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A quasigroup is often defined as an algebra having a binary multiplication a - b,
which satisfies the condition that for any a, b the equations a-x = b and y-a = b have
unique solutions x and y. However, it is well known that the variety generated by
such algebras does not consist entirely of quasigroups. To remedy this inconvenience,
quasigroups are also defined as algebras with three binary operations that satisfy
certain identities. We will use such a definition throughout this paper.

A quasigroup is an algebra Q = Q(-,\,/) of type (2,2,2) such that the following
identities hold:

a-(a\b) =b; (a/b)-b=a; a\(a-b) =1b; (a-b)/b=a.
From these four identities other two identities can be easily derived:
b/(a\b) =a, and (b/a)\b=a.
A loop is a quasigroup possessing a nullary operation 1 such that
a-1=a and 1-a=a.
From this we immediately obtain the identities
‘ a/a=1 and 1=a\a.
With each element a of a quasigroup @ we associate two permutations of Q,
namely the left translation L,: x — a -z and the right translation R,: v — z - a.

The permutation group (L,, R,; a € Q) is called the (combinatorial) multiplication
group of Q(-). Its subgroups (L,; a € Q) and (R, ; a € Q) are called the left and the
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right multiplication group, respectively. The multiplication groups will be denoted
MIt(Q), LMIt(Q) and RMIt(Q), respectively.

As multiplication groups of loops are currently being studied from the viewpoint
both of the universal algebra and the group theory [4-8], it appears quite natural to
investigate more closely the multiplication group of a free loop.

Even though the classical paper of Evans [2] made the word structure of the free
loop transparent, to establish some of the properties of its multiplication group still
seems to require quite a number of technical results.

Here we prove that the left multiplication group of a free loop is always a Frobenius
group (i.e. it is not regular and every non-identical permutation fixes at most one
element). This contrasts with the fact that no Frobenius group can be obtained
as a (both-sided) multiplication group of a loop [1]. For apparent reasons, the left
multiplication group of a finite loop is never a Frobenius group, either.

1. NORMAL FORM OF A LOOP WORD

If X is a set, then the loop words over X are recursively defined by

(i) each element in X U {1} is a loop word;
(ii) if u,v are loop words, then so are u - v, u/v and u\v.

We shall fix a non-empty set X, 1 ¢ X for the rest of this paper and we shall
also fix a free loop with the basis X. This loop will be denoted by W. Each of its
elements can be expressed in many ways as a loop word over X, but only in one way
as a reduced word over X.

A loop word w is said to be reduced (or in a normal form) iff it contains no
subwords u;, us, v for which one of the following possibilities applies: v = u; - (u;\u2),
v = (ug/ug) - uz, v =ui\(us - u2), v = (ur - u2)/ua, v = uy /(u2\u1), v = (uy /uz)\uy,
v=u;-L,v=1 u,v=u/l,v=1\u, v=u/u; and v = u;\u1.

Thus the elements of W can be identified with the reduced loop words [2]. However,
for formal reasons we shall not do that explicitly, and for any a € W we shall denote
the unique reduced loop word over X corresponding to a by ox(a). For a,b,c € W
we say that ¢ = a-b (c = a/b, ¢ = a\b) reduced iff px(c) = ox(a) - ox(b) (or
ox(c) = ox(a)/ox(b), or px(c) = ox(a)\ox(b)). We shall often deal with situations
when an element of W is composed in a reduced way from more than two subwords.
To express such knowledge effectively, we introduce the following notational shortcut:
c=uaob (or c=ajb, or c = a\b ) means that ¢ = a-b reduced (or ¢ = a/b reduced.
or ¢ = a\b reduced). For example, writing d = (a//b) o ¢ means that there exists
a' € W with @’ = a/b reduced and d = a' - ¢ reduced.
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For a € W we define recursively its norm |a.
(i) |1] =0 and |z| =1 for every z € X.
(ii) fa=boc (ora=bjc, or a=">b\c), then |a| = |b] + ||.
The norm |a] is clearly equal to the number of symbols distinct from 1 that appear
in the reduced loop word px(a). Note that |a\1| = |1/a| = |a| for every a € W, but
a\l#a#1/a. As1-1=1/1=1\1=1, we have |a| =0iff a = 1.

1.1 Lemma. Leta,c,e € W be such that ¢ = L¢(a), e # 1 # a. Then exactly
one of the following possibilities takes place.
(i) c=eoa and|c| = |e| + |al,
(it) a=e\c and |c| = |a| — |e],
(i) e=c/a and |c| = |e| — |a].

Proof. Ife-ais not reduced, then either a = e\c or e = c/a. a

Similarly we have

1.2 Lemma. Let a,c,e € W be such that c = L;7'(a), a # e # 1. Then exactly
one of the following possibilities takes place.
(i) c=e\a and |c| = |e| + |al,
(i) a=eoc and|c| = |a|] — e,
(i) e =ajc and |c| = |e| — |a].

1.3 Lemma. Letaj,e; € W,0<j <2,1<1i<2besuchthatl # e;, |ag| > |ez]
and a; = @;(a;—1) for ; € {LCE,LZI,RQ,R;I}. If o # %-1 and |a1| = |e1| + |ao|,
then |az| = |e2| + |a1].

Proof. Let ¢ = L,, then ey # az//a; by |ai1] > |ag| > |ez|. Furthermore,
a; = ez\az would mean e; = €1, az = ag and ¢; = Lg; = <p2_1. Therefore 1.1
implies az = ez 0 a; and |ay| = |es| + |a1|. If o = L7}, then ey # a1 fay and
a; = ez o ay implies ag = ep or ag = as. But ag = ey is not possible, and hence
@y = ez 0 ay provides ag = ag, e; = ez and p; = L, = cp{l. By 1.2 a; = e2\a1, and
thus |az| = |ez| + |a1]|. The cases p; = R, and @, = R_,! are similar. O

1.4 Lemma. Let ¢; € {L.,,L;',Re;,R;'}, 1 # e; € W for 1 < i < k.
Suppose that ; # cpl;ll for all 1 € © € k — 1. Then there exists ap € W with
¢k - p1(ao)| = [ao] + Elgigk leil.

Proof. Let m = max{|e;|; 1 < ¢ < k} and choose v; = 2z € X. Put vj4; =
V;OT, A1 = €9 = Umt1, Yo = Le, and ap = po(a—1). Then ¢ # (pl_l, la—y] > m
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and |ao| = |eo| + |a—1]. Let a; = @i ... ¢1(a0) = pi(a;—;) for all 1 < i < k. We prove
by induction that |a;| = |e;| + |a;—1] and |a;—1] > m. This is true for i = 0 and the
induction step is contained in 1.3. Thus |ax| = |ex| + ... + |e1| + |ao]. O

1.5 Corollary. Let W be a free loop with a basis X. Then
(i) MIt(W) is a free group with a basis {L,,R.; 1 # a € W}.
(i1) LMIt(W) is a free group with a basis {L,; 1 # a € W}.

(iii) RMIt(W) is a free group with a basis {R,; 1 #a € W}.

2. SUM OF NORMS

The aim of this paper is to prove that the group LMIt(W) is a Frobenius group,
i.e. whenever idy # ¢ € LMIt(W), then ¢(a) = a for at most one a € W. We
shall proceed from the contrary, and assume that there are 1 # ¢ € LMIt(W) and
a,b € W such that a # b, ¥(a) = a, ¥(b) =b.

Suppose that ¢ = pr ... 01, @; = L;til, l1#e;, e W, 0 # ap;rll for1<i<hk—-1.
and put ag = a, by = b, a; = p;(a;_1), b; = p;(b;_1) for 1 < i < k. We shall
prove (Lemma 3.7 and Lemma 4.5) that |a1| + |b1] > |ao| + |bo| yields |a;| + [bi] >
|@i—1| + |bi—1| for any 1 < i < k. Once this is known, ¢; # go[l together with
a = Y(a), b = ¢¥(b) imply |a;| + |b;| = |a| + |b| for all 1 < i < k. However, further
investigations show that then a = b (Lemma 3.8 and Lemma 4.6).

We start by describing how the sum |a| + |b] changes when ¢ = L¥! e € W is
applied both to a and b. (By ¢ = LE' we mean that either ¢ = L., or ¢ = L71.)

2.1 Lemma. Leta,b,c,d,e € W be such that c = L.(a), d = L¢(b), a # b, and
e # 1. Then exactly one of the following possibilities takes place.
(a) |c| +|d| > |a| + |b]. Then either
(1) c=eoca,d=eoborc=e,a=1,d=eoborc=eoa,b=1,e=d, or
(2) e=dJfb,1#d,andc=eocaorc=e,a=1,or
(3) e=cfla,1#c,andd=eobord=e, b=1.
(b) e+ |d| = |a|] + |b|]. Then either
(1) b=e\d, andc=coaorc=e¢,a=1,or
(2) a=e\c,andd=eobord=¢,b=1, or
3) d=1,e=1)b,andc=eocaorc=e,a=1,or
(4) c=1l,e=1fa,andd=eobord=e, b=1.
(¢) |el +|d| < |a| + |b]. Then either
(1) a=e\c andb=e\d, or
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(2) e=djband a =¢€\c, or
(3) e=cfla and b = e\d.

Proof.
possible relations of e, d and b (e, ¢ and a). As these descriptions are exhaustive
and mutually exclusive, any choice of a # b, ¢ # d, e # 1 corresponds to exactly one
cell of the table. Using 1.1 we compute the sum |c| + |d| in terms of |a|, |b] and [e],

Consider the following table, in which each row (column) describes

and write it into the cell. By writing @ into the cell we indicate that such situation

cannot arise (a = b would hold in such a case).

c=eoaor a=c¢e\c e =cja, e=1/a,
a=1l,e=c c#1 c=1
d=eobor
“le=d |20el+lal bl | lal+ bl |2lel+1bl=lal | lal+
b=e\d a1 |lal+1i=2lel | fbl=lal | bl=la]
e=djfb,d#1 |2]e|+]a]—1|b] la| — 10| 0 0
e=1)b,d=1 lal + 10} la| - |b] 0 0

O

2.2 Lemma. Let a,b,c,d,e € W be such that c = L7'(a), d = L;'(b), a # b,
and e # 1. Then exactly one of the following possibilities takes place.
(a) |c| +1|d| > |a| + |b|. Then either
(1) c=e\a and d = e\, or
(2) e=1b//d and c = e\a, or
(3) e=ajc and d = e\b.
(b) el + |d| = |a| + |b]. Then either
(1) d=e\b,anda=¢eocora=e,c=1,or
(2) c=e\a,andb=eodorb=e,d=1, or
(3) b=1,e=1)d,anda=eocora=e,c=1, or
(4) a=1l,e=1)c,andb=eodorb=¢,d=1.
(¢) el +|d| < |a| + |b|. Then either
(1) a=eoc,b=eodora=e,c=1,b=eodora=eoc,d=1,b=ce, or
(2) e=bjJd,1#b,anda=eocora=e,c=1,or
(3) e=afc,1#a,andb=codorb=¢,d=1.

Proof. We have a = L.(c) and d = L.(b), and the lemma thus follows from
2.1. O
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2.3 Lemma. Let a;,b;,e,f € W, a; # b;, 0 < i < 2 be such that for ¢, = L¥!,
Y9 = L}kl, e # 1 # f we have a; = cpj(aj_l), bj = (pj(bj_l), j=172. If‘bgl + ]a2] <
|b1] + la1] > |bo| + |aol, then w2 = 7.

Proof. We start with the case ¢1 = Le, ag # 1 # bo. By 2.1(a) we can assume
that by = eobp. Let first oo = Ly. As by # f\b2, 2.1(c2) applies, and we have
f =0b2//by and a; = f\ay. Thus a; # e o ap, and from 2.1(a) we obtain e = a; //ay.
Then b; = e o by = (a1 /ag) o by = ((f\az2)/ao) o by = (((b2//b1)\az)Jao) o by, which
cannot be true. Let now ¢y = L;l, f #e. Wehave by # fobs, and if f = b;. then
f # aif/az. Thus 2.2(c3) does not apply and either by = 1, b, = f, a; = f o ay.
or f = by//ba. Moreover, in the latter case either aj = foay, ora; =1, a; = f.
Assume for a while that a; = eoag. Then e # f yields a; = f = by /b2, as = 1, and
thus eoap = a; = by J/b2, a contradiction. From a; # eoag, ag # 1 # by it follows by
2.1(a) that e = ay JJap. If by = f, then a; = foas = (eoby) 0oax = ((a;J/ag) o by) o as.
If f =b1//ba, then f = (eoby) /b2 = ((a1fao) 0 bo) /b2, and as a1 = foay or a) = f.
we get a contradiction in any case.

To complete the case ¢; = L., assume now bg = 1 # ag, b = e. By 2.1(a) then
either a; = eoag = by 0 ag, or e = by = ay J/ap. Consider first the subcase py = Ly.
By 2.1(c), a1 = f\az or e = b; = f\b2. If a; = eoag, then by =e = f\by, and f =
ay/lay by 2.1(c). Therefore a; = (f\b2) 0 ap = ((azf/a1)\b2) cag. If e = b) = a; J/ao,
then a; = f\asg, f = b2 //b1, and we have a; = (b /b1)\a2 = (b2 //(a1\ao))\a2. Thus
we always get a contradiction, and we can proceed to the subcase ¢ = Lf_l, e# f.
By 2.2(c) e=b; = fobyora; = foasora; = f. If ay = f, then by 2.2(c) az =1
and either b; = aj o b2, or a; = by J/b;. However, none of the both alternatives is
compatible with a; = bj oqag or by = a3 Jag, and thus a; # f. If e = by, = fob, then
a; = eoag, and e # f implies a; # f oay. 2.2(c) then yields f = a; /a2, and we
have a; = (fobz)oag = ((a1faz)obs)oag. If a; = foay, then by = a;/ag by e # f,
and f = b /b by 2.2(c). Therefore a; = f o az = (by//b2) 0 az = ((a1//ao0)//b2) o as,
a contradiction again.

It remains to treat the case ¢ = LJ!. As aqp = gpl_‘(apgl(@)) and by =
¢7 (931 (b2)), we can restrict ourselves to the subcase @y = Ly, f # e. With
respect to 2.2(a) we can assume that by = e\bo. By 2.1(c), a1 = f\az or by = f\b,.
However, the latter cannot be true, and hence f = by//b; by 2.1(c) again. From
a; = f\a it follows that a; # e\ao, and thus e = a;ay by 2.2(a). Therefore

a1 = f\az = (b2 /b1)\az = (b2 (e\bo))\az = (b2\((a1/a2)\bo))\ 2. O
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3. LoOP WORDS CONTAINING 1

3.1 Lemma. Leta,c,d,e € W be such that e # 1 # a and ¢ = ¢(a), d = ¢(1)
for ¢ = LEY. If |c| + |d| < |a] = |a| + |1], then the equality holds, and exactly one of
the following cases applies.

(i) e=d, p=L. and a = e\,

(i) e=d=1fla,o =L, and c =1,

(iii) d=e\l, o =L, anda=eocora=e, c=1,

(iv) e=1j)d, o =L;', anda=eocora=e,c=1.

Proof. Examination of 2.1 and 2.2 shows that |c|+ |d| < |a| +|b| is not possible
for b = 1. We get the result by considering the alternatives of 2.1(b) and 2.2(b). O

3.2 Lemma. Let a;,b;,e, f € W, a; # b;, 0 <14 < 2 be such that for p; = LF!,
s =Ly e #1# f, 01 # ¢3! we have a; = pj(a;_1), bj = ¢;(bj-1), j = 1,2. If
by =1 and |az|+|b2| < |a1]+b1] = |ao| +|bol, then |az|+|b2| = |a1]|+1b1] = |ao| +|bo]
and 1 € {ao, az}.

Proof. The equalities |az| + |b2| = |a1| + |b1] = [ao| + |bo| come from 3.1
immediately. Assume 1 ¢ {ag,a2} and let o = Ly. Then a; = f\az by 3.1 and
cpl_l = L. is excluded by e # f and 3.1. If cpl‘l = L', then a; = eoap by 3.1, which
contradicts a; = f\az. For p; = Lf_1 we need to consider only the case <p1'1 =L
However, a; = foas and a; = e o ap imply ¢; = <p2_1. O

3.3 Lemma. Let a,d,e € W be such that e # 1 and ¢(a) = 1, p(1) = d for
¢ = L.. Then e =d and either a = d\1 ord = 1/a.

Proof. Thisis a special case of 3.1 for ¢ = 1. ]

3.4 Lemma. Leta;,b; € W, a; #0b;,0<i<kbesuchthatk>2,byg=a; =1,
and for 1 < i < k let Iall + lbll = Iaoi + lbol = |a0|, Lpi(ai_l) = a;, Lpi(bi—l) = b;,
p; = L;tl_l with 1 # e; € W. Further, let cpi_+ll # @; foreachl <i < k-1 1If
e1 = by =1//ag and 1 = L., then p; = L, for all 1 <i < k, and

(i) es=0b; =1)/ai—1, a; =1 for i odd,
(i1) e; =a; = 1)/bi—1, b; =1 for i even.
Moreover, (a;, b;) # (aj,b;) whenever 0 < i < j < k.
Proof. We shall employ induction over i. For i = 1 the assertion follows from

the hypothesis. Because of symmetry, we can assume that £ —1 > 7 > 1 is odd.
Then e; = b; = 1/la;_1, a; = 1, and by 3.1 ;41 = L} implies e;1; = b;. This

€it1
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cannot be true, and hence ;11 = L, ,. As b; # e;11\bi+1, we have again by 3.1
eir1 = 1/bi, biy1 = 1.
Further, denote by d;, 0 < ¢ < k, the total number of occurencies of 1 in the
reduced loop words px(a;) and gx(bi). Clearly, d;1) = d; +1 for 0 < i<k — 1, and
hence (a;, b;) # (aj,b;) for 0 < i < j < k. a

3.5 Lemma Let a;,b; € W, a; # b;, 0 <i < k besuch thatk > 2, by =a, = 1.
and for 1 < i < k let |a;| + |bi| = |ao] + |b0] = |agl, wi(ai-1) = a;, wi(bi—1) = b;.
pi = L‘fl Wlth 1 # e; € W. Further, let ‘Pi+1 # @i foreachl < i< k-1 1If
b1 = ag\1, ey = ag and p; = Le, , then ¢; = L;l for all 1 <i <k, and

(l) €; = Q;—1, bi = ai_l\\l, a; = 1 fort Odd,
(ll) e; = bi—l; a; = bi—l\\17 bl =1 for i even.

Moreover, (a;, b;) # (a;,b;) whenever 0 <i < j < k.

Proof. Employ induction again, and let k—12>1¢ > 1 be odd. If p;y; = L. .
then 3.1 implies either b; = e;4.1 \biy1 or €41 = 1//b;. The former case implies e;,; =
e;, which contradicts ¢;y; # ¢;'. The latter case gives e; = a;_; = 1/(ai_,\1) =
1/b; = e;+1 as well. Therefore ¢;1; = L;il and by 3.1 ;41 = by, bjy; = 1 and

ai41 = bi\\l. O

3.6 Lemma. Let a;,b; € W, a; # b;, 0 < i < Kk be such that k > 2, and for
1 <4 <k let |ag| + |bi]l = |ao| + |bol, wi(ai—1) = ai, wi(bi=1) = b, i = L:IEl with
1 # e; € W. Further, let ap;rll # @; foreach1 < i< k-1. If1 € {aj,b;} for any
0<j <k, then1 € {ag,bo,ar,br}.

Proof. Let 1l € {aj,b;} for1 < j < k—1. By 3.2 we have 1 € {aj_1,b;-1.
aj+1,bj41}, and hence we can assume that there exists 0 < j < k-1 with b; =1 =
aj4+1- As the inverses ¢; ! can be considered in place of ¢;, we can further assume
that ¢; = L;.

By 3.3 either bj41 = 1/a;, or a;j = bj+1\1. In the former case 3.4 yields 1 €
{ak,bx} and in the latter case 1 € {ag, bo} follows from 3.5. a

3.7 Lemma. Let a;,b; € W, a; # b;, 0 < i < k be such that k > 3, and for
1 <i<klet pi(ai—1) = al, wi(bi—1) = bi, @i = L:H with 1 # e; € W. Further, for
each1 < i< k—1let o7}, # ¢; and |a0|+|b0[<la1|+|b1|—|a,|+|b|>]ak|+|bk|
Then 1 € {a;,b;} for no 1 <j<hk-1

Proof. Assumethatl € {a;j,b;}forl <j <h—1. Thenl € {a1,bi,ar_1,bx1}
by 3.6, and 3.1 implies |ao| + |bo| = |a1| + |b1| or |ak| + |bx] = |ak—1] + [br-1]. O
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3.8 Lemma. Let a;,b; € W, a; # b;, 0 < i < k be such that k > 2, and for
1 < i <k let Jag| + |bi] = |ao| + |bol, wilai—1) = ai, wi(bim1) = b, ¢; = LE! with
1 # e; € W. Further, let cp;ll #@;foreachl <i<k—1,pr # npl'l and let a, = ay,
by =bg. Thenaj #1 #b; for all0 < j < k.

Proof. Start from the contrary and assume 1 € {a;, b;} for some 0 < i <
k. Note that for every 1 < j < k we have ¢j_;1...019k ... ¢j(aj—1) = aj—; and
©j—1---P1@k - -pj(bj—1) =bj_1. Hence 1 € {a;,b;} forall0 < j < k. If bp = 1 and
01 = Le,, then by 3.3 e; = b; and either by = 1//agp or ap = b;\\1. In the former case
3.4 applies, and in the latter case 3.5 can be used with (pl—l , cpgl, ey <p2—1. Hence 3.4

or 3.5 are applicable in any case, implying (ax, bx) # (a1,b1), a contradiction. g

4. LOOP WORDS NOT CONTAINING 1

For a,b € W write a < b if the reduced loop word gx(a) is a subword of the
reduced loop word gx (b). Write also a < b if a < b and a # b. By definition, 1 < a
forallae W.

4.1 Lemma. Leta,b,c,d,e € W,1¢ {a,b,c,d,e} be such that a # b, |c|+ |d| =
la] + |b] and ¢ = ¢(a), d = ¢(b) for ¢ = LF'. If |c| < |a|, then |c| < |a|, and we have
a=e\c,d=ceobifo=L,, anda=eoc,d=e\bfor p=L;'.

Proof. This follows immediately from 2.1(b) and 2.2(b). O

4.2 Lemma. Let a;,b;,e, f € W, a; # b;, 0 < < 2 be such that for p; = L*!,
2= L7 e#1# f, o1 # @3 we have 1 # aj = @j(a;_1), 1 # bj = 9j(bj—1),
j=1,2. If|a2| + |bzl = |a1| + “)1| > Iaol + |bol and |a2| < |a1|, then a; < b;.

Proof. By 41l a = f\ax if po = Ly and a; = foay if g = LJTI. As
p1 # <p2'1, we have by /by # a; # e oag when ¢; = L.. Then it follows from 2.1(a)
that by = a; 0 by or by = (a1 f/ag) o by or by = ayflag. If ¢, = L7' # cpz_l, then
ay # e\ag yields by = (agfa1)\bo by 2.2(a). Thus a; < b; in any case. O

4.3 Lemma. Let a;,b;,e, f € W, a; # b;, 0 < i < 2 be such that for p; = L*!,
@2 = L7, e # 1# f, o1 # ¢3! we have aj = pj(aj-1), bj = ¢;(bj-1), j = 1,2
and 1 ¢ {aog,bo,a1,b1}. If laz| + |b2] < |a1| + [b1] = |ao| + |bo| and |a1] < |ao|, then
by < ay.

Proof. Putay =by, a' = by, ay' =bo, b’ =az, b’ =ay, b’ =ao, o1’ = 3"
and o' = ¢ '. Then b, = a;’ < b;' = a; by 4.2. O
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4.4 Lemma. Let a;,b; € W, a; #b;, a; #1 # b;, 0 <4 < k be such that k > 2,
and for 1 < i <k let |a;| + |bi| = |ao| + [bol, wi(ai-1) = ai, ¢i(bi—1) = b;, p; = LE!
with 1 # e; € W. Further, let go{_&l # ;i for each 1 < i < k — 1, and suppose that
lai| < |ag|. Then

(i) lak] < ... <|ai]| < |ao|, and
(ii) ag < by implies a; < b; for all 0 < i < k.

Proof. We shall show that for all 1 <4 < k either a;—; = e;\a;, b; = e; 0 b;_,
and ¢; = Le,, Or a;-1 = €; 0a;, by = e;\bi_y and ¢; = LZ'. For i = 1 this
follows from 4.1 and we can continue by induction. Suppose that 1 < i < k —1
and lbi+1| < lbll By 4.1 b; = €i+1\\bi+1 if QYiy1 = Le‘._H, and b; = €41 © bi+1 if
Pit1 = L;il. However, this contradicts the induction hypothesis, as ¢; # Lp;rll.
Thus |ai+1| < |a;| and the induction step follows again from 4.1. As a; < a;_i,
b;—1 < b;, we see that a;_; < b;—; implies a; < b;. O

4.5 Lemma. Let a;,b; € W, 0 <4 < k be such that k > 2, and for1 < i <k
let p;(ai—1) = ai, @i(bi-1) = by, s = Lﬁl, with 1 # e; € W. Further, for each
1<i<k—-1let (p;_ll # ¢; and Iaol + ]bol < |a1| + |b1} = |a1~| + |b1| > |ak[ + |bkl
Then a; = b; for all 0 < i < k.

Proof. Assume that a; # b; for 0 < 7 < k. By 2.3, k¥ > 3 and by 3.7 we
have 1 ¢ {a;,b;} for 1 < j < k — 1. Without loss of generality we can assume that
laz| < |ai|. By 4.2 we have a; < by, and by 4.4 |ax—1| < |ax—2| and ar—; < bp_1.
However, aj, bj, k — 2 < j < k satisfy the hypotesis of 4.3 for e = ex_1, f = ey,
and hence bx_; < ax—;. We have obtained a contradiction, and thus a; = b; for all
0<i<k. O

4.6 Lemma. Let a;,b; € W, a; # b;, 0 < i < k be such that k > 2, and for
1 < i <k let |a;| + |bs] = |ao] + |bol, wi(ai—1) = ai, @i(bi1) = bi, @i = LE" with
1 # e; € W. Further, let ;" # @i for each 1 <i < k—1 and vi' # ¢1. Then
(€73 —‘,fao or bk 7’2 bo.

Proof. Suppose that ax = ag, bx = bp. By 3.8 a; # 1 # b; for all 0 < i < k.
We can assume that |a;| < |ao|. Then 4.4 implies ax < ao. 0O
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5. MAIN THEOREM

5.1 Theorem. Let W be a free loop with a basis X # (. Then the left multipli-
cation group LMIt(W) is a free group of infinite rank and a Frobenius permutation

group.

Proof. Suppose that LMIt(W) is not a Frobenius group. Then there exist
a;,b; € W, a; #b;, 0 <i < ksuchthat k > 2, ap = ap, by =bp,and for 1 <i <k
we have p;(a;—1) = ai, pi(bi—1) = b, v; = L;tl,l with 1 # e; € W. Further, we can
assume that cp;ll # ¢ for 1 <i<k—1and g # ;' Let m = max{|a;| + |bi] ;
0 <i <k} and n = min{ja;| + [b;]; 0 < i < k}. By 46 m > n. As we can
cyclically permute the sequences a; and b;, it can be assumed that |a;|+|b1| = m and
|ag| +|bo| < m. However, then there exists 2 < r < k such that |a;|+|b;| = |a1|+|b1]
for 1 <j <r-1and |ar|+|b;| < |ai|+ |b1| > |ag| + |bo|. By 4.5 this is not possible.

a

5.2 Remark. Note that the multiplication group of a loop is never a Frobenius
group [1; Lemma 3.20].
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