = f2(p)
and (1)-(3) hold for v < 6, for £ < 2¢ and for {p(6,£): £ < ¢ < 2*}. Since
{r(p(6,€)): € < (}| < 2¢ and |Tri(p)| = 2¢, there is q(6,¢) € Tri(p) such that
p(6,¢) = Fi(q(6,¢)) # 7(p(8,¢)) for every £ < (. Only (3) requires proof. Let
v < 6 and £ ¢ < 2¥. It suffices to prove that p(v + 1,€) <grk p(d,¢). In fact, since
v < 0 and v,, 0 there is m < w such that v < v, < 8 for each m < n < w. By
assumption, we have that f"“(n) < f( (n) for each m < n < w. By Lemma 2.7, we
obtain that

p(v+1,8) = ft (q(v + 1,€)) <rr F(q(6,C)) = p(8, ).
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Our example is the space C;, = |J Xp with the topology inherited from B(w).
O<wy
First, we show that C} is quasi Tri (p)-compact. Let f: w — C, be with infinite

image. If we may find a one-to-one function o: w — w and 6 < w; so that foo:
w — Xy is an ?mbedding, then there is £ < 2¥ for which foo = fg and so
f(3(q(6,€)) = fE(a(6,€)) = p(6,€) € Xp41 C Cp and q(6,€) € Tri(p). In the
preceding case does not hold, then we may find a one-to-one function o: w — w
and a sequence of ordinals (V»)n<e in wy so that v, S vand foo:w — C, is
an embedding, and f(n) € X,, for each n < w. Now, we proceed as above. This
proves that C}, is quasi Tr (p)-compact. Let ¢ € Xy C C, for some 8 < w;. Since
7(q) =rK ¢, we have that 7(¢) ¢ X, for each v < w; with v # 6, because of (3). It
follows from (2) that 7(q) ¢ Xs as well. Thus,

Cpx Cpn{(q,7(¢)): g€ W'} =0.

The following example is needed to show that RI(-order can be expressed in terms
of almost p-compact properties.

Example 2.9. For p € w*, we define 5, =w U {q € w*: I <wi(p <rir q¢ <RK
p”)}. We claim that =, is quasi Tri (p)-compact. In fact, let f: w — Z, be with
infinite image. We consider two cases.

Case I. There is a one-to-one function ¢: w — w such that foow] Cw and foo:
w — Z, is an embedding. Then, by [CN, 9.2 (b)], we have that p Xrx 7(p) =rw

@) € =,

Case II. There is a one-to-one function ¢: w — w such that foo:w — =, is
an embedding and f o ofw] C w*. For each n < w, choose v, < w; such that
f(o(n)) <rk p’* and let v = limv,,. Hence, p <rk f(o(n)) <rr p* for each n < w.
Applying Lemma 2.28 (see also [B1, clause (6) p. 34]) and Lemma 2.29 of [G-F;],
we obtain p ® p <rr (@) <rx p® p” <grx p* for a limit ordinal v < p < wy:
hence, f(5(p)) € Z, and 6(p) € Tri(p)-

Theorem 2.10. For p,q € w*, the following are equivalent,

(1) p<rK @

(2) every almost p-compact space is almost g-compact.

Proof. (1) = (2). Suppose that X is almost p-compact. Let 7: w — w be such
that 7(¢) = p and f: w — X. By 2.1, there is 0: w — w such that &(p) € w* and
F(a(p)) € X. Then &(7(q)) € w* and f(5(7(p))) € X. It then follows from 2.1 that
X is almost g-compact.

(2) = (1). By 2.9, we have that =, is almost p-compact. By assumption, =,
is almost g-compact. Hence, by 2.1, there is 0: w — w such that (q) € o* and
5(p) € Ep. So p <rr 7(q) <kRK g g
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3. COMFORT TYPES

It is shown in [G-F4, 3.4] that T.(p) is countably compact for each p € w*. We
improve this result as follows. First, we recall the definition of the Rudin-Frolik order
on w*:

We say that p <gp ¢ if there is an embedding e: w — w* such that &(p) = ¢, for
p,q € w*. It is known that <gr and <gx are in fact distinct and <grrC<gK (see
[CN, Chapter 16]).

Theorem 3.1. For every p € w*, we have that T.(p) is almost p-compact.

Proof. It suffices to prove that T.(p) is quasi Trx (p)-compact. Indeed, let f:
w — T.(p). Without loss of generality, we may assume that f[w] is infinite. It is
clear that we may find an infinite subset A of w such that f | 40 A = Te(p) is an
embedding. Now, choose a bijection o: w — A and set ¢ = f o 0. Then, we have
that p <gr ¢ = é(p) and hence p <. ¢. Since f,(w) is p-compact, we obtain that
q = é(p) € Bp(w). It then follows from Lemma 0.7.
(4) that ¢ <. p. Therefore, f(5(p)) = q € T.(p) and G(p) € Tri (p)- O

It is also proved in [G-Fy, 3.8] that if p € w* is a P-point, then T.(p) is p-compact.
But we could not answer the following question which is taken from [G-F4, 3.9. (1)].

Question 3.2. Is T.(p) a p-compact space for every p € w*? The topological
behavior of the Comfort types for a cardinal number a bigger than w is only known
when p € U(a) is RK-minimal in o*: If such an uniform ultrafilter p exists on «,
then o is measurable (see [CN, Lemma 9.5]). In fact, the author proved in [G-F3,

3.16] that Te(p) = U Tri(p™) provided that p € U(«) is RK-minimal in a* and
1<n<w

a > w; hence, by Lemma 3.13, of [G-Fs3], we have that every element of T.(p) is
a-complete and so T.(p) cannot be countably compact, since no point of T,(p) is the
accumulation point of a countable subset of T.(p). This leads us to ask:

Question 3.3. If p € U(«) is not RK-minimal in o*, must T.(p) be countably
compact? The next question is posed in [G-F4, 3.9. (3)].

Question 3.4. For p,q € w*, is T.(p) x T.(q) a countably compact space? In
connection with this question we have the next Theorem. We need the following
lemmas.

Lemma 3.5. Let p,q € w*. If T.(p) x Tc(q) is countably compact, then there are
s € T.(p), t € T.(q) and r € w* such that r <grr s and r <gp t.
Proof. Suppose that T.(p) x T.(q) is countably compact. Let {A,: n < w} be

a partition of w in infinite subsets. For each n < w, choose p, € A% N T.(p) and

175



qn € A}, NT.(q) and define f: w — T.(p) x Te(q) by f(n) = (pn,qn) for each n < w.
By assumption, there is r € w* such that f(r) = (s,t) € T.(p) xT.(q). Then, we have
that mo(f(r)) = s and m; (f(r)) = t, where ;: B(w) x B(w) — B(w) is the projection
map for ¢ = 0,1. Since mp o f: w = T.(p) and 7 o f: w — T.(q) are embeddings,
r <gr sand r <gpt. 0O

Lemma 3.6. (G-F4. Theorem 2.17). Let p € w*. Then p is RK-minimal iff p is
C-minimal (i.e., <.-minimal) and P-point.

Lemma 3.7. (G-F4). Theorem 2.10). Let p,q € w*. If p <. q and p is a weak
p-point, then p <Rk q.

Theorem 3.8. Ifp,q € w* are RK-minimal and RK-incomparable, then T.(p) x
T.(q) is not countably compact.

Proof. Assume that T.(p) x T.(¢) is countably compact. By Lemma 3.4, there
are s € T.(p),t € T.(q) and r € w* such that, in particular, r <gy s and r <gy t.
According to Lemma 3.6, we have that p and ¢ are C-minimal. Hence, p ~. r =~ ¢.
but this is impossible by Lemma 3.7. O
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