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Let G be a connected graph (in the sense of the book [1], for example). Let V', E
and d denote its vertex set, its edge set and its distance function, respectively. We
denote by Xy the set of all finite nonempty sequences

(0) UQ, -« -, Ui
where ¢ > 0 and uo, ...,u; € V. Similarly as in [2], instead of (0) we will write
ug . . . Uj.
Ifa =wv...v; and B = wy...wk, where j,k > 0 and vo,...,vj, wo,...,wx € V,

then we write

aff =vy...0;Wp ... Wk.

Let y=2¢...Zm, where m > 0 and xg,...,z,n € V. We write

F=Zm...Zo, |¥ll=m, Ay=2z0 and Zvy=2an.
If & C Epn, we define
&(n) ={a€ ; d(Aa,Za)} =n

for every integer n > 0. Put ¥ = Xy U {*}, where * denotes the empty sequence in
the sense that dx = § = %0 for every § € Ty, **x = x and % = *.

As usual, by a walk in G we mean a finite nonempty sequence up ...u; such that
i 20, ug,...,u; € V and {uj,u;jy1} € E for each integer j, 0 < j < i. Let # denote
the set of all walks in G. Obviously, # C Zy.



Let o, 8 € En, |||, I18]] = 2, and let Ao = AB and Za = ZJ3. Then there exist
u,v,w,z € V and ¢,y € ¥ such that @ = uvez and 3 = wpwz. We define

alpP=vpzw and a7t =vupw.

It is clear that if a, 3 € #', then a | B,a Tt B € ¥ .

As usual, by a path in G we mean a finite nonempty sequence vy . . .v; such that
J 20, v,...,v; €V, the vertices vy, ..., and v; are mutually distinct and vg ... vj
is a walk in G. Let & denote the set of all paths in G. If a € &, then ||a|| is called
the length of a. Obviously,

d(u,v) =min(||8|l; B € L, AB=u, ZB =)
=min(||y|;vy€ #, Ay=u, Zy =)

for every pair of vertices u and v of G.
Let a € #. Then « is called a shortest path in G, if

lla]| = d(Aa, Za).

Let % denote the set of all shortest paths in G. Obviously, /' C Z.
The next theorem gives a characterization of .%.

Theorem 0. Let # C &. Then # = & if and only if the following conditions
A — G are fulfilled (for arbitrary u,v,w,z € V and «, 3 € 3):
If wvaw € #, then {u,w} ¢ E.
If wwaw € X, then wavu € #.
If wwaw € £, then vaw € X.
If wwaw,vBw € X, then wvpw € X.
If wwow,vufz € # and {w,z} € E, then vawz € #.
If waw € #, {w,z} € E, upzw ¢ X for any ¢ € ¥ and uvpz ¢ #
for any ¢ € &, then vowz € Z.
There exists o € X such that Ap = u and Z¢ = v.

HEHOQWE >

D

The characterization of . given in Theorem 0 is “almost non-metric” in the sense
that the lengths of paths greater than one are neither considered nor compared in
the conditions A — G. Note that Theorem 0 is a modification of Theorem 1 in [2].

Let n > 2. As follows from the definition, .'(n) is the set of all shortest paths of
length n in G. The proof of Theorem 1 in [2] contains an implicit characterization
of ."(n) under the assumption that each of the sets .//(0),.7'(1),..., (n = 1) is
known. The next theorem gives a characterization of .#’(n) under the assumption
that only .¥"(n — 1) is known. Note that the lengths of paths greater than n — 1 are
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neither considered nor compared in the next theorem. Nonetheless, the knowledge
of the distance function is assumed.

Theorem 1. Let n > 2 be an integer, and let # C W . Assume that
(1) RAn—-1)=S(n-1).

Then #Z(n) = & (n) if and only if the following conditions B,, — H,, are fulfilled (for
arbitrary u,v,w,z € V and a, 3,y € X):
B, Ifuwaw € Z(n), then wavu € X.
C, Ifuwaw € #(n), then vaw € Z.
D, Ifuvaw € Z(n), vfw € #, then uwvfw € X.
E, Ifuwow, vupfz € Z(n) and {w,z} € E, then vawz € X.
F, Ifuwoaw € #(n), {w,z} € E, upzw ¢ X for any ¢ € T and vopz ¢ #
for any i € &, then vawz € X.
G, Ifd(u,v) =n, then there exists ¢ € ¥ such that Ap = u and Zy = v.
H, Ifuavfw € Z(n), then wyuav ¢ Z(n).

Proof. I Let Z(n)=.(n). Then B,, —E,,, G,, and H,, can be verified easily.

Consider arbitrary w,v,w,z € V and a € ¥ such that vvaw € Z(n), {w,z} € E,
upzw ¢ X for any ¢ € T and wvyz ¢ & for any ¢ € E. Since Z(n) = S (n), we
sec that u # z, vaw € S (n — 1), d(u,w) = n, d(v,z) < n, upzw ¢ S (n) for any
¢ € T and wwyz ¢ S (n) for any ¢ € &. We get v # z. (Otherwise, uzaw € V' (n)
and thus uzw € %'(n); a contradiction).

If d(u, z) = n+1, then d(v, z) = n. Let d(u, z) # n+ 1. Since d(u,w) = n, we get
d(u, =) = n. Hence, d(v,z) = n again. This implies that vawz € ¥ (n) C #Z. Thus
F,, is verified, too.

II. Conversely, let B,,—H,, be fulfilled (for arbitrary u,v,w,z € V and o, 8,7 € %).
This part of the proof will be divided into two steps. In Step 1 we will prove that
S (n) C #. This result will be used in Step 2. We will prove there that 2(n) C .v.

Step 1. If ¥(n) = 0, then ¥ (n) C #. Let ¥ (n) # 0. Consider an arbitrary
& € (n). According to G,, there exists {, € £ such that A, = Ay and
Z& = Z(o.

(2) Put m = ||{o||. Obviously, m > n. We define (;4; = {; | & and
€iv1 = (¢ 1 & for each i € {0,...,m — 1}. Clearly, ||(;]| = m and
€|l = n for each j € {0,...,m}.

We want to prove that {, € #. To the contrary, let £, ¢ Z.
Recall that (o € Z and & € ¥ — Z. There exists k € {0,...,m — 1} such that

Corer s ChER, oy bk €S — R
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and

(3) either (k41 ¢ Zor €1 ¢ S~ R ork=m — 1.

(4) There exist 7, s,z,y € V and p,0 € ¥ such that
(k. = zrpy and & = zosy.
Then (k41 = roys and €41 = rzos. Since & € 7, d(z,y) = n.
We see that zos € % (n — 1) and therefore, d(z,s) =n — 1.

Assume that there exists 7 € ¥ such that z7sy € #. Since d(z,y) = n, 275y €
Z(n). According to B,,ysTz € Z(n). Obviously, séz € #(n — 1). As follows from
(1), sdz € Z. Since ystz € Z(n), D, implies that ysdz € #(n). According to B,,,
& = xzosy € &, which is a contradiction. Thus we see that

(5) zpsy ¢ # for any ¢ € L.

Assume that d(r,s) < n — 1. Since d(z,y) = n, we have d(r,s) = n — 2 and
d(r,y) =mn — 1. This implies that there exists 7 € ¥ such that rrsy € #(n—1). By
virtue of (1), rrsy € Z(n—1). Since {x € #Z(n), it follows from D,, that zrrsy € £,
which contradicts (5). Thus

(6) : n—1<d(rs) <n.

We distinguish two cases.

Case 1. Let (kyy € Z. If d(r,s) = n — 1, then it follows from (1) that (x41 €
& (n—1), and therefore m = n — 1, which is a contradiction. Thus, by virtue of (6),
d(r,s) = n. This means that &1 € #(n).

Assume that £y € #. Since &kr1,( € #Z(n), E,, implies that ¢ € %, which
is a contradiction. Therefore, {x+1 ¢ #. This means that &4 € & — #. Since
Cky1 € Z, it follows from (3) that kK = m — 1. Hence, ¢, € Z(n).

If m = n, then (,, = & and therefore, according to B,,& € %, which is a
contradiction. Thus m > n.

(7) Clearly, there exist t € V and A, u,v € ¥ such that
& = tAr, (o = tusvr and G = rAtus.
Since & € £(n), we have (o € #Z(n). Moreover, (, € Z(n),
which contradicts H,,.

Case 2. Let (x41 ¢ #. Combining the fact that ¢, € # with (5) and F,,, we see
that
there exists ¢ € ¥ such that zrys € Z.
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Since d(z, s) = n—1, it follows from (1) that zriys € #(n—1). Hence d(r,s) = n—2,
which contradicts (6).
Thus £, € #. We have proved that

(8) H(n) C %

Step 2. If Z(n) = 0, then Z(n) C . Let Z(n) # 0. Consider an arbitrary
Co € #(n). Since Z C ¥, there exists & € & such that A{y = A& and Z{y, = Z&.
We accept the convention given in (2).

We want to prove that {; € . To the contrary, let (o ¢ . Then m > n.

Clearly, there exists k € {0,...,m — 1} such that

Cores Gk ER, oy Ek €S

and
9) either (41 ¢ Zor €1 ¢ L or k=m — 1.

We accept the convention given in (4). Clearly, n —2 < d(r,s) <nand n—1 <
d(r,y) <n+1.

Assume that d(r,y) = n — 1. Since {x € Z(n), C,, implies that roy € Z(n — 1).
By virtue of (1), roy € #(n —1). Hence m —1 = n — 1; a contradiction. Thus
d(r,y) 2 n.

We get d(r,s) > n — 1. Assume that d(r,s) = n. Then &x41 € #(n). Due to (8),
k41 € X. Since (i, &ky1 € Z(n), it follows from E,, that (t+1 € #Z. Due to (9),
k =m — 1. Hence (,, € Z(n). Recall that m > n. If we make the same observation
as in (7), we get a contradiction.

Thus

(10) d(r,s) =n—1.
Recall that d(r,y) > n. As follows from (10), d(r,y) = n. We see that
there exists ¢ € ¥ such that risy € .&.
By virtue of (8), risy € #. Since ( € #(n), D, implies that
zrpsy € Z(n).

As follows from B,,, ysyrz € #(n). According to C,, syrz € #. Since d(s,z) =
d(z,s) =n —1, (1) implies that

syYrz € S (n—1).

Hence syr € % (n — 2). We get d(r,s) = d(s,r) =n — 2, which contradicts (10).
Thus (o € .¥. We have proved that Z(n) C &.
It follows from (8) that Z(n) = .#(n), which completes the proof. O
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Remark 1. Recall that G is a graph in the sense of [1]. This means that V" is
finite. However, the finiteness of V' was not exploited in the proof of Theorem 1.

We will utilize Theorem 1 in the following proof of Theorem 0.

Proof of Theorem 0. I.Letfirst Z =.%. Consider arbitrary u,v,w.z € 1
and a,3 € . It is easy to see that A — D, F and G are fulfilled.

Assume that wvaw,vufz € # and {w,z} € E. Then vaw € &, d(u,w) =
d(v,w)+1, d(v,z) = d(u,z) + 1, d(u,w) € d(u,2) +1 and d(v, z) < d(v,w) +1. This
implies that d(v,z) = d(v,w) + 1. Since vaw € &, we get vawz € . and therefore,
vawz € #Z. Thus E is fulfilled, too.

I1. Conversely, let A — G be fulfilled (for arbitrary u,v,w,z € V and «, 3 € T).
We are to prove that Z(n) = .'(n) for every integer n > 0. We proceed by induction
on n. Since Z C 2, it follows from G that Z(0) = £(0) = &(0). Combining G
and A, we get Z(1) = S(1).

Let n > 2, and let Z(n — 1) = (n — 1). Clearly, B,, — G,, are fulfilled. Consider
arbitrary r,s,t € V and k, u,v € . Assume that retus, tusvr € #Z(n). According
to B, sfitkr € #. First, let u = *. Then sti&r, tsvr € Z. According to D, stsvr € 4.
which contradicts the assumption that #Z C £. Now, let u # *. There exist ¥ € V"
and 7 € ¥ such that u = zw. We have

sitxtRr, trmwsvr € X.

As follows from C, ztkr € %#. According to D, ztxmwsvr € %, which is a con-
tradiction. This implies that H,, is fulfilled, too. It follows from Theorem 1 that
Z(n) = & (n), which completes the proof of Theorem 0. O

Remark 2. Theorem 0 (more exactly, a theorem similar to it) was generalized
in [3]. Note that the idea of that generalization is very different from the idea of
Theorem 1.
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