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OF ALGEBRAS 

ANDRZEJ WALENDZIAK, Warszawa 

(Received May 11, 1993) 

1. INTRODUCTION 

Let Con(A) denote the set of all congruence relations on an algebra A. The least 
and largest congruences of A are denoted by OA and IA- (Occasionally, they are 
denoted simply by 0 and 1.) 

Let (A2-: i G I) be a system of similar algebras, and let B = n ( ^ ' : l' ^ -0 d en°t e 

the direct product of the A;, i G I. 

A subalgebra A of B is called a weak direct product of Az-,i G I, if the following 

two conditions are satisfied: 

(Al) if x,y G A, then {i G I: x(i) 9-- y(i)} is finite, 

(A2) if x G A, y G B and if {i G I: x(i) ^ y(i)} is finite, then y G A (see [2] or [4]). 

A full subdirect product of the A;, i G I (see e.g. [2]), is a subalgebra A of B 

satisfying the following conditions: 

(Bl) A is a subdirect product of At, i G I, 

(B2) for any i G I and x,y G A, the element z G B defined by z(i) = :r(i) and 
2;(j) = y(j) for j ^ i belongs to A. 

Let I be a nonvoid set. P(I) and F(I) denote the set of all subsets of I and the 
set of all finite subsets of I, respectively We denote by P(I) the Boolean algebra 
(F(I), O, U/ , 0, I). Now we introduce the following concept: 

Definition 1. Let (A;: i G I) be a system of similar algebras, L an ideal of P(I), 
and let (D be a binary relation on B = Yl(Ai: i G I). A subalgebra A of B is called 
an (L, (D)-product of algebras A,, i G I, if it is a subdirect product of these algebras 
and if the following conditions hold: 

(CI) for every x,y G A, {i G I: x(i) ^ y(i)} G L, 
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(C2) for any i G I and any x,y G A, if (x,y) G (/?, then the element z G B defined 

by 

x(i) if j = i, 
•гíj) = 

l 3/0') if І / i 

belongs to A. 

We write A = f] (A»: i G I) to denote that A is an (L, (^)-product of A;, i G I. 
(1-.v>) 

Let A be a subalgebra of the direct product B = Yl(&i: i G I) and let L be an 

ideal of P(I). We say that A is an L-restricted subdirect product (cf. [5], p. 92) of 

the Ai, if A satisfies conditions (HI) and (CI), i.e., if A = ]̂ [ (A^: 2 e I). In 
( L , o D ) 

particular, if L = P(I), then an (L,Oe)-product is a subdirect product. 

A is a full subdirect product iff A = f] (A;: i G I). Finally, a weak direct 
( P ( / ) , i » ) 

product of A; (i G I) is an (P(I), le)-product of these algebras. 

2 . PRELIMINARIES ON C-DECOMPOSITIONS IN LATTICES 

Let L be a complete lattice. Lattice join, meet, inclusion and proper inclusion are 

denoted respectively by the symbols V, A, ^ and <. Let 0 be the least element and 

1 the greatest element of L. By [a, b] (a ^ 6, a, b G L) we denote an interval that is 

the set of all c G L for which a ^ c ^ b. 

A subset M in L is called join irredundant iff for all proper subsets M' of M we 

have V/ M1 < V M. Meet irredundance is the dual notion. 

We write a -< b (a, b G L) if [a,b] is a two-element set. An element a G L is an 

atom (coatom) if 0 -< a (a -< 1). We call a lattice L atomic iff for every a G L, a ^ 0, 

there is an atom p ^ a. 

An element a G L is called compact iff for all X C L, if a ^ V X, then a ^ V Y 

for a finite F C I , L is said to be algebraic (or: compactly generated) iff each of 

its elements is a join of compact elements. Define a complete lattice L to be upper 

continuous if for every a G L and every chain C in L, a A V C = \/(a A x: x G C). 

The lattice L is lower continuous if its dual lattice is upper continuous. It can be 

shown that every algebraic lattice is upper continuous (see [1], Theorem 2.3). 

Recall that a lattice L is modular if, for all a, b, c G L, c ^ a implies a A (b V c) = 

(a A b) V c. 

Let c be a distributive element of L. Then c satisfies the following condition: 

c V (x A y) = (c V x) A (c V y) for all x, y G L. 
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By Theorem III.2.2 in [3] the binary relation 6C on L defined by 

(x,y) € 9C iff xV c = yV c 

is a congruence relation. Obviously, 6C has the property that the congruence class 
containing zero is a principal ideal, i.e., 0C satisfies condition (*) of Lemma 4[9]. 

A subset T of L is said to be c-independent (or: ^-independent in the terminology 
of the papers [8] and [9]) if T is join irredundant and for every t G T, 

t A \ / ( r - {t}) < c. 

If a G L and T = {^: i G I} C L, then we say that a is a c-join (or: c?c-join in [8]), 
and we write 

a = ^T or a = ^2(t{:iel) 
c c 

it T is c-independent and a = \j T. The c-join of finitely many elements £1, . . . , tn is 
also written as t\+c.. .+ctn. An element a G L (a -̂ 0) is said to be c-indecomposable 
if it cannot be represented as a c-join of two elements of L. 

In the sequel we will need 

Lemma 1. (cf. [9], Theorem 3). Let L be an upper continuous modular lattice 

and let c be a distributive element of L. If 

c c 

are two c-decompositions of 1 such that each [0,O;] and each [0,bj] is of finite length 
and ai, bj are c-indecomposable, then there exists a bijection A of I onto J such that, 
for each i G I, 

1 = ^ + 0 ^ ( 6 , - : j ^ A ( i ) ) . 

3 . (L,(D)-REPRESENTATIONS OF ALGEBRAS 

Definition 2. Let A;(i G I) and A be similar algebras, <p a binary relation on 

A, and let L be an ideal of the Boolean algebra P(I). Let / be an embedding from A 

into Yl(&i: i G I). The ordered pair ((A;: i G I), / ) is called an (L, (D)-representation 

of A iff /(A) = n (Ai'-iel)-
(LJM) 
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For each i e I, we denote by p{ the ith projection function from l\(&i: i G I) onto 
A,. The mapping f{ = p{o f which is a homomorphism of A onto A; will be referred 
to as the i th /-projection. 

An (L,(D)-representation ((A,: i e I),/) of A is called 
(i) subdirect, if L = P(I) and p = OA, 
(ii) finitely restricted subdirect, if L — F(I) and <p = OA, 
(iii) full subdirect, if L = P(I) and <p = 1A, 

(iv) weak direct, if L = F(I) and (p — l/\. 

We shall now correlate (L, (/?)-representations of an algebra A with congruence 
relations on A. Let 9{ (i e I) be congruences of A. For any set M C I we define 

9(M) = /\(9j:jel-M). 

We will use the notion §i for 9({i}), i e I. 

The next result characterizes (L, (D)-representations internally 

Theorem 1. Let A be an algebra, <D - A2, and let (c9,: i G I) be a system of 

congruences on A. Let L be an ideal of (P(I). We put A, = A/cL, for i G I and 
define a mapping f: A —> Ti(&i: i e I) by setting f(x) = (x/Oi: i G I)(x/0i is the 

congruence class containing x). Then ((A,: i G I),/) is an (L, p)-represent at ion of 

A Iff the following conditions hold: 

(a) OA = /\(0i: iel), 
(b) U=\/(0(M):MeL), 

(c) for all i e I, p C 6{ o §{ (9i o §{ denotes the relational product of congruences 

9i and §i). 

P r o o f . Necessity Since the mapping / is one-to-one we conclude that (a) is 
satisfied. To prove (b), let x,y G A. Clearly, M = {i G I: fi(x) ^ fi(y)} G L and 
(x,y) e 0(M). Then (x,y) G \/(0(M): M G L) and hence (b) holds. 

Moreover, (c) immediately follows from (C2). 
Sufficiency. It is obvious that / is an embedding and that A = /(A) is a subdirect 

product of algebras A,, i G I. Let x,y G A. Now we prove that 

(1) {ieI:fi(x)^fi(y)}eL. 

By condition (b), (x,y) G \J(0(M): M G L). So there are finitely many sets 
M i , . . . , Mn G L such that (x, y) G 9(Mi) V . . . V c?(Mn). It is easy to see that 

{ieI:fr(x)^fi(y)}CM1U...UMn. 
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From this by the definition of an ideal we deduce that (1) is satisfied. Now let i 

be an element of I and let x,y G A be such that (x,y) e ij) = /((D). By (c), the 

element z defined by z(i) = x(i) and z(j) = y(j) for j 7- i belongs to A. Therefore, 

A = [ ] (Ai: i'' € I), which was to be proved. • 

(I>.V0 

Let ((9,: i e I) E (Con(A))7. Denote by f# the function from A to H(/\/0i: i e I) 

defined by the rule fe(x) = (x/9{: i G I) (re G A). We know (see [9], Lemma 4) that 

1A = \/(0(M): M e P(I)). Now, it is easy to see that Theorem 1 implies 

Corollary 1. (see [2], Lemma 1.1, and [6], Lemma 11). Let (9i\ i e I) be a 

system of congruences on an algebra A sucii that 0& = f\(9{: i E I). Then 

(i) ((A/Oi: i e I), fe) is a finitely restricted subdirect representation of A iff 

1A =\l(0(M): MeF(I)), 

(ii) ((A/Oi: i e I, fe) is a full subdirect representation of A iff 1A = Oi o Q{ for all 

i G I, 

(hi) ((A/0j. i e I^fe) is a weaic direct representation of A iff 1A = \J(9(M): 

M e F(I)) and 1A = 9X,0 9{ for all i G I. 

4 . (D-IRREDUCIBLE CONGRUENCE RELATIONS: SOME LEMMAS 

Let (9i: i G I) be system of congruences on an algebra A, <p C A2, and let L be an 
ideal of P(I). For a G Con(A), we write 

<*= H&'.iel) 

iff a = A ( ^ : ^ G I) and the conditions (b) and (c) of Theorem 1 are satisfied. If 

L = P(I), we will write n(0.= * G I) for H (0{: i G I). In this case, if I = {1 , . . . ,n} , 
v (L,vO 

we will write a = c?i x^ . . . x^ c?n. 

Definition 3. Let (D be a binary relation on an algebra A. An element a G 
Con(A) is called (^-irreducible i f f a ^ l and if a = 9\ x(p92, then a = 9\ or a = 92. 

Lemma 2. Let a G Con(A). 
(i) a is ^-irreducible iff a is a meet irreducible element of Con(A) (i.e., a satisfies 

the conditions a ^ 1 arid a = 9i A92 implies a = 6?i oT a = #2,)-
(ii) a is 1-irreducible iff a ^ 1 and for any 9\,92 G Con(A), if a = 9\ xx 92, then 

9\ = 1 or #2 = 1 (-*•£•> a is indecomposable, see [7], p. 269J. 
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Lemma 3. Let <p be a dually distributive element of Con(A), and let {Oi: i. £ I} 

be a meet irredundant subset of Con(A). If OA = II ( ^ : i ^ I)> tnen *A = ^2(9i-

i £ I) (in the dual Con(A)j. 

P r o o f . Let L be the dual of Con(A). The congruence y> is distributive in L and 

{9i: i £ I} is a join irredundant subset of L. Since OA = Yl(@i '• z € -0> w e conclude 

that OA = /\(0i'. i e I) and </? ^ #; V /\(#j: j ^ i) for each i £ F In other words, 
1A = \/(<9i: i £ I) and 0t- A\J(9j : j ^ i) ^ p in L for all i £ I. Therefore, 1A = £ ( 0 £ : 

i £ I). D 

Let <p £ Con(A). We say that the congruences of an algebra A (D-permute iff a A p 

and /3 Ap permute for every a, /? £ Con (A). 

It is obvious that for every algebra A the congruences of A OA-permute and that 

1A-permuting is the same thing as permuting. 

Lemma 4. Let p be a dually distributive element of Con(A). Suppose that 

congruences of A p-permute and denote by L the dual lattice of Con(A). Then 

(i) for a congruence relation a, if a = 9\ +ip92 (in L), then a = #i x^92 in Con(A); 
(ii) if a £ Con(A) is p-irreducible, then it is p-indecomposable in L. 

P r o o f . Let a = 9\ +^ 92. Therefore, a = 9\ V 82 and 9\A92 ^ (/? in L. In other 

words, a = c?i A c?2 and p ^ 0i V 92 in Con(A). Then p = p A(9\\/ 02) and since y? 

is dually distributive in Con(A), 

<p = (<pA0i)V (pA92). 

Hence we have <p = (pA9\)o(pA92), because congruences pA9i and pA92 permute. 

Consequently, <p C9\ o 92 and therefore, a = 9\ x^92. 

The second statement follows immediately from (i). • 

Let (p £ Con(A). Congruences a and /3 on A are said to be (D-isotopic, written 

a ~ (D/3, iffO = a x V P 7 = /3xv:)7for some 7 £ Con(A) with 7 7-= 0. 

As a preparation, we need two lemmas: 

Lemma 5. (cf. [11], Lemma 6). Let an algebra A have a one-element subalgebra 
and let a, (3 be congruences on A such that a ~ i (3. Then A/a = A//3. 

Lemma 6. (cf. [11], Lemma 7). Let the congruence lattice of an algebra A be 

distributive. Let a and (3 be meet irreducible elements of Con(A). If a ~o /3, the 

cY = / 3 . 
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5. THE EXISTENCE OF IRREDUNDANT (L, (D)-REPRESENTATIONS 

A congruence a G Con(A) is called a decomposition congruence iff there is (5 G 
Con(A) such that a A (3 = OA and a o Q = 1A . DCon(A) denotes the set of all 
decomposition congruences of A. 

Lemma 7. Let A be an algebra such that DCon(A) is a sublattice of Con(A). If 

0 is a coatom of DCon(A), then A/0 is directly indecomposable. 

P r o o f . Suppose on the contrary that there exist two congruences a, (3 such 
that 0 < a, f3 < 1&, a o f3 = 1A and a A /? = 0. Let 6' be a congruence ssatisfying 
0A = 0 A 0' and 1A = 0 o 0'. Obviously, 

aA(/3A0') = OA and a o (/3 A 0') = 1A. 

Therefore, a G DCon(A), contradicting the fact that 0 is a coatom of DCon(A). 

Then A/0 is directly indecomposable. • 

Definition 4. Let A be an algebra and (D a binary relation on A. Let I be a 
nonvoid set and L an ideal of P(I). An (L,(D)-representation ((A;: i G I),/) of A is 
called irredundant iff the set {ker(/{): i G I} is meet irredundant (in Con(A)), where 
ker(/i) is the kernel of the ith /-projection /;. 

It is easy to see that the following lemma holds. 

Lemma 8. If ((A;: i G I),/) is an (L, 1A) -representation of A with |A;| > 1 for 

each i G I. then this representation of A is irredundant. 

We call a sublattice of a complete lattice \ / - c lo s ed whenever it is closed under 
arbitrary joins. 

The existence result is given in the following theorem. 

Theorem 2. Let (D be a dually distributive element of Con(A). Suppose that 
the congruences of A (p-permute and DCon(A) is a modular \J-closed sublattice of 
Con(A). Then there is a system (A;: i G I) of directly indecomposable algebras and 
an embedding / : A —•> Y[(&i: * € -0 sucn tnat ((&i: i € -0>/) JS aL7 irredundant 
(L, ^-representation of A, where L is an ideal of P(I) containing all finite subsets 
of I. 

P r o o f . It follows from the proof of Lemma 4.3 [1] that DCon(A) is atomic. Let 

T be the set of all atoms of DCon(A) and let {ai: i G I} be a maximal subset of 
T such that ai f\\J(aj\ j G I — {i}) = 0A for all i G I. (The existence of such a 
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maximal subset of V follows easily by Zorn's Lemma). For i G I, we set Oi = V ( a j : 

j ^ i) and Si = f\(6j: j 7- i). Applying Theorem 4.3 of [1] we conclude that every 
element of DCon(A) is a join of atoms. Furthermore, we know that every atom of an 
upper continuous lattice is compact (see [1], p. 15). Then DCon(A) is an algebraic 
lattice. Now, by Theorem 6.6 of [1] we deduce that 

OA =/\(0nieI). 

From Theorem 6.5 of [1] it follows that 

1A =y(aiiiel). 

Let L be an ideal of P(I) containing all finite subsets of I. Since cti ^ Oi for all i G I, 
we obtain 

1A < V(^ : i e 7) = V W W): *' e IK V WM) : M e L)-

Hence 1A = \/(9(M): M G L), and therefore the condition (b) of Theorem 1 is 

satisfied. Let i be an element of I. Obviously we have 1A = #; V oti ^ 0; V 6{. Since 

<p is dually distributive and the congruences of A (D-permute, we get 

(D = if A (Oi V Si) = (<p A Oi) V ((D A Si) = ((D A Oi) o (<D A Si). 

From this we conclude that <p C Oi o Si, i.e., (c) holds. Thus the system {Oi: i G I) 
of congruences on A satisfies conditions (a), (b), and (c). By Theorem 1, ( (A/^ : 
i G I),/6>) is an (L, (D)-representation of A. This representation of A is irredundant, 
because the set {Oi: i G I} is meet irredundant. Since Oi is a coatom of DCon(A), 
Lemma 7 implies that every A/#; is directly indecomposable. This completes the 
proof of Theorem 2. • 

It is well known that every algebra whose congruences permute has a modular 
congruence lattice. Therefore, as a consequence of Theorem 2 we get the following 

Corollary 2. (see [5], Theorem 4.5). Let A be any algebra whose congruences 

permute and whose decompositon congruences form a \J-closed sublattice of Con(A). 
Then A is isomorphic to a weak direct product of directly indecomposable algebras. 

We also have 

Corollary 3 . (see [5], Theorem 4.2). Let A be an algebra such that DCon(A) is 
a modular V-closed sublattice of Con(A). Then there exists a system (A;: i G I) of 
directly indecomposable algebras and an embedding 
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/ : A —> n ( ^ : ^ £ I) such that ((A*: i G I),/) is an irredundant finitely re­
stricted subdirect representation of A. 

6. A UNIQUENESS THEOREM 

Let A be an algebra and <D a congruence relation on A. For two algebras IB and 
C we write IB ~^ C iff there exist </?-isotopic congruences (5 and 7 on A such that 
IB =* A//? and C =~ A/7. 

Remark 1. By Lemma 5 we conclude that if an algebra A has a one-element 

subalgebra and if IB ~ 1AC, then IB t= C. 

Remark 2. Lemma 6 implies that if Con(A) is a distributive lattice and if 
(B~0AC, then IB S* C. 

Now we present our uniqueness theorem. 

Theorem 3. Let A be any algebra, <D a dual distributive element of Con(A). 
Suppose the congruences on A tp-permute and the lattice Con(A) is modular and 

lower continuous. Let {a;: i G I} and {/3j: j G J} be two sets of ^-irreducible 

congruences on A, and let L\, L<i be ideals of the Boolean algebras P(I), P(J), 

respectively. Assume that ((A;: i G I), / ) is an irredundant (Li, ^-representation of 

A with ker(fi) = a;, and ((Uj : j G J),g) is an irredundant (L2, ^-representation of 

A witIi ker(Oj) = 0j. If the intervals [a*, 1] and [(3j, 1] (i G I, j G J) in Con(A) are of 
iirjite length, then there is a bisection A: I —;> J such that, for aii i G I, A; ^ BA({) • 

P r o o f . Let L be the dual of Con(A). By assumption, L is modular and upper 
continuous. From Theorem 1 it follows that 

0 = n ( < * . : • € / ) = [ j ( ^ : i € J ) . 
(L l .V?) (L2,<P) 

Hence 

(2) 0 = T [ ( a i : i € / ) = n ( ^ : ^ G j ) -

Moreover, {cY;: i G I} and {/3j: j G J} are meet irredundant subsets of Con(A). By 
Lemma 3, 

(3) 1 = £ > { : z £ / ) = £ ( / ? , : j € J) 
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in L, and by Lemma 4 (ii) we know that each ai and f3j are (D-indecomposable. 
Obviously, the intervals [0,0^] and [0,/3j] contained in L are of finite lengths. Ap­
plying Lemma 1 for two (D-decompositions (3) we conclude that there is a bijection 
A: I —> J such that, for each i G I, 

l = a.+vX>;:;i?-A(.)). 

Hence 1 = rrt- +v \J(f3j : j ^ A(i)) and using Lemma 4(i) we get 

(4) O = aixtp/\(0j:j^X(i)) 

in Con(A). From (2) we infer, in particular, that 

(5) O = 0x(i)xv/\(0j:j?\{i)). 

By (4) and (5) we obtain that 

(6) at ~^ (3X(i) 

for all i G L Since A»- = A/a, and Bj = A//3j, it follows from (6) that A2- ~^ (BA(£) 

• 

Proposition 1. Let A liave permuting congruences. Suppose that A has a 
one-element subalgebra and Con(A) is lower continuous. Let L\, L^ be ideals of 
the Boolean algebras P(I), P(J), respectively. Let ((A,: i G / ) , / ) be an (L i , l ) -
representation of A and let ((Bj: j G J),g) be an (L2,1)-representation of A. If 
factors A;, Bj are directly indecomposable and intervals [ker(/,), 1] and [ker(Gj), 1] in 
Con(A) are of finite lengths, then there is a bijection A: I —> J such that A; = BA(2) 
for each i G I. 

P r o o f . Since At- = A/a, and Bj = A//3j are directly indecomposable, Q?- and 
Pj are indecomposable (see [7], Lemma 2). Hence Lemma 2 implies that each a,; 
and f3j are 1-irreducible. By Lemma 8, the representations ((A,: i G J), / ) and ((Bj : 
j £ J)i9) °f A are irredundant. Thus the assumptions of Theorem 3. are satisfied, 
and therefore, there is a bijection A: I —•> J such that A2- ~ i BA(^ for each i E I. 
From this together with Remark 1 we deduce that A2- = BA(Z). D 

By Proposition 1 we obtain 

Corollary 4. Let A be any algebra whose congruences permute and whose con­
gruence lattice is lower continuous. Suppose that A has a one-element subalgebra. 
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If ((Aj: i G I),/) and ((Uj : j G J),g) are two weak direct representations (in par­
ticular: full subdirect representations) of A with all factors directly indecomposable 
and such that the intervals [ker(/{), 1] and [ker(Oj), 1] in Con(A) are of finite lengths, 
then there is a bijection A: I —> J such that A; = Ux^) for each i G I. 

In particular, we have 

Corollary 5. (see [7], Theorem 5.3). If A has permuting congruences, Con(A) 
is of finite length, and A has a one-element subalgebra, then for every two weak 
direct representations (direct representations) ((Ai, . . . , Am), / ) and (((Bi,..., (Bn), g) 
of A with directly indecomposable factors we have m = n and, after renumbering, 
A, = Ui for 1 ^ i ^ n. 

From Theorem 3 we also obtain 

Proposition 2. Assume that A is an algebra whose congruence lattice is dis­

tributive and lower continuous. Let {ai: i G I} and {(3j: j G J} be two sets of 

congruences on A such that the intervals [a;,l] and [/3j,l] in Con(A) are of finite 

lengths. Let Li,L2 be ideals of P(I). P(J), respectively If A has an irredundant 

(Li, 0)-representation ((Ai: i G I), / ) with ker(/ t) = ai, and also has an irredundant 

(L2,0)-representation ((UJ: j G J),g) with ker(oj) = f3j, and if the factors A;, Uj 

are subdirectly irreducible, then there is a bijection X: I —> J such that A, = BX(i) 

for all i G I. 

P r o o f . Since A; = A/a; and Uj = A//3j are subdirectly irreducible, we conclude 
that congruences a, and (5j are meet irreducible, i.e., that a, and (3j are 0-irreducible 
(see Lemma 2). By Theorem 3, there is a bijection A: I —> J such that A, ~ 0 ^\(i) 
for all i G I. From this together with Remark 2 we deduce that A; = BA(Z). • 

As an immediate consequence of Proposition 2 we get 

Corollary 6. Let A be any algebra and suppose that Con(A) is distributive and 
lower continuous. Let ((A,: i G I), / ) and ((Uj : j G J), g) be two irredundant finitely 
restricted subdirect representations of A with subdirectly irreducible factors. If the 
intervals [ker(/ t),l] and [ker(gj),l] are of finite lengths, then there is a bijection A: 
I —> J such that Az- = BX(i) for i G I. 

We also have 

Corollary 7. Let A be an algebra whose congruence lattice is distributive and 
lower continuous. If ((A;: i G I),/) and ((Uj : j G J),g) are two irredundant sub-
direct representations of A with simple factors, then there is a bijection X: I —> J 
such that A; = BA(l) for all i G I. 
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