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0. INTRODUCTION

The integral of a stepfunction (on an n-dimensional interval I) is given by an
clementary formula so that a linear functional A on the linear space S of stepfunctions
is defined in the natural way. The idea of obtaining an integration theory directly as
an extension of A from S to a wider space has been used several times. Monotone
convergence was used by E. J. McShane in [8] and by F. Riesz and B. Sz.-Nagy
in [9] to develop Lebesgue integration. If S is made a normed space by putting
llz]] = A(|z|) for z € S, then the Lebesgue integral is the continuous extension of
A to the completion of S (cf. the approach to Bochner integration in [10]). In the
case n = 1 Lee and Chew in [7] proved that for every Denjoy integrable (in the
restricted sense) f: I — R there exists a sequence of stepfunctions fx: I — R such
that fi is control convergent to f for & — oo (and, consequently, (D.) [, fdt is
the limit of A(fr)). On the other hand, any ¢g: I — R which is the limit in the
control convergence of a sequence of Denjoy integrable gi is itself Denjoy integrable
and (D.) [, gx dt = (D.) [, gdt for k — co. In this paper an analogue to the result
of Lee and Chew is proved in the multidimensional case. The concept of integral
involved is the strong p-integral which was introduced by the authors in [3]; in the
onedimensional case the strong g-integral reduces to the Henstock-Kurzweil integral
which is equivalent to the Denjoy and Perron integrals. The paper is organized in
three sections. In Section 1 the relevant notions and results from [3] are recalled and
a suitable convergence concept (strong g-equiconvergence) is introduced. In Section 2
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we formulate the main result and establish some auxiliary facts. Section 3 is devoted
to the proof of the main result.

1. THE STRONG p-EQUICONVERGENCE

The same notation and concepts as in [3] will be used throughout the paper, in
particular

I = [a,b] = [al,bl] X [ag,bg] X ... X [an,bn] cC R™

is a nondegenerate compact interval and

0: I x(0,00) = [0,1)

fulfils

(1.1) limsupo(t,o) <1 fortel,
o—0+4+

(1.2) inf{o(t,0); t € I,0 >0} >0,

(cf. [3], (2.1), (3.1)).
As usual, 8J, IntJ, m(J) and d(J) denote the boundary, the interior, the measure
and the diameter of J C R™.

1.1 Definition. A function f: I — R™ is called strongly o-integrable if there
exists an additive interval function F' such that for every € > 0 there is a gauge 9§
such that

(1.3) ST IfEm(M) - F(M)| < e
AM

holds for every 4-fine g-regular system A = {(¢,J)} and every set M = {A} of
intervals such that the inclusion M C J defines a one-to-one correspondence between
A and M. For brevity, such a set of intervals will be called an associated (with A)
family.

Of course, a strongly g-integrable function f is g-integrable and F' is its primitive.
For n =1 the two integrals coincide and, moreover, reduce to the Perron integral.

A convergence theorem concerning a pointwise convergent sequence of strongly
o-integrable functions, which was proved in [3], Theorem 4.6, is the starting point
for further convergence results.
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1.2. Theorem. Let f;: I — R be strongly p-integrable for j € N, F; being the
primitives, let f: I — R. Assume that

(1.4) for every £ > 0 there is a gauge w such that

> Ftym(M) - F;(M)| < €
A M

for any w-fine g-regular system A = {(t,J)}, any j and any associ-
ated family of intervals M,

and that
(1.5) fi(t) = f(t) fortel,j— oo.

Then f is strongly p-integrable and F;(I{) — F(K) for j — oo, K C I being an
interval, F' being the primitive of f.

Our aim is to prove that any strongly p-integrable function g is the limit of a
sequence of stepfunctions in a suitable convergence. Of course, f: I — R is called
a stepfunction if there exist intervals Ji, Ja,...,Jx C I such that U;J; = I, IntJ; N
IntJ; = @ for 7 # [ and if the restriction of f to any IntJ; is a constant function. The
convergence from Theorem 1.2 cannot be directly applied to our purpose since the
condition (1.5) is too restrictive. The assumption of pointwise convergence can be
weakened to the assumption of convergence almost everywhere as a consequence of
the following theorem, the proof of which is straightforward.

1.3 Theorem. Assume that there is N C I, m(N) = 0 such that

(1.6) gi:I =R forjeN, g: I =R,

(1.7) £i(t) =g;(t), f(t) = g(t) forte I\ N, j €N,
fi(t)=0,f(t)=0 forte N, jeN.



Then the following two properties are equivalent:

(1.8) (i) g;(t) = g(t) for j = 0o, t € I\ N,
(ii) there exists an additive interval function G; on I for j € N and
for every n > 0 there is a gauge 9 such that

> lgit)ym(M) = G5 (M) <y
A M

for j € N and for any 9-fine g-regular (I \ N)-tagged system A =
{(t,J)} and any associated family M of intervals M, and

> 1G (M) <
AM

for j € N and for any U-fine g-regular N-tagged system A = {(t, J)}
and any associated family M of intervals M ;

(1.9) f; is strongly o-integrable for j € N and both (1.4) and (1.5) hold.

1.4. Remark. Let (1.8) hold. Then G; is the primitive of g; so that G, = g;
a.e. (cf. [3], Definition 2.6 and Theorem 2.8). Moreover, [3], Lemma 1.8 implies that
(1.8) holds if N is replaced by N; provided N C Ny C I, m(N;) = 0, since {g;(t):
j € N} is bounded for t € I\ N.

1.5 Definition. Let g;: I — R for j € N, g: I — R. The sequence g; is said
to be strongly o-equiconvergent to g for j — oo if there exists N C I such that
m(N) =0 and (1.8) holds.

The next theorem is a direct consequence of Theorems 1.2 and 1.3.

1.6 Theorem ([3], Theorem 4.9). Let g;: I = R for j € N, g: I = R and let g;
be strongly p-equiconvergent to g for j — oco. Then g is strongly p-integrable and
G;(K) = G(K) for j = oo and any interval K C I (G; and G being the primitives
of g; and g, respectively).

The concept of strong p-equiconvergence plays the crucial role in Theorem 1.3;
observe that {g;(t); j € N} need not be bounded if ¢t € N.



2. DENSITY OF THE SET OF STEPFUNCTIONS
Let g: I x (0,00) — (0,1) fulfil (1.1), (1.2) for k € N and let
(2.1) ok(t,0) 2 oxt1(t,o0) forkeN,tel,o>0.

2.1 Theorem (Main Result). Let g: I — R be strongly gi-integrable for k € N.
Then there exists a sequence of stepfunctions g;: I — R, j € N such that g; is
strongly pr-equiconvergent to g for j — oo and every k € N.

The proof will be given in Section 3. Now we will only establish some auxiliary
results.

2.2 Remark. If g(t,0) = o(t,0) for k € N, then by Theorem 2.1 any strongly
o-integrable g can be obtained as the limit of a strongly p-convergent sequence of
stepfunctions g;, j € N and the primitive G of g is the limit of the sequence G
of the primitives of g;. If we put gx(t,0) = 76—41_—1 fort € I, o > 0,k € N, then in
an analogous way any ¢g may be obtained which is strongly p-integrable for every

constant function p, ¢ € (0,1). Such a g need not be Perron integrable, see [5].

2.3 Remark. Letn = 1. The strong p-integral reduces to the Henstock-KKurweil
integral (cf. [3], Note 4.3) independently of p and the Henstock-Kurzweil integral is
known to be equivalent both to the Perron integral and to the Denjoy integral. Lee
and Chew in [6] introduced the control convergence for sequences of Denjoy integrable
functions and proved the corresponding convergence theorem. In [7] they proved
that every Denjoy integrable function is the limit of a control convergent sequence
of stepfunctions. Another concept of convergence was introduced and studied by R.
A. Gordon, [1}, [2]; it follows from his results that any control convergent sequence
is equiconvergent.

2.4. Lemma. Let K C R™ be a nondegenerate compact interval, let 0 < A < 1
and reg K > A. Denote by Q(S,r) the neighbourhood of a set S with radius r.
Then there exists a constant & = k(n) > 0 such that

(2.2) m(Q(dK, (d(K))) < kA ~"¢(m(IK)

provided 0 < { < %A.

Proof. Without loss of generality, let us assume

(2.3) K =1[0,a1] x [0,az] x ... x[0,a,],
dK)=ay>2a2>...2a, 2 a1 A




Then

Q(9K, Cd(K)) = [~Cay, a1 + Ca1] x [=Car, a2 + Car] X ... x [=Ca1, an + (a1
\ [Ca1, a1 = Ca1] x [Cay,az — Cay] % ... x [Car,an — Cay),
m(Q (6[(, Cd(K))) = (a1 + 2{(11)((12 + 2((11) L. (an + 2((11)
— (a1 — 2¢ay1)(az — 2¢ay) . .. (an — 2¢ay)
=2 Z:(Zg'al)ai1 cai,_, +2 Z(Q(al)aai] i,
< kaP¢ < kAT m(K).
0
2.5. Lemma. Let K, H,, Hy, ..., H, be nondegenerate compact intervals in R™,
let0 < A<1,(>0,regH; > A and d(H;) > (d(K) fori =1,2, ..., p. Let Hy,
H,, ..., H, be nonoverlapping.
Then
#{H:; H;n K # 0} < 3"A' " max{1,(™"}.

Proof. Assume that K has the form (2.3) from the proof of Lemma 2.4. If
H;NK # ( then

77’L(Hi N [—Cal,al + Cal]") Z (Cal)nAn‘l,
hence

#{H; Hin K # 0} < (a1 +2Cay)"/¢"a} A < 3" A" max{1,(""}.

Put
Vt,w)=[th —v,t1 + V] X oo X [ta — v, tn + V] for teR™ v>0.
The authors proved in [4], Corollary 2 and Theorem 1, the following result:
Let G be an additive function of interval on I, g € R, t € Int I. Let G be regularly
differentiable to g at t. Then for every € > 0 there is » > 0 such that
(2.4) IG(J) = gm(J)] < e(20)"
for every interval J C V (¢,v), where v < r.
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(2.4) can be rewritten in the following way. For L = [¢1,d1] X ... X [¢cn,dn], s € R™
let 1(s, L) be the smallest v such that L C V(s,v) (i.e. ¥(s,L) = max{|d; — ¢,
lc; — sil,|di — si]; 4 = 1,2,...,n}. Obviously ¥(t, J) can be substituted for v in (2.4)
so that (2.4) can be replaced by

(2.5) G(T) = gm(D)](2¢(t, 7)) " <,

provided ¥(¢, J) < 7.
From this result we prove in a standard manner:

2.6. Lemma. Let F' be an additive function of interval on I. Denote by D the
set of such t € I that F is regularly differentiable to (some) F'(t) € R at t and put
Np = I\ Dp. Asume that m(Nr) = 0 and that F' is continuous at any interval
L CIntI (i. e. for every € > 0 there isn > 0 such that |[F(K) — F(L)| < € for every
interval K C I satisfying m(IK \ L) + m(L\ K) < 7). Put

f(t) = F'(t) for  te€ Dp.
Then f is measurable and there exist
NclI, NDNpuUdl, m(N)=0, £e€(0,1/4),
n:[0,€] = [0,1) increasing, n(0) =0, n(c) > o for o € (0,€], 1ir(1)n+ n(o) =0,
o—
w: I\ N = (0,£] measurable, V(t,w(t)) CI fort€ I\ N,

such that
(2.6) [F(I) = f(t)m(K)] < n(v)v™

foreveryt € I\ N, v € (0,w(t)], X CIntV(t,v) (I being an interval).

Proof. Let I = [a1,b1] X ... X [an,bs]. f is measurable since f(t) =
li_f& F(V(t,0))(20)™™ for t € Dp NIntl and F(V(t,0)) is continuous with re-
spect toton (a1 +0,by —0) X ... X (an+0,b, —0). For M = [a1, 1] X ... X [an, O],
t=(t1,...,ta) € R™ put
M) =[ar +t1,01 + t1] X ... X [@n + tn, Bn + tn]-

For o € (O,%min{bi—ai; 1= 1,2,..‘,1z}>, t€lar+o,by—o]x...x[an+0,b,—0],
put

(2.7) Yo (t) = sup {|F(M(t)) - f(t)m(M(t))] : (1/1(0,]\/[))—”;
M C V(0,0),a;, 3; rational }.
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¢o: a1 +0,b1 — 0] x ... X [a, + 0,b, — ] = R is measurable and it follows from
(2.5) that
wo(t) (0 foro\,0,t€ DpNnintl.
For A > 0 put
E(o,)) ={teIntl; V(t,o) CI,o.(t) <A}

E(o, A) has the following properties:

E(o,\) is measurable,
E(O’l,)\)DE(O'Q,/\) for 0 < 07 < 02,
U E(c.)) =Dpnint1,

a>0

}lg}) m(E(o,A)) =m(I).
Therefore , for 7 € N there exists o; > 0 such that
1 ) .
o1 < 1/4, 0< Oip1 < 50'1', m(] \ E(O’i,2—1)) <274

Put - o
N =TI \liminf E(0;,27*) =1 E(0;,27").
Vit £0, 27 = 1\ | () B0 27)
It can be seen that m(N) =0, N D Np UJI.
Let £ = a;1. For v € (0,£] there exists a unique ¢ € N such that v € (031, 03]: put
n(v) = 27% Since 0; < 2771 for i € N, we have (0;) > o; for i € N and obviously
n(v) > v for v € (0,£] and gl'_1351+17(0) =0.

> .
For t € I\ N let h(t) be the smallest j such that t € | E(0;,27). Put w(t) =
i=j
Oh(t); W is measurable.
Ifte I\N,v e (0,wd), then v € (ok+1,0k] for some k > h(t) so that t €
E(0k,27%). Assume that M = [a1, (1] X ... X [an, 8] C V(0,v), a;, 3; being

rationals (i.e. ¥(0, M) < v). By (2.7) we have

n(v) =27% > |F(M(1) = f(O)m(M(®)]((0, )
> |F(M(t) = f(tym(M(8)]v .

n

Since F' is continuous at any interval L C Int I, we obtain
’F(M(f)) - f(t)m(]\f(t))l < (v

for every M = [a1, 1] X ... X [an, Bn) C Int V(0,v), oy, B; being reals, i = 1, 2, ...,
n. (2.6) holds since any Int I C V (¢, v) is equal to some M (t) with M C Int V(0,v).
O



2.7. Corollary. Ifte I\N,t€ H C V(t,w(t)), I C H, H, K being intervals,
then

(2.8) |F(K) = f(tym(K)| < n(d(H)) (d(H))";
if, moreover, reg H > A with 0 < A < 1, then

(2.9) [F(K) = £(tym(K)| < A" (d(H))m(H).

The last inequality follows from the fact that the longest edge of H has the length
d(H) while all the others have lengths not less than Ad(H).

2.8. Lemma. Ifg: I — R is Lebesgue integrable, then g is strongly p-integrable.

Proof. g is p-integrable by [3], Note 1.5. Let G be the primitive of g. By [3],
Theorem 3.2 we conclude that m(I \ Dg) = 0 and G’ = g a.e. Since (L) [,. f =
(o) [ - f for every interval K C I, the absolute continuity of the Lebesgue integral
implies that (4.2) from [3] holds. Take into account that the correct version of
condition (B) in [3], Theorem 4.12, is

(B) F is additive, m(/ \ Dr) =0, (4.2) holds and F' = f a.e.

(by a misprint the incorrect (4.4) appears instead of the correct (4.2) in condition
B of [3], Theorem 4.12). Thus (B) from [3], Theorem 4.12, is fulfilled and it follows
that g is strongly p-integrable and G is its primitive. a

3. PROOF OF MAIN RESULT

Let g: I — R be strongly gx-integrable for £ € N. For any interval L C I we put
F(L) = (o) [, 9; the right hand side is independent of k (cf. (2.1)) and F is called
the primitive of g. F' is an additive function of interval on I and it is continuous at
any interval L C Int I by [3], Theorem 2.1 (in [3], Theorem 2.1 the correct form of
the assumption on L is L C I and the corresponding form of continuity of F' at L is
described even if L ¢ Int ). By [3], Theorem 2.8 and Definition 2.6 F is regularly
differentiable to F'(t) at every t € Dp, m(Np) =0 where Np = I\ Dp and F' =g
a.e. The assumptions of Lemma 2.6 being fulfilled, let f, N, &, 7, v, w have the same
meaning as in Lemma, 2.6 so that, in particular, (2.6) holds. If necessary the set N
can be enlarged so that

(3.1) f(t) =g(t) forte I\ N, m(N)=0.




Moreover, by [3], Theorem 4.5 we conclude that simultaneously

(3.2) for every A > 0 and ¢ € N there is a gauge 7 such that

D IF(M)| <A
=M

for every v-fine g;-regular N-tagged system = = {(s, K)} and any
associated family of intervals M.

Let us choose a sequence {&} such that

(3.3) §26262>2...>0, kli)ﬂ;ofk=0,

([0, €] being the domain of n). There is a measurable w;: I\ N — (0, 1] such that
(3.4) FO1 < I (1))

fort € I\ N. Let us set

(3.5) 5x(t) = min {%fk,wl(t),w(t)}

forte I\N,k=1,2,3,..., where w is from Lemma 2.6.
Referring to (3.2) let us choose dx(t) for ¢t € N such that

(3.6) ult) < 36

and

(3.7) |[F(M)] < &
=M

provided = = {(s,K)} is a di-fine gi-regular N-tagged system and M = {A/} is
an associated family of intervals (i.e., the inclusion M C I defines a one-to-one
correspondence between M and Z).

For the basic interval I let us write

I= [al,bl] X [a2,b2] X ... X [an,bn].
If K =[ey,d1] % [e2,d2] X ... X [cn,dy,) C I, then we write
K° =[c,d]° x [ca,d)® X ... X [cn,dn]°
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where

ci,d; if d; < b;
[civ d’i]o = [ ) .
[Ci, dl] if di = bi.
Now we can define the desired sequence of stepfunctions gj.

For k € N let us choose a dx-fine g;-regular partition Ay = {(¢, J)} of the interval
I, and for s € I let us set

(3.8) o) =

where J is such that (¢, J) € Ay, for some t and s € J°. (Evidently, there is a unique
J with the property.)

The function g is integrable (cf. Lemma 2.8); let G} be its primitive function,
k € N. For any interval M C I we have

(3.9) Gv(M)= > %m(]ﬂ]ﬂ).
(t,J)EA,

The result to be established can be formulated as follows.

3.1. Theorem. For every i € N the sequence {gx} is strongly g;-equiconvergent
to g.

It is a consequence of the following two propositions.

3.2. Proposition. For everye > 0 andi € N there arel; € Nandd;: N — (0,1]
such that

(3.10) T =) |Gk(M)|<e

oM
for every 9;-fine g;-regular N-tagged system © = {(u, L)}, every associated family
M = {M} and every k > [;.

3.3. Proposition. For every e > 0 and i € N there are l, € N and ¥,: I\ N —
(0, 1] such that

(3.11) Sy = Y |Gk(M) — gk(w)m(M)| <
oM
for every ¥2-fine g;-regular I\ N-tagged system © = {(u, L)}, every associated family
M and every k > l,. Moreover,
(3.12) 9k(s) = g(s) fors€ I\ N, k— oo.
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3.4. Convention. Since g fulfil (1.1), (1.2) and (2.1), for every k € N there is
Ak, 0 < A < 0k(t,0) < 01(t,0), and we may assume Ay, ; < A for k € N. Hence
regJ > Ay > A for (t,J) € Ay and any k, ! € N, and regL > A; for (u,L) € ©
since O is g;-regular. The index i € N is fixed throughout the proofs of Propositions
3.2, 3.3 and A; > A;. Therefore we may and will write A instead of A, and A;,
which implies that Ag, k € N, as well as © are A-regular. To simplify the formulas
we will also assume (without loss of generality) that m(I) < 1.

Proof of Proposition 3.2. Givene > 0 and i € N, let us choose j € N
such that

(3.13) i>i, B +2-3"AY) < —;-s
and denote
(3.14) r(u) = min{k € N; & < 6;(u)} forue N.

For every k € N there is an open set U, C R™ such that N C Uy and

min{m(J); (¢, J) € Ax}

(3.15) m(Uk) &b = max{1l+ |F(J)[; (t,J) € A}’

For every k € N there is a gauge ux: N — (0,1] such that
(3.16) V (u, pi(u)) C Uy
for u € N. We choose a gauge v;: N — (0, 1] satisfying the condition

(3.17) O1(u) < pe(u) for k <r(u), uw€ N,
J1(u) < 6;(u) forue N.

Now we start estimates leading to (3.10). Let ® = {(u, L)} be a 9J;-fine p;-regular
N-tagged system and let M be an associated family of intervals. For k € N we have

Si<hi+e= Y G+ Y Ge(M)].
o.M o.M
3(t,J)e€A,LCJ L\J#0,Y(¢t,J)EA

By virtue of (3.9) we obtain

R R D S O
Ak oM '

3(t,J)EAL,LCJ

k<r(u)
m(M N J)
F(J)|———————.
2 X IFOI—
Ak oM
3(t,J)€A, LCJ
k>r(u)
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If (¢t,J) € Ag, (u,L) €O, k<r(u),LCJthen MNJCLCU,NJsinceu € N
(cf. (3.16), (3.17)), and consequently (cf. (3.15))

(3.18) fi Z Z m(L) < B Y m(J N Uy).

A,
3, JYEALLC
k<r(u)
We proceed to T'y. For (t,J) € Ay let Q(t, J) be the set of (u,L) € © such that
L CJ, k>r(u). We have

INLEIDS D MOl

Q(t,J) Ap
3(u,L)€EO,LCJ
k>r(u)

Obviously u € N since © is N-tagged.In the last sum we have u € L C J,
d(J) < 26k(t) < & < 6j(u) by (3.6) and (3.14), hence J C V(u,d;(u)). From
(3.7) we conclude

(3.19) I <.

(We apply (3.7) for a system of pairs (u, J) which is §;-fine, p;-regular and N-tagged,
putting M = J.)
Now we shall estimate I';. Using (3.9) we obtain

I <5 +T6 = Z|F(M)|

3 (%m(M nJ)—FMn J)) :
A

L\J#@,V(Lt,J)eAk

O is p;-regular and 9;-fine; by the first inequality in (3.13) it is g;-regular and by
(3.17) it is ¢;-fine. (3.7) can be applied with & replaced by j, so that

(3.20) Is < 6.

Further, we can write

F(J
Ts <T7+Ts = > |Z(m—((j;-m(Mr‘|J)—F(MﬂJ))’
Ay
L\J;em,v’(z,J)eAk *
+ 3 ‘Z m(MnJ) - F(Mﬁ]))l.
o.M
L\J#0,¥(t,J)EA

te\N
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The first sum can be divided into three terms:

(I

IE(I

Iz F9+F10+F11—Z i) ZmMﬂJ

Ax o.M

teN
+ Z Z IF(M0J)+ Y Z |[F(M N J)).

Ay

d(J)>d(I) teN d(L)>d(J)
By (3.7) we obtain
(3.21) Py < &

since the inner sum (for fixed (t,J) € Ax) does not exceed m(J). Further,

Tio < Y _sup{|F(K)|; K C L} - #{(t,J) € Ax; JNL #0,d(J) > d(L)}.
(]

By Lemma 2.5 the number of elements of Ay on the righthand side of the inequality
has the upper bound 3"A'~" (since ¢( = 1), which together with (3.17) and (3.7)
yields

(3.22) 1o < 3"A'™™ ) sup{|F(K)|; K C L} <3"A'™"¢;.
©

Similarly, with the role of Ax and © interchanged, we obtain
(323)  Tn< Y sup{|F(H); HCJ} #{(u,L) €0;LNJ#0,
Ay teEN

d(L) > d(J)} < 3"A' "¢

Returning to I's, we note that (2.6) and (3.5) yield for (¢,J) € Ay and t € I \ N

(3.24) |F(J) = f(tym(J)| < A'~"n(d(J))m(J]),
F(M 0J) = f((ym(M 0 )] < A" (d(J))m(J),

hence

(3.25) FU) vn gy - Foan J)} < 24 (d(J))m( ).

m(J)
14



Consequently,

g <Ti2 4T3 = z Z ((; (MnJ)- F(JﬂM)’
Ay ;
teI(N LNJ#0
d(L)2[n(d(J))] 3% d(J)
F(J
+ 3 ‘RL(J—))m(MﬂJ)—F(MﬂJ)‘.
oM Aw; teI\N
L\J#0

d(L)<[n(d(J))] 3% d(J)

Estimating I'12 with help of (3.25) and Lemma 2.5 we arrive at

< Y, 247 p(d(]))m(J])

Ay teI\N
x #{(w,L) € ©; LN J # 0,d(L) > [n(d()))]*d(J)}

<A Y () m(2)3 A [ (d())
Ap; teI\N

and by (3.5) we obtain
(3.26) 12 < 23" AP 2"[n(&)] .

In order to estimate I';3 we use the first inequality (3.24):

T3 <y +Ti5+T6 = E |f(t)] E m(M N J)
Ay oM
te\N LOJ#D£L\J

d(L)<[n(d(I))]37 d(J)

+ A S " p(d())m(M 0 ) +Z Z |F(M N J)|.

A OM
(J)>d(L)

Now (3.4), (3.5) imply

Tia < S (d(D)] ™™ ) m(LNJ)
Ay

LnJ;é%;éL\J
d(L)<[n(d(J))} 37 d(J)

and, assuming

A[LJ

l\')]»—-l

(3.27) [n(& )]

15



we conclude by (3.4), (3.5) and Lemma 2.4

(328 Pia < 3 [0(dW)] ™ kA (1) [ (d()] ™
Ay

< /iAlfn['I](&)]Tl".

Evidently,

(3.29) I A" Zn(d(J))nz(J) < ATM(&)
Ap

and finally, by Lemma 2.5 and (3.7),
(3.30) Tis < Y _sup{|F(K)[; K C L} - #{(t,J) € Ax; JNL #0,d(J) > d(L)}
)
<3m Al
Putting together the estimates (3.18)—(3.23), (3.26) and (3.28)-(3.30) we obtain

Yy <3 +& + 3"A1_"§,- +3mAlTe,
+2. 3" AP ()] T + KA (&)
+A1—n17(§k) +3nA1—n€j.

This together with (3.13) implies that Proposition 3.2 holds for £ > I3 where [; is
such that (3.27) and

€1+ 37 A7) + 2. 3742 () + kAT (6] + A8 < 5

hold for every k > [;. 0O
Proof of Proposition 3.3. Given ¢ >0 and i € N, let us choose h € N
such that

(3.31) & + A6 + 37 AP (26,) <

c
&

N =

and denote
(3.32) R(s) = min{k € N; 2&, < 0,(s)} forse I\ N.
For k € N let a gauge vx: I \ N — (0, 1] be such that

(3.33) D IGk(M) = gi(s)m(M)] < &,
=M
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is satisfied provided Z = {(s, I\')} is a ~yx-fine g;-regular (I \ N)-tagged system and
M an associated family of intervals (cf. Lemma 2.8). We choose a gauge ¥2: I\ N —
(0,1] satisfying the condition
(3.34) Y2(s) < vk(s) for k < R(s), s€ I\ N,

< op(s) forsel\N.
According to the definition of the functions g, we have g (s) = F(K)/m(I) where
(z,K) € Ay, s € K° 1If, moreover, s € I \ N, k > R(s), then K C V(z,6;(2)),

d(I) < 26k(2) < & < $6n(s) < w(s) (see (3.5) and (3.32)), hence K C V (s,0x(s)) C
V(s,w(s)), and putting H = K in (2.6) we obtain

|F(K) = f(s)m(K)] < A" n(d(K))m ()
and consequently,

(3.35) lgk(s) = f(s)] < AT (&)

Now we start estimates leading to (3.11). Let © = {(u, L)} be a J2-fine g;-regular
(I'\ N)-tagged system and let M be an associated family of intervals. For k € N we
have (cf. (3.11))

S2<Tir+Tis= ) |Gu(M) = gr(wym(M)| + Y |Gr(M) = gx(w)m(M)].

o,M o.M
k<R(u) k> R(w)
By (3.34) and (3.33) we have
(3.36) Iz < &
Further, we can write
Tis <Tio+To0= Y [f(u) = ge(@|m(M)+ Y |Gk(M)— f(u)|m(M)
oM oM
k> R(w) k> R(u)
and, by virtue of (3.35) we have
(3.37) Lo < AV n(ék)

since u € I \ N. Proceeding to I'yp we estimate it as

Foo KTy + T2 = Z |F(M) = f(u)m(M)|
oM

+5 3 ‘F(‘] (MNJ) = F(MnJ).

o.M Ax
k>R(u)
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Applying (2.9) with M, u, L respectively instead of K, t, H and then (3.34) we
conclude (m(I) < 1 by Convention 3.4)

(3.38) Top < AV ™n(&s).

The term I'y9 is divided into three sums:

F(J
F22<F23+F24+F25=Z Z |—mij))m(MﬂJ)—F(MﬂJ)|
OM AL; k>R(w)
d())>d(L)

F(J)
——m(MnJ)—-FMn
+Y T (Mg - roras)
OM Ay k2R(u)
teI\N,d(L)>d(J)

F(J)
il A 3 - N
+5 % |mJ)m(MﬂJ) F(M J)',
OM Ay k2R(u)

teN,d(L)>d(J)

where

a3 < T + a7
YD ’ig — f(w|mMn T

OM A, ; k2R(w)
d(J)>d(L)

+Y Y fwmMnT)-FMnJ).
oM 4,

d(J)>d(L)

Let us estimate I'yg. The partition Ay is dx-fine so that d(J) < & by (3.5) and also
d(L) < &. Moreover, k > R(u) implies & < 30 (u) (cf. (3.32)). If a summand in
I'y6 is nonzero then necessarily L N J # @, which implies J C V (u,d(L) + d(J)) C
V(u,2&) C V(u,0n(u)) C V(u,w(u)) (see (3.5)). Replacing K, t, v in (2.6) by J,
u, 2d(J), respectively, we obtain

|F(J) = fuym(J)| < n(2d(]))[2d(])]"
and taking into account that m(J) > A"~1(d(J))", we conclude that
|F(J) = fuym(J)| < 2"A'"n(2d(J))m(J])
and, eventually,
(3.39) Ty < 2" A" n(26).
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For the nonvanishing summands of 'y; we again use the fact that JN L # 0,
u€I\N,MnJCL,hence (2.9) yields witht =u, K =MNJ, H=1L

[F(w)m(M 0 J) = F(M 0 J)] < A'="n(d(L))m(L)
since L is A-regular (cf. Convention 3.4). By Lemma 2.5 we find

(3.40) [y AT Z n(d(L))m(L)

oM
#{(t,J) € Ax; INL #0,d(J) > d(L)} < 3™A*2"n(2¢)

(see (3.34)).
In the sum I'24 we consider only terms with ¢ € I \ N, therefore we can use (2.9)
replacing H with J and I with J or J N M. We arrive at the inequalities

A= (d(T))m(JT),

|F(J) - f(tym(J)] < A
| < AYm(d(J))m()),

|[F(MNJ)— fitym(M N J)
which yield

F(J)
m(J)

m(MnJ) = F(Mn J)‘ < 24" (d(J))m(J)

and, eventually, Lemma, 2.5 implies

(3.41) Taq < 24" " n(d(J))m(J)
Ay
x #{(u,L) € ©; LNJ #0,d(L) > d(J)}

<247 " p(d(J))m(J) - 3r AT

Ay
<2-3"A* (&)

since d(J) < 26x(t) < & by (3.5).
Finally, we write

F25\F28+F29—Z Z :; (MOJ)+Z z |[F(MnNJ)|

OM Ay; tEN OM A, teN
d(L)>d(J)
By (3.7) we have
m(LNJ)
3.42) . [og < < D < &k,
(3.42) w< ), |F ;Z ) > IFOI<&
A, teN Ay ; tEN
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and again by (3.7) and Lemma 2.5 we conclude

(3.43) Ty < Y sup{|F(K)|; K C J}
Ay ; tEN
x #{(u,L) € ©; LN J # 0,d(L) > d(J)}
< §k . 3nAl—n.

Combining (3.36)—(3.43) we obtain

D2 <&+ ATM(6) + AT ()
+ 2" AT (26k) + 3" AT (26,)
+2. 3nA2—2nn(£k) + flc + 3"141_n£k»

Since h satisfies (3.31), it is sufficient to choose ls such that
1
(AV77 423" A7 (&) + 2" AT (26) + (1 + 3" ATME < 5¢

is satisfied for all £ > I5. (3.11) holds and the proof of Proposition 3.3 is complete,
since (3.12) holds by (3.25) and (3.1). O
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