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QUASI M-COMPACT SPACES 

SALVADOR GARCIA-FERREIRA, Mexico 

(Received May 11, 1994) 

0. PRELIMINARIES 

All spaces are assumed to be Tychonoff. If / : X -» Y is a function, then f: 
(3(X) -> (3(Y) denotes the Stone-Cech extension of / . The Greek letters a, 7, A 
and S will denote infinite cardinal numbers. If a and 7 are cardinal numbers, then 
[a]7 = {A C a : |A | = 7}. As usual /3(a) is identified with the set of ultrafilters on a 
and the remainder a* = (3(a) \ a is the set of free ultrafilters on a. If A C a, then 
cl /?(a)(A) = {p £ /3(a): A e p}, which will be denoted by A and A* = A \ A. We 
say that / : 7 —> /3(a) is a strong embedding for 7 ^ a if there is a partition {A$: 
£ < 7} of a such that /(£) G A£ for each £ < 7. The norm of p € a* is defined by 
||p|| = min{|A|: A £ p}. The set of uniform ultrafilters on a is U(a) = {p £ a* : 
\\p\\ = a } . The Rudin-Keisler (pre-)order on a* is defined by p ^ M Q if there 
exists a: a —•> a such that <j(g) = p, for p,q £ a*. The Rudin-Keisler order induces 
an equivalence relation on a* by defining p ~H# (/ if p ^RK Q and q ^RK P, for 
p, q £ a*. It is not hard to prove that p ~HA' # iff there is a bijection O: a -» a such 
that a(p) = #. The equivalence class of p G a* is called the type of p and it is denoted 
by TRK(p) = {q £ a*: q &RK p}. For p,q £ a*, p <RK q means that p ^RK q and 
p is not »HK-equivalent to q. For 0 7- M C a*, we let PRK(M) = {q £ a*; 
3p £ M(q ^RK p)}. Notice that if p ^RK q for p,q £ a*, then ||p|| ^ ||</||; hence, if 
q ~RK P G U(a), then a G U(a). For p,q £ a*, their tensor product is defined by 

p ® ^ = {A C a x a: {£ < a: {C < a : (C,C) G A} G 9} Gp}. 

Notice that p 0 a is an ultrafilter on a x a and can be considered as an ultrafilter 
on a via a fixed bijection between a and a x a. Observe that | | p0 q\\ = ||p||||q|| for 
p,q £ a*. It is pointed out in [Ka] that p <RK P® Q and q <RK P® Q for P , ^ « ^ 
The following result is essential in the application of <g) (for a proof see [CN, 16.5]): 
the case a = UJ was also proved by Booth [Bo]. 
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T h e o r e m 0 .1 . (Blass [Bli]). Let p,qea* with p e U(j). If e: 7 -> TRK(q) is a 

strong embedding, then p (g> q &RK e(p). 

It is not difficult to see tha t eg) is not an associative operation. However, Booth [Bo] 

noticed tha t <g> induces a semigroup structure on the set of types of UJ* by defining 

TRK(p) <g> TRK(q) = TRK(p eg) q) for p,q e UJ*. Hence, if p e UJ*, then pn s tands for 

any point in TRK(p)n for 1 ^ n < UJ. Booth [Bo] also defined the power TRK(p)u 

for each p e UJ* and each v < UJX as follows: for every UJ ^ v < UJI fix and increasing 

sequence (v(n))n<u) of ordinals in uj\ so tha t 

(1) uj(n) = n for n < CJ; 

(2) if t/ is a limit ordinal, then v(n) /* v\ 

(3) if v = p + m, where Li is a limit ordinal and 1 ^ m < UJ, then .v(n) =- p(n) -f ?7i 

for each n < UJ. 

Let p E CJ* and CJ ^ z/ < cc?i, and assume TRK(pY has been defined for all p < v. 

If 1/ is a limit ordinal, then we define TRK(p)u = TRK(f(p)), where f: UJ -* UJ* 

is an embedding such tha t / ( n ) £ TRK(p)u^ for each n < CJ. If .v = ^ -f 1, then 

TRK(p)u = TRK(pY®TRK(p). AS above, p " stands for an arbitrary point in TRK(p)u 

for each p e UJ* and each #v < cDi. 

We omit the proof of the following straightforward lemma. 

L e m m a 0 .2 . If f: UJ -^ /3(UJ) has infinite image, then there is a one-to-one func­

tion a: UJ -» UJ such that f o a: UJ —> (3(UJ) is an embedding (i.e., f o a is one-to-one 

and (f o O)[UJ] is a discrete subset of (3(UJ)). 

Z. Frolik [F2] noticed that if e: UJ - T UJ* is an embedding, then p <RK e(p) for 

every p e UJ*; tha t is, no type is produced by itself. Frolik's result and Theorem 9.2 

(b) of [CN] imply: 

L e m m a 0 .3 . If f: UJ -> /3(u>) is an embedding and p e UJ*, then p ^RK f(p). 

Bernstein [B] introduced the class of p-compact spaces for p e UJ*. Later, Saks 

[Sa], Woods [W] and Kannan and Soundararajan [KS] considered the notion of p-

compactness for various pea* at the same time: 

Def in i t ion 0.4 . Let 0 ^ M C a*. A space X is M-compact if for every / : 

a -> X, f(p) e X for all pe M. 

If p e U(a), then we simply write p-compact instead of {p}-compact. The basic 

properties of M-compactness are stated in the next theorem (for a proof see [V2]): 

Bernstein [B] proved the same result for p e UJ*. 

T h e o r e m 0.5. Let 0 7- M C a*. Then 
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(1) every compact space is M-compact; 

(2) M-compactness is closed under arbitrary products; 
(3) M-compactness is closed-hereditary; 

(4) if f: X —•» Y is a continuous surjection and X is M-compact, then Y is M-

compact. 

It follows from clause (l)-(3) of Theorem 0.5 that, for every space X, the space 
PM(X) = f]{Y: X CY C (3(X), Y is M-compact} is the (M-compact)-reflection 
of X which satisfies the following properties: 
(1) X is a dense subspace of (3M(X)\ 

(2) (3M(X) is M-compact; 
(3) if / : X -» Z is continuous and Z is M-compact, then J[(3M(X)] C Z; 

(4) up to a homeomorphism fixing X pointwise the space 0M (X) is the only space 
with properties (1), (2) and (3). 

For p G U(a), we write /3P(X) instead of (3{pj(X). For a space X and for 0 ^ 
M C a*, there is an alternative definition of (3M (a) which will be very useful: By 
transfinite induction, we define 

X0 = X and Xv = {f(p)\f:a->\JXz,p€M} for rj < a*. 

It is not hard to see that (3M(X) = \J Xv. Hence, we have that M C (3M(a) and 

\0M(O)\ <: 2a • |M | a , for each 0 ^ M C a*. 
In [G-F4], Comfort introduced the next (pre-)order on u*. 

Definition 0.6. For p,q G a*, we define p ^ c q if every g-compact space is 
p-compact. 

For p,q G a*, we say that p « c q if p ^ c # and q <lc p. We have that zzc is an 

equivalence relation on u* and the «c-equivalence class of p G a* is called the C-type 

of p and is denoted by Tc(p). The connection between ^RK and ^ c were established 

in [G — F4]. The next outstanding properties are the following: 

Lemma 0.7. 

(1) <^RK C ^ c and ^RK^C', 

(2) ifp G CJ*, then Tc(p) can be filled out with exactly 2U types; 
(3) if p G CJ*, then p^ G Tc(p) for every v < LJ\; 
(4) ifp, q G a*, then p ^ c g <£> /?p(a) C /39(a) ^ p G ,#q(a); 
(5) ifp ^ c g forp,q G a*, then ||p|| ^ ||OJ|; 
(6) i fp G (3M(ot) \ a for 0 7- M C a*, then THK(P) C PRK(P) C /?M(a) and 

^c(p)CP c (p)C/3M(a) . 
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Observe that a space X is M-compact, for 0 7- M C a*, iff f(p) G X for every / : 

7 -¥ X with 7 ^ a, and for every p G U(7) D Tc(q) with q £ M. 

It is convenient to have the definition of initially a-compactness at our disposal 
([St] and [G-Fi] offer a good survey on initially a-compact spaces), as follows: 

Definition 0.8. (Smirnov [Sm]). A space X is initially a-compact if every open 
cover fy of X with \<fy\ ^ a has a finite subcover. 

The authors of [GFW] introduced the notion of a-boundedness and Comfort [0] 
and Vaughan [V2] generalized this concept as follows. 

Definition 0.9. A space X is < a-bounded if c\x(A) is a compact for each 
AC X with \A\ < a. 

Notice that a-boudedness coincides with < a+-boudedness for each cardinal a. 

It is shown in [G-Fi] that a space X is < a-bounded iff X is p-compact for every 

p G a* \ U(a). Hence, every space X has a unique (< a-bounded)-reflection which 

will be denoted by Ba(X). 

1. QUASI M-COMPACT SPACES 

We start this section with the following definition due to Kombarov [K2] and 

Savchenko [S] which generalizes, in a very natural fashion, M-compactness. 

Definition 1.1. Let 0 7- M C a*. A space X is quasi M-compact if for every 

/ : a -> X there is p G M such that f(p) G X. 

In this paper, for 0 ^ M C a*, we shall use the name of quasi M-compact instead 

of the name of M-compact given by Kombarov in [K2], since the name of M-compact 

is reserved for the concept stated in Definition 0.4. Kombarov [Ki] also introduced 

the notion of weakly M-compactness, for 0 / M C CJ*, but it is shown in [G-F2] that 

weakly M-compacntess coincides with quasi cL* (M)-compactness. 

If p G U(a), then quasi {p}-compactness coincides with p-compactness. If M, N C 

a* and 0 7̂  M C 1V, then every quasi M-compact space is quasi N-compact. In par­

ticular, quasi CJ*-compactness is precisely the concept of countably compactness (see 

[K2]). For 0 ^ M C a*, we have that M-compactness implies quasi M-compactness. 

But these two concepts are different; indeed, we saw in Theorem 0.5 (2) that M-

compactness is productive for every 0 7-= M C U(a), and it is well-known that 

countably compactness is not finitely productive (see [GJ, 9.15]). We shall show, in 

Example 2.8, that quasi TRK (p)-compactness fails to be preserved under finite prod­

ucts for each p G OJ* (see [K2]). In the next theorem we give a necessary condition to 
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gain the quasi M-compactness of the product of two quasi M-compact spaces. We 
need a lemma. 

Lemma 1.2. (Ginsburg-Saks [GS]). Let p G U(a), X = Yl X{ and f: a -> X. 
i£l 

Then f(p) — x — (xi)i^j iff'If\ o f(p) = Xi for every i G I, where 7ti: X —> Kt is the 

projection map for each i G I. 

Theorem 1.3. Let M and N be nonempty subsets of a* such that for every 
p G M there is q G IV such that p ^ c q. Then if X is N-compact and Y is quasi 
M-compact, then X x Y is quasi M-compact. 

P r o o f . Let / : a -> X x Y and consider /n = 7r0 o / : a —•> K and / i = 7ir o / : 
a —> y , where 7r0: X x y —•> X and 7Ti: X x y —•> Y are the projection maps. By 
assumption, there exists p G M such that /i(I>) G y . Choose q £ N such that 
p ^c Q- Since K is o-compact, then K is p-compact and hence fo(p) £ -Y- From 1.2 
it then follows that f(p) e X xY. D 

In what follows, for a cardinal a, £a will denote the class of all spaces X with the 
property that for every initially a-compact space Y, X x Y is initially a-compact. 
For a = u>, the class <LU was introduced and studied by Frolik [Fi]. The author [Fi] 
also characterized the spaces of C^ (see [V2, Theorem 3.11]). Our next aim is to give 
a characterization of the spaces in £ a in terms of p-limits for an arbitrary cardinal 
a. The following concept is fundamental for our purposes. We need some notation 
and the next lemmas. 

For a cardinal a,.y# = {Mi: i G I} will denote an arbitrary set of nonempty 
subsets of a*, and if cu ^ 7 ^ a, then -# (7 , a ) will denote a set {MA: 7 ^ A ^ a} 
of nonempty subsets of a* such that MA C U(A) for every 7 ^ A ̂  a. 

A slight generalization of quasi M-compactness is the following: 

Definition 1.4. Let J{ — {Mi: i G I}. Then a space X is said to be quasi 

.//-compact if X is quasi M;-compact for each i G I. 

If 0 7-̂  M C U(a), then quasi {M}-compactness agrees with quasi M-compactness, 
and if M = {{pi\: Pi G U(7;),u; ^ 7; ^ a , i G I}, then X is quasi .^-compact iff X 
is pi-compact for all i G I. If p <c q for p,q £ LU*, then (3p(w) is p-compact, but it is 
not quasi {{p}, {(?}}-compact since (3P(UJ) cannot be a-compact. 

It should be mentioned that for a space X the following conditions are equivalent 

(for a proof see [St]): 

(1) X is initially a-compact; 

(2) for every UJ ̂  7 ^ a and for every / : 7 —>• X there is p G U(j) such that 

7(P) e x-
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(3) for every cD ^ 7 ^ a and for every one-to-one function / : 7 -> X there is 

p G U(7) such that 7(P) £ X. 

(4) for every regular cardinal 7 with cD ^ 7 ^ a and for every one-to-one function 
/ : 7 -» X there is p G U(7) such that 7(I0 £ -^-

In our context we have: 

Lemma 1.5. X is initially a-compact iff there is a set ^(uj,a) of nonempty 

subsets of a* such that X is quasi ^(u, a)-compact. 

The proof of the following result is immediate. 

Lemma 1.6. If 0 / K C a* and X = a U K C [3(a) is initially a-compact, then 
K n U(7) 7̂  0 for every cardinal 7 such khafc cD ^ 7 ^ a. 

For cardinal a, we let 

srf(a) — [K: K C a* and a U AT is initially a-compact}, 

and for u ^ 7 <J a, ^ ( 7 , a) = {1/(7) n K: K G ^ ( a ) } . Notice, by 1.6, that if 
cD < 7 < a and K G ^ ( a ) , then U(7) n i Y / l . We set ^ a = U W ( 7 . a ) : 
cD ^ 7 ^ a } . Henceforth, if K G «^(a), then /(AT) will denote the subspace a U A' of 
(5(a). Now, we shall show that the sets Ma characterizes the spaces of £ a , First an 
easy lemma. 

Lemma 1.7. If f: Y -» Z is a continuous function, Y is compact and X C Z is 

initially a-compact, then f~x(X) is initially a-compact. 

Theorem 1.8. For a space X the following conditions are equivalent. 
(1) X is quasi ^#a-compact; 
(2) X G Ca; 
(3) X x I(K) is initially a-compact for each K G sz/(a). 

P r o o f . (1).=>(2). Let Y be initially a-compact and let / : 7 -> X x Y, where 
cD ^ 7 < a. Set /o = 7T0 o / : 7 -> X and /1 = 7Ti O / : 7 -> Y, where 7T0: X x y -> X 
and 7Ti: K x Y -> y stand for the projection maps. Since Y is initially a-compact, 
by 1.7, fil(Y) C £(7) is initially a-compact. We then have that a\Jf^1{Y)U{a\y) 
is initially a-compact and U(7) n [a U / J" 1 00 u ( a \ 7 ) ] = ^(7) n / i ^OO- S i n c e X 

is quasi [U(y) n / r ^ ) ] " ™ 1 1 ^ ^ t h e r e is p G 1/(7) n fi\Y) such that 7o(p) G X. 
Hence, by 1.2, 7(p) e X xY, since 7i(p) G y . 

(2) => (3). This is evident. 

(3) => (1). Let cD ^ 7 ^ a ,U (7 )n I f e ^ ( 7 , a) and / : 7 -> X. Let a: 7 -> 

X x I(K) be defined by g(0 = (/(£), 0 for each £ < a. Since X x I(AT) is initially 
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a-compact there is p G U(7) such that g(p) = (x,q) G X x I(K). It then follows 
that f(p) = x e X and p = q e U(j) n K. Therefore, X is quasi ^ ( 7 , a)-compact. 

D 

Next, we shall prove that a cardinal number a is singular if and only if Ba(a) G £a. 

First some preliminary results. 

Lemma 1.9. (Stephenson-Vaughan [SV]). Let a be a singular cardinal and let 

X be a space. If X is initially K-compact for each u ^ K < a, then X is initially 

a-compact. 

The next lemma is a special case of the Theorem 2.2 of [SV] (see [Sa, 5.2]). For 
the sake of completeness we include a proof. 

Lemma 1.10. If X is < a-bounded and Y is initially a-compact, then X xY is 

initially K-compact for every to ^ K < a. 

P r o o f . Let K be a cardinal such that UJ ̂  K < a and let / : K —> X x Y. 
Set fo = 7Toof:K—^X and fi = n\ o f: K -± Y. Since Y is initially tc-compact, 
there is p G U(K) such that 7i(P) £ Y. The < a-boundedness of X implies that 
fo(p) € clx (/[*,]) C X. Thus, by 1.2, we have that f(p) G X x Y. This shows that 
X x V is initially ^-compact. D 

In [GT], several topological conditions are shown to be equivalent to the singularity 
of a cardinal number. In particular, we have: 

Lemma 1.11. For a cardinal a, the following an equivalent. 

(1) a is singular; 

(2) Ba is initially a-compact. 

The next theorem is an immediate consequence of 1.9, 1.10 and 1.11. 

Theorem 1.12. For a cardinal a, the following statements are equivalent. 
(1) a is singular; 
(2) every < a-bounded space lies in Ca; 
(3) Ba(a) G Ca; 
(4) Ba(X) G £a for every space X. 

We know that if a is a regular cardinal, then Ba(a) = /3(a) \ U(a) and it cannot 
be initially a-compact. It is pointed out implicitly in [SS, proof of 4.11] that if 
a is a strong limit singular cardinal, then initial a-compactness agrees with < a-

boundedness (see [G-Fi, 2.4]). This result implies the following. 
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Theorem 1.13. If a is a strong limit singular cardinal, then every initially a-

compact space is a member of<£a. 

We turn now to study when f3M(a) e €a for 0 ^ M C a*. The proof of the next 
easy lemma is omitted. 

Lemma 1.14. For 0 ^ M C a* and q e U(^) for u < 7 ^ a, the following 

conditions are equivalent. 

(1) 0M (a) is q-compact; 

(2)qe(3M(a); 

( 3 ) T c ( ^ ) n / 3 M ( a ) ^ 0 . 

Applying 1.8 and 1.14, we have: 

Theorem 1.15. For | / M C a * , the following are equivalent. 

(1) 0M(o) e <ta; 

(2) 0M (a) x I(K) is initially a-compact for each K e £/(a); 

(3) for every K e srf(a) and for every u ^ 7 ^ a there is q e U(*y) D K such that 

/3M (a) is q-compact; 

(4) for every K e sz/(a) and for every LU ^ 7 ^ a, {3M(a) n K C)U(j) ^ 0. 

P r o o f . (1) -=> (2) is evident and (3) & (4) follows from 1.14. (2) =t> (4). 
Let K e sz/(a). Since /3M(a) x I(K) is initially a-compact and 0M(a) n I(K) is 
homeomorphic to the diagonal of 0M (a) x I(A), we have that 0M (a) n I(A') is 
initially a-compact. By lemma 1.6., we have that 0M(a) nI(K)DU(j) 7̂  0 for each 
UJ ^ 7 ^ a. 

(3) --=> (1). According to 1.8, it is enough to prove that 0M(a) is quasi ^#a-compact. 
Let K e £?(a) and UJ ^ 7 ^ a. By assumption, there is q e 0M(a) H K D U(7) such 
that 0M(O) is G-compact. Thus 0M(a) is quasi ^#a-compact. D 

The equivalences between clauses (1) and (2) of the next lemma is a direct conse­
quence of 1.6 and the equivalence among the others may be established by an easy 
argument: the case M = {p} for p e U(a) is stated in [G-F3]. We recall the reader 
that p e U(a) is called decomposable if for every UJ ^ 7 ^ a there is q € U(l) s u c n 

that q ^RK P' for further information about decomposable ultrafilters the reader is 
referred to [BS]. 

Lemma 1.16. For 0 ^ M C U(a), the following are equivalent, 

(1) 0M(a) is initially a-compact; 
(2) 0M(a) H U(7) 7- 0 for every UJ ^ 7 ^ a; 
(3) there are p e M and q G FC(P) such that q is decomposable; 
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(4) there is p Є U(a) decomposable such that ßм(a) is p-compact. 

It is shown in [G-Fi] that all powers of space X are initially a-compact iff there is 

p Є U(a) decomposable such that X is p-compact, and we proved in [G-F3] that if 

a is a strong limit and p Є U(a) is indecomposable, then ßv(a) is a p-compact space 

which is not initially a-compact: we also remarked in [G-F3] that in the Core model 

Iv a space X is p-compact, for p Є U(a), iff all powers of X are initially a-compact. 

L e m m a 1.17. Let p Є U(a),u ^ 7 ^ a and a: 7 —r U(a) a strong embedding. 

If P ^RK 0"(f) f°r e a c n £ < 7? then p ^RK &(q) for each q Є Uч7)-

P r o o f. Let {Aţ : Ç < 7} be a partition of a such that <j(Ç) Є A | for each £ < 7-

Then there is Д : . 4 ^ - ł a such that Д(O"(£)) = P f° r e a c n £, < 7- If / = U fii t п e n 

f(õ(q)) — p for each q Є U(i). D 

L e m m a 1.18. For every p Є LJ* there is K Є sď(u) such that p ^RK Я. f°r єvery 

q Є K. 

P r o o f . Let p Є LJ*. Define Лo = TRK(P) and, by transfinite induction, let 

Kv{ë(p) | e: LJ —•> |J Kџ is an embedding} for v < u\. Then, we put K — Џ Kv. 
Џ<V V<ЬJ\ 

First, we shall verify that K Є SZ/(LJ). Suppose that LJUK ІS not countably compact. 

Then, there exists an embedding e: LJ -> UJ U K such that [u>*] П (u> U K) = 0. 

Set A = {n < u: e(n) Є u) and B = {n < u: e(n) Є K}. If A Є p, then 

~(p) Є TRK(P) = KQ Ç K which ІS impossible. Thus B Є p. Without loss of 

generality, we may assume that B = u. For each n < u choose vn < cDi such that 

e(?г) Є KVn and set v — sup{ivn: n < n]. By definition, we have that ë(p) Є Kv Ç K 

which is a contradiction. Therefore, K Є sz/(u). We shall prove that Л satisfies the 

required condition. Assume that p ^RK r for every r Є Kџ П U(a) and for every 

џ < v < UÌ\. Let q Є Kv П U(a). Then, there is an embedding O: u —> (J Kџ such 
џ<v 

that o(p) — q. By induction hypothesis, we have that p ^RK a(n) for every n < u. 

Applying Lemma 1.17, we obtain that p ^RK ã(p) = q- D 

Theorem 1.19. Ifßм(u) Є C for 0 ф M C u*, then ßм(u) = ß(u). 

P r o o f . Assume that ßм(u) Є Cш for 0 ф M C u*. Fix p Є u*. By 1.18, 

there is K Є £/(u) such that p ^RK r for all г Є Л". It follows from 1.8 that 

ßм(u) is quasi Ií-compact and hence there is q Є ßM(u) П K. By Lemma 0.7 (6), 

P Є PRK( ) Q ßм(a). Thus, ßм(u) = ß(u). D 

For a singular cardinal a, we have the following: 

(1) Ba(a) Є<Ĺa,Ъy 1.12; 
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(2) Ba(a) = (3N(a), where N = a* \ U(a) (see [G-F l 5 Theorem 1.3]); and 

(3) Ba(a) ^ (3(a) (see [GT, Corollary 2.4 (b)]). 

This leads us to ask: 

Q u e s t i o n 1.20. Let a > UJ be a regular cardinal. Is there 0 ^ M C a* such 

that (3M(a) G Ca and j3M(a) ^ (3(a)! 

The following example shows that there exists 0 ^ M C UJ* such that \/3M(UJ)\ = 

22" a n d / 3 M M ^ / ? ( C J ) . 

L e m m a 1.21. Let 0 ^ M C CJ*. If p is a weak P-point of UJ* and p G PM(UJ). 

then p ^RK q for some q G M . 

P r o o f . We indicate in the preliminary section that (3M(UJ) = (J Xu, where 
1/<IJJ\ 

x0 = u) and Xu = {/(g) | / : UJ -> U X^q G M } for 0 < v < UJI. By a slight 

modification of the K^,s, we obtain that (3M(U) = U - ^ where Z0 = CJ, Zi = 

U IW?) and Zu = {f(q) \ f: u -> U ^p , / M C cu*, a G M and / ( a ) £ /[a;]} 
<7€M /x<i/ 

for 1 < iv < UJI. Assume that p G (3M(u) and p is a weak P-poin t . Let v be the 

least ordinal v < uj\ such that p € Zu. Since p is a weak P-poin t of UJ* , we have that 

v = 1 and so p G U PRK(Q)- a 

E x a m p l e 1.22. K. Kunen [Ku] proved that there is a set W of weak P-points 

of UJ* such that \W\ = 2?" and the elements of W are pair wise ItFT-incomparable. 

Choose M C W so that | M | = |W \ M\ = 22" and enumera te M as {p£: £ < 22" }. 

Then, 22" = | M | = | / ? M (^ ) | = | / ? M | and, by Lemma 1.21, IV \ M C /?(w) \ PM{V). 

The au thor introduced in [G-F5] the notion of (7, M)-compac tness for a cardinal 

1 ^ 7 and 0 ?- M C UJ*, and proved that X1 is countably compac t iff A" is (7, M ) -

compac t for some 0 7-- M C UJ* . The situation for cardinal numbers higher that UJ is 

completely similar as it is s ta ted in the following two results. 

Def in i t ion 1.23. Let 0 ^ M C U(a) and 7 a cardinal. A space X is said to be 

(7,M)-compact if for every 7-sequence (/c)c<7 °-" functions in aX , there is p G M 

such that JQ (p) G X for each C < 7-

As a direct sequence from 1.2 we have: 

T h e o r e m 1.24 . Let X be a space and 7 a cardinal. Then X1 is initially a-

compact iff for each cardinal S with UJ ^ 5 ^ a, there is 0 ^ Ms C U(S) such that X 

is (7, Ms)-compact. 
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Theorem 1.25. Let J / M C U(a), let 1 ^ 7 be a cardinal number and let X 
be a (7, M) -space. 

(1) If \M\ ^ 7, then there is p e M such that X is p-compact. 

(2) If there exist p G U(a) and a surjection a: a -» a such that M C o~l(p), then 
X is p-compact. 

2. ALMOST M-COMPACT SPACES 

It follows from the definition that quasi M-compactness implies quasi PRK(M)-

compactness for 0 ^ M C a*. The next theorem establishes the similarity between 
these two concepts. 

Theorem 2.1. Let 0 7- M C U(a). A space X is quasi PRK(M)-compact if and 

only if for every f: a -» X there is p G M and o: a —» a such that o(p) G a* and 

/(*(?)) e * • 

For 0 7-= M C U(a), we simply say almost M-compact space instead of quasi 
PW(M)-space (2.1 justifies the name almost M-compact). Thus, an almost p-
compact space is a quasi P^x(p)-space for p G U(a). We shall give in 2.3 an example 
of an almost p-compact space which is not p-compact. 

Theorem 2.2. If X^ is initially a-compact and \X$\ ^ 2a for £ < 2a, then there 

is p G U(a) such that X^ is almost p-compact for each £ < 2a. 

P r o o f . We have that | IJ X$\ ^ 2a. Since X^ is initially a-compact, for every 

/ : a -» K£, there is p/ G U(a) such that / (p /) G K£, for each £ < 2a. We have that 

|{p/ I / : a -» X^ < 2 a } | ^ 2a. Hence, by Theorem 10.9 of [CN], there is p G U(a) 

such that pf ^RK p for every / : a -» X^ and for every £ < 2a. We claim that X% 

is almost p-compact for every f < 2 a . Indeed, fix £ < 2 a and / : a -» K£. Since 
P/ ^ M p, there is cr: a -» a such that a(p) = p/ and so /(O(p)) G K£. • 

For every p G a;*, we have that p-compactness => quasi T#K(p)-compactness => 
almost p-compactness => quasi Tc(p)-compactness =>> countable compactness. The 
following three examples and theorem show that they are different each other except 
for the case when p G u;* is HK-minimal (in this case we have that quasi TRK(P)-

compactness coincides with almost p-compactness). 

Example 2.3. For each p G CJ*, there is an almost p-compact space Fp which 
is not p-compact. Fix p G 00*. The space Yp will be constructed inside /3(UJ) by 
induction and by a well-known standard method. Put Fn -= LO and assume that Tfi 
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has been defined for each p < v < ux. Then, define IV == {/(g) | / : u -.> [j TfL 

is an embedding, f(q) / p, a G T/^(p)} . We set r p = IJ Tu. Since p £ Tp, the 

space Tp is not p-compact. Now, in order to prove that Tp is almost p-compact we 
let / : u —> Vp be such that f[u] is infinite. By 0.2, there is a one-to-one function 
a: u —r u such that / o a: u —•> Tp is an embedding. So we may find q G TRK(P) 

such that f(a(q)) ^ p. Since (/ o a)[u] C |J TM for some .v < uji, we have that 
/~-o 

f(s(q)) ^ Ty C Tp and O((?) G TRK(P)< This shows that Tp is quasi TRK(P)-compact 

and so Tp is almost p-compact. 

Example 2.4. If p G U(u), then Ap =- /3(iD) \ Tc(p) is a countably compact 

space which is not quasi Tc(p)-compact. Indeed, since |FW(p)| ^ 2W, the space Ap 

is countably compact (it is well-known that for every subspace X of (3(u) such that 

IKI ^ 2^, f3(u) \ X is countably compact). If / : u —> u is an arbitrary bijection, 

thenf[Tc(p)]CTc(p)C0(u)\Ap. 

Example 2.5. For p G u*, the space Clp = /3(U)\PRK(P) is quasi Tc(p)-compaet 

and is not almost p-compact. It is evident that ftp cannot be almost p-compact. 

Now, let / : u —> Qp be with infinite image. By 0.2, there is a one-to one function 

a: u —y u such that / o : u —> Qp is an embedding. Then, by 0.3, either p <RK 

P2 <RK f(&(p2)) or ?(&(P2)) ~ M P2- In both cases we have that f(u(p2)) G Qp 

anda(p2)eTRK(p2)CTc(p). 

Theorem 2.6. For p G u*. tiie following are equivalent, 

(1) p is RK-minimal; 

(2) quasi TRK(P)-compactness and almost p-compactness are the same. 

P r o o f . Only (2) => (1) requires proof. Suppose that p is not iUv-minimal. 

Then there is q G u* such that a <RK P- Consider the space X — f3(u) \ TRK(P). 

This space cannot be quasi T#A-(p)-compact. We shall verify that the space is almost 

p-compact. Indeed, let / : u -> X be with infinite image. By 0.2, we may choose a 

one-to-one function a: u -> u such that / o a: u —> X is an embedding. If there is 

an infinite A C u such that / o a[A] C u, then / o a(A C\ TRK(q)] C TRK(q) C X. 

If ( / o a[u]) (lu is finite, by Lemma 0.3, then we have that p <RK ?(&(P)) G X and 

&{p) eTRK(p). • 

The following example shows that almost p-compactness is not preserved by finite 

products, for p G u*. Nevertheless, we proved in Theorem 1.3 above that the product 

of a p-compact space and an almost p-compact space is almost p-compact as well for 

every p G U(a). We need a lemma. 
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Lemma 2.7. (Blass [Bl2]). Let f,g:u-^LO* be embeddings and let p G LO*. If 
{n <LO: f(n) <RK g(n)} G p, then f(p) <RK g(p). 

Example 2.8. For every p G LO*, there is quasi TftK(p)-compact space Cp such 
that Cp x Cp is not countably compact. Fix p G LO*, we proceed as in the example 
9.15 of [GJ]. Let LO = AuB, where \A\ = \B\ = u and Af\B = 0. Let 6: A -» B be a 
bijection and define r : ^(cr) -» /3(a) by T~L(A) = ^ and T| , = J - 1 . Observe that 
q ~ M /!"(̂ ) for q £ LO*. It suffices to construct a quasi TRK(p)-compact space Cv so 
that Cp x Cp fl {(q,T(q)): q G cD*} = 0 (see [GJ, 9.15]). We proceed by induction. 
Let Co = LO and assume that Cu = {p(^, £) ' •£< 2^} C LO* has been defined for each 
v < 0 < LOi so that: 

(1) p(v,0 = ft(q(v,Z)) for some q(v,Q G W P ) , for # G ̂ „ , i/ < 0 and £ < 2", 
where if v = p -f- 1, then ^ = {/ | / : LO -» KM is an embedding} and if v is a 
limit ordinal, then &u = {/ | / : LO -» IJ K^ is an embedding with / (n) G K/Xn 

p<^ 
for each n < LO and p n /* *v}, and {/^: £ < 2W} is an enumeration of ^ ; 

(2) p(v,Q / r(p(i/ ,0) for v < 0 and £ < C < 2^; 
(3) p(/x,C) <RKp(^ ,0 f o r p < * / < 0 a n d £ , C < 2 " . 

We consider two cases. 
Case I. 0 = p + 1. In this case, we let ^ = {/ | | / | : LO -» KM is an embedding, 

£ < 2^} and put p(0,O) = fd
0(p). Suppose that, for each £ < £ < 2W, p(0,£) has been 

defined so that p(0,£) = ~f\(q(Q,Q) for some q(0,Q G TRK(p) and (l)-(3) hold for 
v < 0, for £ < 2W and for {p(0,£): £ < C < 2"}. Since |{T(p(0,£)): £ < C}| < 2" and 
|TKK(p)| = 2", there is a(0,£) G T H K ( P ) such that p(0,C) - fe

c(q(0,Q) / r(p(0,£)) 
for every £ < £• l n order to verify (3) we fix v <^ \i and £, £ < 2W. By definition, we 
have that /^(n) < ^ K /<? (™) for each n < CJ. From 2.7 it then follows that 

P(",0 = 7£fa(i',0) < M 7c(̂ (0,C)) =P(A,0-

Case II. 0 is a limit ordinal. We put J*B = {/| | / | : a; -» IJ Xu is an embedding 

with / | ( n ) G K„n for each n < LO, vn /* z/,£ < 2W}. Define p(0,O) = 7o(P) a n d 

assume that for each £ < £ < 2w,p(0,£) has been defined so that p(0,£) = ff(P) 
and (l)-(3) hold for v < 0, for £ < 2^ and for {p(0,£): £ < C < 2^}. Since 
|{T(p(0,£))_: £ < C}| < 2^ and |T*x(p) | = 2", there is O(0,£) G TfiK(p) such that 
p(6>,C) = fe

c(q(0,Q) ^ r(p(6,Q) for every £ < £• Only (3) requires proof. Let 
v < 0 and £, C < 2". It suffices to prove that p(i/ + 1,£) <RK p(0,Q. In fact, since 
v < 0 and vn /* 0 there is m < LO such that v < vn < 0 for each m <l n < LO. By 
assumption, we have that /^ + 1 (n) < /<?(n) for each m ^ n < LO. By Lemma 2.7, we 
obtain that 

PO +1,0 = 7£+1 («(" + -'0) <«* /?(«(«,0) = P(«,0-
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Our example is the space Cp = \j Xe with the topology inherited from (3(UJ). 
0<u1 

First, we show tha t Cp is quasi T#/<(p)-compact. Let / : UJ -> Cp be with infinite 

image. If we may find a one-to-one function a: UJ -» CJ and <9 < CJI so that / o a: 

UJ -» Xe is an embedding, then there is £ < 2W for which / o a = / | and so 

7 ( W , 0 ) ) - 7f(<z(0,O) = P ( * , 0 € K,+1 C C p and (/(0,O G T ^ ( p ) . In the 

preceding case does not hold, then we may find a one-to-one function a: UJ -» CJ 

and a sequence of ordinals (vn)n<u) in UJI so that vn /* v and / o a: UJ -> C p is 

an embedding, and f(n) G X„,. for each n < UJ. NOW, we proceed as above. This 

proves tha t Cp is quasi TRK(p)-compact. Let q G K6> C Cp for some t9 < UJI. Since 

'l'(g) ~ M q, we have that T(O) ^ X^ for each ^ < CJI with v ^ (9, because of (3). It 

follows from (2) tha t r(q) £ Xe as well. Thus, 

CpxCpn{(q,T(q)): a G c j * } = 0 . 

The following example is needed to show that RK-order can be expressed in terms 

of almost p-compact properties. 

E x a m p l e 2 .9 . For p G UJ*, we define Ep = UJ U {q £ UJ* : 3v < uji(p <:RK q <:RI< 

pu)}. We claim tha t Ep is quasi T#/< (p)-compact. In fact, let / : UJ —» Ep be with 

infinite image. We consider two cases. 

Case I. There is a one-to-one function a: UJ —> UJ such tha t / o a[uj] C UJ and / o a: 

UJ -> Ep is an embedding. Then, by [CN, 9.2 (b)], we have that p &RK a(p) &RK 

f(a(p)) G Ep. 

Case II. There is a one-to-one function a: UJ -» UJ such tha t / o a: UJ -> Ep is 

an embedding and / o CT[CJ] C UJ*. For each n < CJ, choose vn < UJI such that 

f(a(n)) ^RK pVn and let v = l imi/n . Hence, p ^H^ /(<7(n)) ^R /c P" f ° r e a c h ™ < ^-

Applying Lemma 2.28 (see also [Bl, clause (6) p. 34]) and Lemma 2.29 of [G-F5], 

we obtain p®p ^RI< f(&(p)) ^RK V ® pu ^RK P M for a limit ordinal v < u < UJY: 

hence, f(a(p)) G Ep and a(p) G TRK{p). 

T h e o r e m 2 .10 . For p,q G UJ*, the following are equivalent, 

(1) P^RK q; 
(2) every almost p-compact space is almost q-compact. 

P r o o f . (1) => (2). Suppose that X is almost p-compact. Let r : UJ -» CJ be such 

tha t f(g) = p and / : UJ -> K. By 2.1, there is <r: CJ -> UJ such tha t O(p) G CJ* and 

/(O(p)) G X. Then O(T(g)) G CJ* and f(a(f(p))) G K. It then follows from 2.1 that 

X is almost (/-compact. 

(2) => (1). By 2.9, we have that E.p is almost p-compact. By assumption, Ep 

is almost g-compact. Hence, by 2.1, there is a: UJ -> CJ such tha t O(g) G a* and 

O(p) G S p . So p ^ M ^ (?) ^ M <T D 
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3. COMFORT TYPES 

It is shown in [G-F4 , 3.4] that Tc(p) is countably compac t for each p G LJ* . We 

improve this result as follows. First , we recall the definition of the Rudin-Frolik order 

on LJ*: 

We say that p <RF q if there is an embedding e: LJ —> LJ* such that e(p) = q, for 

p,q £ LJ*. It is known that <RF and ^RK are in fact distinct and <RF^^RK (see 

[CN, Chap ter 16]). 

T h e o r e m 3 . 1 . For every p G LJ*, we have that Tc(p) is almost p-compact. 

P r o o f . It suffices to prove that Tc(p) is quasi TRK(p)-compact. Indeed, let / : 

LJ —» Tc(p). Wi thou t loss of generality, we may assume that f[cj] is infinite. It is 

clear that we may find an infinite subset A of LJ such that / | • A —r Tc(p) is an 

embedding. Now, choose a bijection a: LJ —> A and set e = f o a. Then, we have 

that p <RF q = c(p) and hence p ^ c q. Since (3P(LJ) is p-compact , we ob tain that 

q = e(p) G /3p(cj). It then follows from Lemma 0.7. 

(4) that q ^c p. Therefore, f(a(p)) = qe Tc(p) and a(p) G TRK(p). • 

It is also proved in [G-F4 , 3.8] that if p G LJ* is a P-poin t , then Tc(p) is p-compact. 

Bu t we could not answer the following question which is taken from [G-F4 , 3.9. (1)]. 

Q u e s t i o n 3 .2 . Is Tc(p) a p-compact space for every p G u*? The topological 

behavior of the Comfort types for a cardinal number a bigger than LJ is only known 

when p G U(a) is I^If-minimal in a*: If such an uniform ultrafilter p exists on a, 

then a is measurable (see [CN, Lemma 9.5]). In fact, the au thor proved in [G-F3 , 

3.16] that Tc(p) = | J TRK(pn) provided that p G U(a) is ix/v-minimal in a* and 

a > LJ] hence, by Lemma 3.13, of [G-F3], we have that every element of Tc(p) is 

a-comple te and so Tc(p) canno t be countably compact , since no point of Tc(p) is the 

accumulation point of a countable subset of Tc(p). This leads us to ask: 

Q u e s t i o n 3 .3 . If p G U(a) is not RK-minimal in a*, mus t Tc(p) be countably 

compact? The next question is posed in [G-F4 , 3.9. (3)]. 

Q u e s t i o n 3 .4 . For p,q G LJ* , is Tc(p) x Tc(q) a countably compac t space? In 

connection with this question we have the next Theorem. We need the following 

lemmas. 

L e m m a 3 .5 . Let p, g G LJ* . IfTc(p) x Tc(q) is countably compact, then there are 

s G Tc(p), t G Tc(q) and r G LJ* such that r <RF S and r <RF t. 

P r o o f . Suppose that Fc(p) x Tc(q) is countably compact . Let {An: n < LJ} be 

a par t i t ion of LJ in infinite subsets. For each n < LJ, choose pn G A*n n Tc(p) and 
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qn G A*n n Tc(q) and define / : UJ -> Tc(p) x TC(O) by f(n) = (p n , gn) for each ?i < CJ. 

By assumption, there is r G c<J* such that f(r) = (s, l) G Tc(p) x FC(G). Then, we have 

tha t 7r0(7(r)) = ;s and 7Ti(/(r)) = c, where 7^: /3(CJ) x /3(CJ) -» /J(<j) is the projection 

map for i = 0 , 1 . Since 7r0 o / : CJ -> Tc(p) and 7Ti O / : u -> Tc(g) are embeddings, 

r < j R F 5 and r < j R F 1. • 

L e m m a 3.6 . (G-F 4 . Theorem 2.17). Letpeu*. Then p is RK-minimal iff p is 

C-minimal (i.e., ^c-minimal) and P-point. 

L e m m a 3 .7 . (G-F 4 ) . Theorem 2.10). Let p,q G CJ*. If p> ^ c q and p is a weak 

p-point, then p ^RK q-

T h e o r e m 3 .8 . If p, q G cu* are RK-minimal and RK-incomparable, then Tc(p) x 

Tc(q) is not countably compact. 

P r o o f . Assume tha t Tc(p) x Tc(q) is countably compact. By Lemma 3.4, there 

are s G Tc(p),t G Tc(q) and r G cu* such that , in particular, r <H^- 5 and r < # A ' i. 

According to Lemma 3.6, we have that p and q are C-minimal. Hence, p ^ c 7' ^ c q, 

but this is impossible by Lemma 3.7. • 
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