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M a t e m a t i c k ý časopis 19 (1969), N o . 2 

NOTE ON THE BAIRE MEASURE 

ZDENA RIECANOVA, Bratislava 

In the paper we compare two different definitions of the Baire measures 
from [1] and from [2]. We prove a general theorem on the regularity of 
a measure (Theorem 3) and as its corollary a theorem on the regularity of 
a certain type of Baire measures (Theorem 3,2). The paper contains also 
a theorem on the measurability of Baire sets with respect to a Caratheodory 
outer measure in general topological spaces (Theorem 2,4). 

Let X be a Hausdorff topological space, Co be the family of all compact G# 
subsets of X, Uo be the family of all open sets belonging to the cr-ring S(Co) 
generated by Q , Z be the family of all sets of the form / _ 1 {0}, where / is 
a real-vaxued continuous function on X, A(Z) be the cr-algebra generated 
by Z, U be the family of all open sets be±onging to A(Z), C be the family 
of all compact sets belonging to A(Z). Further, for any family D of subsets 
of X denote by H(D) the hereditary cr-ring generated by D. 

1. C = Co in any locally compact Hausdorff topological space X. 
According to Theorem 1.2, [2], p. 152 we have C cz Z. Each set of Z is 6r<j, 

hence C cz C 0 . From Theorem C, [1], p. 217 it follows that Co ^ Z and hence 
C0 c C. 

2. In P. R. Halmos' book [1] any measure in a locally compact Hausdorff 
topological space X defined on S(Co) and finite on Co is called to be a Baire 
measure. The set of all such measures denote by A. Each measure from A 
is regular (Theorem G, [1], p. 228). 

I n paper [2] a Baire measure is understood to be any measure in a topological 
space X defined on A(Z) and finite on C. The family of all such measures 
denote by B. If X is a paracompact, locally compact Hausdorff topological 
space and card X is less than the first unaccessible cardinal number, then 
each measure of B is regular (Theorem 2.1, [2], p. 152). 

2,1. These two definitions of the Baire measure coincide (i. e. the domains 
and the conditions of finiteness for A and B coincide) if and only if X is. 
a cr-compact, locally compact Hausdorff topological space. 
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The sufficient condition follows from Theorem 1.1, [2], p. 151 and the above 
condition for the families C and C0. The necessary condition follows evidently 
from the relations X e A(Z) = S(C0). 

2.2. If X is a locally compact Hausdorff topological space and JLL e B, then 
the partial function of JLI on S(C0) belongs to A. 

The assertion follows from the relations C = C0 and S(C0) <= A(Z). 
The reverse of 2,2 holds also in some sense. 

2.3. If X is a locally compact Hausdorff topological space, then any measure 
/ I G A can be extended to a measure / J I G B . 

First we prove the following theorem: 

2.4. Theorem. (x) Let X be any topological space, y be an outer measure defined 
on the family of all subsets of X with the tollowing property: y(A U B) = y(A) + 
+ y(B) for any A, B c: X such that there are open sets U, V with A c: U, 
B c V and U n V = 0. 

Then each set of A(Z) is y-measurable. 
Proof . Define a relation R on the family of all subsets of X in the following 

way: ARB o there are open sets U, V such that A c U, B <= V, U n V = 0. 
Evidently R is a symmetric relation with the following property: If ARB 
and A\ <= A, Bi ^ B, then .^iRBi. Further evidently A, B <= X, ARB => 
=> y(A U B ) = y(-4) + y(B). 

Let Z G Z . Then according to Theorem 1, [4] (also [7], Theorem 1) the set Z 
is measurable with respect to y, if we prove that 

Z = f)Vn,Vn+i^ Vn, Vi^X,ZR(X- Vn),(Vn-Vn+l)RVn+2 W = 1,2, . . . 
n 1 

By the definition of Z there follows the existence of a non-negative continuous 
00 

function g on X such that Z = g-1 {0} = p | g'1 ( — oo, l/n). 
11=1 

_ Put V„ = gf-i ( — oo, 1/ft) w, = 1,2, . . . Then Vn+i ^ Vn n = 1,2, . . . Further 
2 = 2 c Vn+i, ~X=Vn = X-Vn^{x: g(x) > \\(n + 1/2)} = V, Vn+i n 
n V = 0, where the sets Vw+i, V are open, hence ZRVn. 

For n = 1,2, . . . we have 

V* - Vn+1 = {x: H(n + 1) ^ g(x) < l/n} c {x: \j(n + 1) ^ g(x) ^ 
<> l/n} c {a;: gr(x) > l/(n + 3/2)} = 17. 

Vw+2 = {a;: jr(a?) < l/(n + 2)} c {x: £(*) < l/(n + 7/4)} = TV. 

Hence we get Vn — Vn+i <= [7, Vn+2 c TV, f/ n TV = 0, where £7, TV are 
open sets, and hence (Vn — Vw+i)RVw+2 for all n. 

(x) A weaker form of Theorem 2,4 was proved by E. Futas in his dissertation. 
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We proved that all sets of Z are y-measurable and hence all sets of S(Z) = 
= A(Z) are y-measurable too. 

P r o o f of 2,3. Let X be a locally compact Hausdorff topological space and 
li G A. Let y be the outer measure on H(S(Co)) = H(Co) induced by JH. Then 
each set of C0 is y-measurable and by the example 2 from [3], y is a Caratheodory 
outer measure on H(Co), i. e. y(A U B) = y(A) + y(B) for any A, B e H(C0) 
such that there are open sets U, V with A <= U, B <= V and U n V = 0. 

For E c: X put 
yi(E) = inf {y(^) : E cz ^ e H(C0)} . 

Evidently yi is an outer measure on all subsets of X. Let A, B <= X be such 
that there are open U, V with A <-= U, B ^ V, [7 n V = 0. If there is a set 
j£ G H(C0), E z> Av B, then the sets A,B,Au Be H(C0) and yi(_4 U B) = 
= y(A U B) = y(A) + y(5) = yi(A) + ^(.B). If there exists no set E e H(C0) 
for which A KJ B ^ E, then either there exists no set of H(Co) containing A, 
or there exists no set of H(Co) containing B. In both cases yi(A U B) = 
= yi(A) + yi(5) = oo. We have just proved that yi is a Caratheodory outer 
measure on all subsets of X and by Theorem 2,4 all sets of A(Z) are measurable 
with respect to y±. For E G A(Z) put JUI(E) = yi(E). Evidently JUIGB and 
^(E) = fx(E) for EeS(C0). 

2.5. N o t e . Although 2,3 holds, Theorem G, [1], p. 228 does not follow from 
Theorem 2,1, [2], since Theorem 2,1 does not hold in general locally compact 
topological spaces, as it is shown in [2]. 

2.6. If X is any locally compact Hausdorff topological space, then the 
extension of /LI G A to a measure ^ e B need not be unique. Some sufficient 
conditions for the uniqueness of the extension to a c/-finite measure follow 
from Theorem 2,1 of paper [2]. 

E x a m p l e . Let X be a set of all ordinal numbers less than the first uncoun­
table ordinal number Q. The set X with the order topology is a locally compact 
Hausdorff space ([5], example E (e), p. 163). For E e A(Z) put /A,(E) = 1, 
if E contains an uncountable closed set, fjc(E) = 0 in the reverse case ([2], 
example 3,6, p. 159). Denote by v the restriction of [i on S(C0). Let y be the 
outer measure on H(Co) induced by v. For any E e A(Z) put 

^(E) = inf {y(A) : E c A e H(C0)}. 

Evidently ju and jui are two distinct extensions of v on A(Z), since //(X) = 1, 
but jbti(X) = oo, as X is not o--compact. 

2.7. Any measure / / G A can be extended to a measure belonging to B 
also in another way. We construct the extension /^ of the measure ju defined 
on [S(C0)]/i in example 1, [6], p. 53. I t can be shown that A(Z) c: [S(Co)]^ 
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and hence the restriction of ju^ to A(Z) is a measure from B (/*& is finite on 
C = Co). 

As Example 2,6 shows, the extension constructed in the proof of 2,3 and 
the above extension need not coincide. 

3. Theorem. Let X be an arbitrary set of elements. Let Ci and U± be families 
of subsets of X with the following properties: 

Vi 0 e C i , 0 6 l i i . 
00 

V2 / / Un E U\ for n = 1,2, . . . , then also [ J UneUi. 
n=l 

V3 / / C i , C 2 e C i , then C I U C 2 G C I . 

V4 U - C e U±, C - U e d for any U e U±, C e d. 
V5 To any C E C I JAere are U EU±, D E C I -SWCAV £/&a£ C c P c D. 
V6 Ui ^ S(Ci), ^Aere S(Ci) is ftYe a-ring generated by d. 

V7 / / C G C I , ^erc C = fl *7n, UnEUu n= 1,2,... 
w=i 

-Le£ ju be a measure on S(C±) such that to any C E C I £Aere is a sequence {Un}n=\ 
00 

0/ sets from U±, with ju(Un) < 00, n = 1,2, . . . [ J Un z^ C. 
n=l 

TAew ix is a regular measure, i.e. 

li(E) = sup {//(C) : # z> C G Ci} = inf {^(17) : F/ c U E U I } , 

/Or aWKeS(Ci) . 
Proof. Let y be the outer measure on H(S(Ci)) = H(Ci) induced by //. 

Then all sets of Ci are y-measurable and by Theorem 6 from [3] 

y(E) = sup {y(C) : E => C E d} = inf {y(U) : E c U e Ui} 

for each J57 G S ( C I ) . Besides //(F?) = y(E) for F7 G S ( C I ) , from which the assertion 
of the Theorem follows. 

Corollary. If X, C\, U\ satisfy the assumptions of Theorem 3 and fi is a measure 
on S(Ci), finite on Ci, then 

JLI(E) = sup {ju(C) : E -D C G Ci} = inf {JLI(U) : E c 17 e Ui}. 

Proof . If C G Ci, then by V5 there are U E U±, D e Ci such that C c [/ c f) 
and hence ft(U) ^ //(I)) < 00. 

3,1. N o t e . From the Corollary we get the assertion of Theorem G, [1]' 
p . 228, if X is a locally compact Hausdorff topological space, Ci = C0 and 
U1 = Uo. 
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3,2. In paracompact, locally compact Hausdorff topological spaces we get 

the following theorem o n ^ e B a s a corollary of Theorem 3. 

Theorem.(2) Let X be a paracompact, locally compact Hausdorff topological 

space. Let ^ G B , and let there exist a sequence {Un}^=1 of sets from U with 

00 

ft(Un) < oo n = 1,2, . . . , ( J Un = X. Then ju, is regular, i. e. 

H(E) = sup {ju(Z) : E => ZeZ} = inf{/a(U) : E c U e U} 

for each E eA(Z). 

Proof . Put Ci = Z, U± = U and show that C\ and U± satisfy the properties 

V 1 - V 7 . 

V I , V 2 , V 5 J V 6 evidently hold. Let Z±,Z2eZ, then Z1=f~1{0}, Z2 = 

#_ 1 W> where / and g are continuous, real-valued functions on X. Put h = 

= min (l/l, |g|). Then his a continuous function on X and Z\ U Z2 = h~x {0}, 

i. e. Zi u Z2 e Z. We have just proved V3 . If Z e Z, U eU, then Z - U is 

a closed set of A(Z) a n d Z — U e Z by Theorem 1.2, [2]. Further U — Z e -A(Z), 

U — .Z is an open set and hence Z7 — Z eU. Therefore V4 holds. I t is known 

that the property V7 is satisfied too. 
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(2) I t can be easily shown that a space X and a measure u satisfying the assumptions 
of Theorem 2,1 from [2], satisfy the assumptions of Theorem 3,2 too. We cannot show 
the reverse is false, because K. Kuratowski proved that the existence of an unaccessible 
cardinal number cannot be proved. The problem of the relation between Theorem 2,1 
of [2] and Theorem 3,2 is open. 
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