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Matematicky &asopis 21 (1971), No. 4

LINEAR CONGRUENCES IN DISTRIBUTIVE LATTICES

MARTIN GAVALEC, Kosice

The structure of linear congruences in distributive lattices is studied in this
paper. The problem of equality of the‘local and lattice dimensions of a distri-
butive lattice is solved affirmatively by Theorem 5.7 in the case when the
dimensions (at least one of them) are finite. (The negative answer in the
infinite case has been shown already in [1]).

0. Preliminary

We shall use the denotation and the terminology introduced in [1] with
the following additions.

By a relation we mean a set of ordered pairs; if R is a relation, then D(R)
is the set of all first elements of pairs from R. If for any « € D(R) there is at
most one element y such that {xy)» € R, then R is a function. A congruence ¢
on a lattice L is called linear, if {(xy) € @ implies that x, y are comparable.
Two congruences on L are orthogonal, if their intersection is the identity on L.
The (only) maximal congruence orthogonal to a congruence @ on L will be
denoted @*. By -, > we shall denote the join of congruences in the distributive
lattice of all congruences on L, while U, U will denote the set-theoretical
join. We say that an ordered set A satisfies the condition of maximality,
if every chain in A has an upper bound in 4.

In the lattice L, the complement L — X of a subset X of L will be denoted
by —X, the set of all lower (upper) bounds of X is denoted by £ (X)(#(X)).
Convex subsets r, p of L are called projective, if any interval [xy] < r is
projective with some [uv] < p and conversely. If a, b are subsets of L and
for any y €a, z€b we have y A z = z, then we say that a, b are orthogonal
over z. A subset b of L is called an independent system over z, if x ¢ b and
if for any y € b the sets {y}, b — {y} are orthogonal over z. Then, denoting
card b = I (f need not be finite), we say also that b is a f-system over z,
or a lower f-system (in L) and x is a lower f-element (in L). If r is a convex
chain in L and if every « € r, which is not the greatest element in 7, is a lower
f-element in L, then r is called a lower f-chain (in L). The notions of the
upper f-element and the upper f-chain are defined dually. Thus, according
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to [1], lodim L = sup {f; there is a lower or upper f-element in L} and if
lodim L is finite, lodim L = sup {f; there is a lower f-element in L}. We
remember also that the lattice dimension of L, 1dim L, is a cardinal ¥ if L is.
a subdirect product of ¥ chains but not a subdirect product of less than
f chains, that lodim L < ldim L and that if lodim L is finite, then lodim L <
< dim L < ldim L holds.

1. Convex chains

1.0. In this section let r be a convex chain in a distributive lattice L. We
define two congruences, one of them ,,parallel“ to r, the other congruence
orthogonal to the first one.

1.1. Let us define a relation 7 between elements of the lattice L and of the
chain r as follows: {ty) e 7 if

(i) xV (y Nt) =y for every xer, x < ¥,
(i) 2 Ay Vit)=y for every zer, y < z.
1.2. The condition 1.1(i) is satisfied if and only if
(i) there is mo zer, x <y, or
(ii) there is xer, x<<y, x V (y N t) = y.

Proof. Evidently (i) implies 1.1(i). Let 1.2(ii) hold and let be 1 e, 21 < y-
We cannot have = > a1 VV (y A £), because it would give x > y A ¢, = V
VyPAt)=z+y. Asai <xz1V (¥ At) <y and therefore z; \VV (y A t)er
holds, we have x < 1V (W At) and 1 V WA =2V (1 V (y A F)) =
=2 V@V (yAl)=x1V y=y. Thus the condition 1.1(i) is fulfilled.
Conversely, 1.1(i) evidently implies (i) or (ii).

1.3. The relation 7 is a homomorphism of the convex sublattice D(F) of L onto
the chain r. '

Proof. Let {ty), {ty:) e 7. The elements y, y; are comparable, let, e. g.,
Yy<y. Then y=y1 AN(yVE)=yV (y1 At) =1y holds, therefore 7 is
a function. ‘

Now let <{ty), {tiy1) €7. Again let, e.g., y < y1. For every zer, x < y
we have 2 V(Y ACEAG)=2V (WA ACAL) = aV ((y ANt)A
A At)=@V G A))A@V @ At)) =y Ay =y, for every zer,
y<zwehavez A (yV EANL)=2AN(yVHA@GVH))=EAFGVEA
ANyVh)=yA(yVt)=y Dually {¢Vt,y)eF is shown. Thus 7 is
a homomorphism and D(7) is a sublattice of L.

Let <{to yo >, <hiy1) €7, to < ¢ < #1. Then yo < 3; holds, because 7 is a homo-
morphism. We denotey = (yo V {) A y1 =190 V (¢ A y1)andhaveyo < y < %1.
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We have also yo VI At)=yA@ Vi)=F V EAY) A (Yo Vi) =
=y V ( A y1) =y. If yo = y, then for every 2 < yo = y we have y = yo =
=xV (o ANto) <2V (y ANt) <y. Thus by 1.2 the condition 1.1(i) is
satisfied. The condition 1.1(ii) is verified dually. Therefore {ty) €7, ¢t € D(¥)
and D(7) is convex in L.

1.4. Ifx + yand the inferval [xy] < r is projective with [st], then {sx), {ty) € F.
Proof. By 2.2 [1] the projectivity of [xy], [st] implies x VV (y A t) = .
Hence 1.2(ii) and therefore also 1.1(i) are fulfilled. Now let zer, y < z. We
denote a = (xVs) Az=xV (s Az) and have x < a < 2, hence aer.
Further we have a Ay=(x Vs) Az Ay=(¢Vs) \y=x (again using
2.2 [1]), therefore the comparability of a, y and the condition x # y imply
y=aVy=cAs)VaVy=cAs)Vy =2AEVy =zA1lVy).

"Thus 1.1(ii) and {ty) € 7 hold. The second part {sx) €7 is proved dually.
1.5. Let us define R° = {t; Vo, yer)t Ae =1t Ayl}, R = {t;(Vo,ye
er)t V=1tV yl}. Then we have

(i) R®U R} UD(F) = L,
(i) R N R} == 0, if cardr> 1,
(iii) R N D(7) = 0 if and only if there is no least element in 7,
(iv) tf y ts the least element in r, then R? = {t; {ty) € 7},
(v) if r is an interval, then D(r) = L.

Proof. To prove (i) let us suppose t¢ R? U R} U D(7). Then first there
arez,y ersuchthatz<<yandt A z <<t A y. If wedenote yo =2 V(t A v) =
= (z V t) A ¥, then accordingtox A t ANy) =t A (x Ay)=1¢t A x we have
Tt Azt ANyl~ [zryo] and z<<yo. By 1.2 the assumption yo<y gives
{tyo> €7, teD(F), because Yy AWV = yA@EV (EANY) VL =
=y A (z Vt) = yo and dually z \/ (yo A t) = yo hold. Thus we have yo = y
and y Vt=xV (tANy)Vt==xVi therefore t Vx=tVz2=tVy for
x <z2<y.

By dual reasoning we get z=ax At V2)=@ Af)Vz, tANrv=2 Az
for z<x, tV 2<tV z. Then the element a =y At) Vz=y A ({V 2)
belongs to r and fulfils a Ae=y A (EVI)Ar=cA{EV2)=2%+z,
aVarx=HANt)VzVae=(HyAt)Va=y * x which is impossible as a, z
are comparable.

We see that t \/ 2 ==t \/  holds for z < y. Hence there exists zer, y < 2,
t\V y<t\ z Again we show analogously that y =2z A (¢ V y) and by 1.2
we get {ty> €7, t € D(7), which is a contradiction and (i) has been proved.

The modularity of L gives immediately (ii).

Now let y be the least element in . If ¢ A y =t A 2z holds for any z e,
then 2 A(tVy)=GCAt)Vy=wYAL)Vy=y ie 11(3i) is fulfilled.
As 1.1(i) follows from 1.2, we have (ty)> € 7. Conversely, if we have {ty) €7,
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then y=2 A (tVy) and y At=2A{EVYyY) Nt=2 At for any zer.
We have proved (iv) and one implication from (iii).

Finally, suppose that there is no least element in r, let ¢ € D(7), then by 1.2
there is zer, x<<y, xV (y At)=y. We further have z A (y A ?) =
=@ ANy Nt=x At so that [x A ¢, y A t]~ [zy]. That means z A t <
<y At i e t¢ R The proof of (iii) is complete. The statement (v) follows
from (i) and (iv).

1.6. (i) R? is an ideal in L,
(ii) if se RY, {ty)> €F, then (s \/ t,y> €.

Proof. Let s,teR?, x,yecr. Then (s Vi) Ax=(Az)V (tAz)=
=6 AYVEANY)=(VE Ay, sothat s \VteR?.

Let s < teR), wm,yer. Then s Ax =B A Ax=8A(A2) =
=sANEANY=BAE Ay=s Ay, so that se R’. We have proved (i).
To prove (ii) let s € R?, <ty> € 7. Then for any xer, x < y we have x V
VOGNSV =2V ANV UAN)=@HAS)V @V [HAL)) =
=W As)Vy=y and for any zer, y <z we have 2z A (y V (s V 1)) =
=2zNEVEHV))=cAs)VEAYVEH)=EA)Vy=HAs)Vy=y.

1.7. Let us define a relation Ry on L as follows
(i) if s,te R?, then {(st> € R,,

(ii) ¢f s, t € R}, then (st) € R,,

(iii) of <{sy), {ty) €7, then {stp e R,.

Then the relation Ry is a congruence on L and L|Ry is a chain, which s iso-
morphic to r if D(F) = L.

Proof. The symmetry of R, follows immediately from the definition, the
reflexivity follows from 1.5(i). As for card r = 0,1, R} = R! = L holds, the
transitivity of R, is a consequence of 1.5(ii), (iii), (iv). Finally the compatibility
of R, with the lattice operations in L and the linearity of L/R, follow from
1.3, 1.6 and statements dual to 1.6. If D(F) = L, R, is completely defined
by (iii), thus L/R, is evidently isomorphic to r.

1.8. Let us define a relation Qr on L as follows: {uv) € @y if there is an interval
[xy] = r projective with [uv] or with [vu]. If r + 0, then Qr is a congruence in L

Proof. The assumption r =+ 0 gives immediately the reflexivity of @,.
The symmetry follows from the definition.

Let {ps), {st) €@, and let [xy] < r projective with [ps], [vz] < r projective
with [st]. According to 1.4, we have {sy), {sv) €7, thus by 1.3 we have y = v.
From 2.2 [1]it follows thatx At=2x Ay At=x Ay As=x ANs=x A p.
Analogously we get z A p =2z A pand dually x \V £t =2 \/ p =z \/ ¢. There-
fore [xz], [pt] are projective (using 2.1, 2.2 [1]) and {pt> € Q.
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Now let [xy] = r projective with [ps], [vz] S r projective with [ts]. Again
we get y = z, using 1.3, 1.4. The elements «, v are comparable, let €. g., < v.
From the properties of transposed intervals it follows that [vy], [(v V p) A s8]
are projective. As [vy], [£s] are also projective, by 2.3(i) [1] we get (v V p) A
A s = t. The interval [av] is projective with [p, (v VV p) A s] = [pt], hence
{pty €@r. We have proved the transitivity of @, (the other cases are dual).

If peL and {st) €@, e.g. if [xy] < r is projective with [sf], we denote
v=_(sVp) ANt=sV (p At). Again the intervals [(v V x) A ¥, y], [vt] are
projective. On the other hand, [vt]~ [v V p,t V p] =[s V p,t V p] holds.
Hence we have (s VV p,tV p)>e@,. Dually {s A p,t A p) €@, is proved.

1.9. If [uwv] < D(F), then there 13 [st] < [uv] such that {us), {vt) € Ry,
sty €Qr.

Proof. Let us denote x = 7#(u), y == 7(v), s = (x V u) Av,t =(y A v) V u.
Then we have s Vz = ((x Vu) Av) Ve= @ V) A@Va)=(uAv)V
Ve=uVatVy=@A)VuVy=uV(gAv)Vy)=uVy and
therefore y A (sV )=y A@Vz)=z yViEsVar)y=yVuVr=yV
Vu=tVyie [zgy]~[sV ztV y]. Dually we see that [s A z, t A y] ~
~ [zy], thus by 2.1, 2.2 [1] the intervals [xy], [st] are projective and the proof
is complete according to 1.4, 1.8.

1.10. R, is the maximal congruence orthogonal to Qr, By = @; .

Proof. Let us suppose that R is a congruence orthogonal to ¢ and {uv) e R,
{uv) ¢ Rr. Hence also <u A v, u\V v>€eR, <u ANv,uV v)¢ Ry, so that
we may assume % < v. We cannot have [uv] < D(7), because then 1.9 would
give [st] < [uv], {st> €@, s + t and {st) € R. Thus let, e. g., u ¢ D(7), there-
fore w € R? and r has no least element. Then for any zer, < 7(v) (or for
any zer, if v¢DF), veR){(uV 2) Av,x)eR, and (u V ) A\ ve [uv]
hold. Hence we have [yz] < [uv] N D(F), {yz) ¢ Ry, {yz) € R and again 1.9
gives a contradiction with the orthogonality of R, Q,.

L11. If r is projective with a convex chain p, then @r = @y, Ry = R, and
7(t) = 7(p(t)) for any t € L.

Proof. The first equality follows from the definition of @y, the second vne
from 1.10. Let ¢ € L, then by 1.7(iii) {p(t)t> € Rp and therefore {p(t)t> € R,
hold. By 1.7(iii) we have also <7(p(t))p(¢)>, {F(t)t)> € Ry, hence {F(p(t))7(t)> € Ry
and 7(p(t)) = 7(¢).

2. Linear congruences

2.0. Let L be a distributive lattice in this section. We shall study the
extending of a linear congruence from a convex sublattice onto the whole L.
We describe also the maximal congruence which is orthogonal to a given
linear one.
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2.1. Let Q be a congruence on L, let B be a finite independent system over
X in L|Q. Then there is an independent system b over x with the same cardinality
as B such that x € X, y € Y € B (and therefore {xy) ¢ @ for any y €b.

Proof. For every Y € B let us choose v(Y)€ Y, then for ¥ % Z, v(¥) A
Av(Z)eX holds. We denote z =V {v(Y) Av(Z); Y,ZeB&Y = Z},
b={x\Vv(Y); YeB} Evidently zeX, x Vv(Y)eY for any Y € B and
VIUY) A@VoZ) =2V @Y)AvZ) =2 Sox VoY) +zVoZ)
for Y 4 Z and b is an independent system over x with the same cardinality
as B.

2.2. Let M be a set of congruences on L, let a linear congruence Qur be the least
congruence on L containing all elements of M, i.e. Qy = > M. Then Ry =
=N{R5QeM}=nN{R;reliQ&QeM} =N{R;r=[wyl&{ry>eQe
e M} = Q.

Proof. EvidentlyQy = > {@r;r e LIQ & Qe M} = 3 {Qr;r = [ay] & <zyd e
€@ € M}. According to 1.10, the assertion follows from the properties of the
ordering of congruences by the set inclusion.

2.3. Let Q be a linear congruence on L, let us denote Q- = R. Then L|R is
a chain. , .

Proof. By 2.2, R = N {Ry; r = [zy] & {xy) €Q}. Let z, y € L such that
[2]r || [ylr. Then <z Ay, ), <z Ay, yp¢Ri.e.{x ANy, 2p¢ R, Sz ANy ¢
¢ Ry, for some r = [uv], p = [st], <uv) €@, {st> € Q. We have D(7) = D(p) = L
by 1.5(v), therefore using 1.9 and the properties of transposed intervals we
can find ', 9" such that ' ||y, <&’ Ay, 2DeQr, &' ANy, y'DeEQ, ie.
{x'y"y € Q, which is a contradiction with the linearity of @.

24. Let @ be a linear congruence on a convex sublattice Ly of L, then @ =
= U {@r; 7 € L1f/Q1} = U {@r; r = [wy] & {xy) € @1} is a linear congruence on L.
Q is the minimal congruence on L containing Q1 and the restriction @ N (Ly X Ll) '
of @ to Ly is equal to Q. If we denote Q+ = R, Qf = Ry, then R N (Ly X Lp) =
= Ry.

Proof. At first let u < v<<w, let the interval [uv] be 'projective with
p = [21y1], let r = [vw] be projective with ¢ = [x2y2] and let (x1y1), {x2y2) € Q1.
By 1.11 we have' R, = R; and F(lyL A v) =w, Fly1) =F(x1 V (g1 A v)) =
= F(@1) V v == F(x1). Let us denote ¢ = ¢(#(x1)), by 1.11 we get ¢ = g(x1) =
= q(y1) and set z = p(t).

If 2> 21,t> 22 holds, then [@1 A ¢, 2 A t] ~ [212], [22 A 2,2 A £] ~ [z2f]
giveuswy At,xa AN'2<<z At,{ti Atz Nt),{xa A 2,2 ANt)e@,and (1 At) V
V(2 A2)=((t1 At)V x) A ((x1 ANt) V2)=1¢ A2z which is a contra-
diction with the linearity of Q1. ,

Analogously, if z < y1, ¢ <2 then [yl ~ [z VI, y1 V], [tye] ~
~ [z Vit 2V y, which gives 2 V i<y Vi 2V ys, ZVEyV D,
ZVHzVy)eQ and (i VOAEVYR) = VA2V (VA

I
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A y2) = z \ {, which is a contradiction with the linearity of @:.

Hence we have z = 21, t = yp or 2 = y1, t = 2.

In the first case according to 1.11 we may assume y2 < 1. Then the elements
a = @mAY)Vy=aA@Vy), b= @A)V =A@V
fulfil a Ab = ;i A@V ) AnA@Va) = @Ay A0V iy A
A@Va))=az A\ (V) == (21 Av)V 22 and a, b € [x2y1], i. €. a,be L.
Hence we have b A 21 =1 A (W V x) A1 =a A b, bV a1 = ((y1 A v)V
V) Vo= (y1 Av)V a1 = y1, thus [a A b, b] ~ [21y1]. Analogously y2 A
AN@Ab)=yp2 Aa1 AV a)=y2 A@Va)=22, 92V (@AND) =192V
V(@ Av)Vae=y2V (@1 A v) =d, thus [x2y2] ~ [@ A b,a] holds. We
have obtained a contradiction with the linearity of ¢:.

So z = y;, t = @2 is true. According to 1.11 we can assume that y; < 2.
Denoting a = (@1 Vu) Aya =21V (@ Aye), b= @V)Ay2 =2V
V@AyY), c=@Vw Ayz==21V (wAy)we have 21 <a <b<c<
< Y2, i.e. a,b,ceLy. Then we have y1 Aa=y1 A (@1 V u) Ay =y A
AN@Vu)=z,nVa=y V (@ Vu)Ay) =@V aVu)A @V iy =
= (1 V u) A y2 = (x1 V v) A y2 = b, thus [r1y1] ~ [ab] and dually [bc] ~
~ [z2y2]. That means {ab), {bc) € @1, therefore also {ac) € Q;. Then s = [ac]
is a chain and we have {(uv>, {(vw) €Qs, thus (uw) €@s. From 3(u) = a,
§(v) = b, $(w) = c it follows that [ac], [uw] are projective intervals.

We have proved now that if the elements u, v € L can be connected by
a finite @-sequence, i.e. if there are finitely many elements ¢ = u,
1,8, ..., t, = v such that every interval [#..14:] (¢ = 1, ..., n) is projective
with some [ziyi] < L1, {xiyi) € @1, then there is r = [xvy] < L1, {ay)> e
such that {uv) € @,, {ur> €Q.

It is a known fact that the congruence ¢; can be extended to a congruence Qo
on I (without the assumption of the convexity of L; and the linearity of Q)
defined as follows: {uv) € @y, if the elements u A v, u and the elements u, u \/ v
can be connected by a finite @;-sequence. In our case {uv) € @y gives {u A v,
u \/ vy €Q, therefore also (uv) € Q. That shows that @y < . The converse
inclusion is trivial. So @ is a congruence on L. The remaining assertions follow
easily from the definition of .

—_— —

2.5. Let @ be a linear congruence on L, R = @Q*. If L|R consists just of two
elements RY, R, then {xy) €@ if and only if x € R°, ye R, x < y.

Proof. ¢ is not the identity on L, otherwise L/R would have only one
element L. Hence there are v << y, {xy) € Q. The orthogonality of @, R gives
xeR, yeR, 2 <y.Nowletue R, ve R\, u <wv,theny A u, 2V (y A u)e
eRG,thusz <V (ywAu<ygivesy Au<zandzx A u=y A u. Analo-
gously we get x Au=2 A v and dually xt Vv=y Vov=yVu By 21,
2.2 [1], the intervals [zy], [uv] are projective and (uv) € Q.
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3. k-chains

3.0. From now on we suppose that L is a distributive lattice of finite local
dimension £ > 0. We show that if r is a k-chain, then @,, R, have some special
properties.

3.1. If b is a k-system over x, then for any y € b, the interval [xy] is a chain.

Proof. Let us suppose that there are incomparable elements u, v € [xy].
We denote o' =u Av, b'={zV a'; 2zeb&z+y}, 20=V (b — {y}) and
get [xz9] ~ [2',20 V 2']. So b" is a (k — 1)-system over 2’ and for z€b, 2 + ¥
we have zVa2)Au=eAu)V @ Au)=zVar=z =(@zVz)Ao
We see that b’ U {uv} is a (k + 1)-system over z’, which is a contradiction.

3.2. If b is a k-system over x and x << t, then there is y € b such that x < ¢t A\ y.
1f, moreover [xt] is a chain, then & =t A z for any z€ b, z + y and the elements
y, t are comparable.

Proof. For any yeb we have x < t A\ y. The assumption x = ¢ A y for
any y €b leads to a contradiction, hence x <t A y for some yeb. If x <
<t ANz zeb,z+y, then (t A2) A (t A y) =z, therefore t A\ 2z, t A y are
incomparable and [zf] is not a chain. If x = ¢ A 2 for any z € b, z £ y, then
{t Vy}u (b — {y})is a k-system over z, therefore by 3.1 [z, \/ y] is a chain
and g, ! are comparable.

3.3. Let r be a convex chain, x a lower k-element in L. If x, u,ver, x < u <<,
then lodim [u], < k.

Proof. Let us suppose that lodim [u], =k, i. e. let there exist a k-system
b over y, {yu), {zu) €7 for every z€b. Hence u V y = (x V (v A y)) Vy =
=2z V ((# A y) Vy) = 2 \V yholds. Let a be a k-system over z, by 3.2 we can
assume u €. In the same way as in the proof of 2.4 [1] we denote ay =
={Vy;zea&zA@Vy ==z} bh={eVa zeb&z A\ @Vy = y}
From the mentioned proof it follows that d = {z A t; 2, tea, Uby &z At >
>x \ y}is a k-system over x \V y. If z€a, 2 A (@ Vy)==2 le 2+ u,
then by 3.22 A v =z holds, hence z V y) ANV y)=cAv)Vy=zVy.
For zeb we have v A (wV2z) =u=2aV Az and w Az= (v A
AwVz)ANz=vA ((uV2) Az)=0v Az therefore (zV ) A (v V y)=
=EA)VEA)VEeAYVE@AY) = @Awy)VaVyV @AY =
=(Auw)Va)yVy=uAy=2VyWehaveshownz A(vVy)=2Vy
for z € a, U by, hence for z A\ ted we have (z At) A (v V y) =2V y. Now
[uv] ~ [z Vy, vV y] gives v Vy>2Vy. Thus dU {vV y}is a (k4 1)-
system over z \/ y, which is a contradiction.

3.4. Let r be a lower k-chain, let us denote L, = L — (RYU RY), then
lodim L;/Qr < k.

Proof. Let us suppose lodim Lr/@r > k, then by 2.1 there is a k-system
b over z in L, such that (xy> ¢ @r for any y e b. As L/R, is a chain, according
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to 3.3 there is yeb such that {xy) ¢ R,, {(wz) e R, for any z2€b, s :y.
Evidently L, < D(#) holds, hence by 1.9 there is an [st] = [xy] such '.at
<xs), {yt> € Ry, {st) € Q. The assumption s > x gives a contradiction accd-
ing to 3.3, thus s = z. Then ¢t < y must hold and {y} U {t \V 2; zeb & 2 ' y}
is a k-system over ¢, which is a contradiction with 3.3.

3.5. If r is a lower k-chain, then there is a set M of upper k-chains such 1t
Qr =V {@s; s M}.

Proof. By 3.2, for any p = [xy] < r, x <y we can choose a k-s:. u
b over x,ycb. Then we denote =’ = \/ b,2' = \/ (b — {2}) for any -~
b = {z'; z € b} and from the properties of transposed intervals we get .
b’ is a k-system under z, i. e. p" = [y'2’] is an upper k-chain, projective wi
By 1.11 we have @, = @, hence the fact that Q- = U {@p; p = [xy]
completes the proof. ‘

3.6. Let Qo,Q be congruences on L. We shall say that  is a k-extens .
of Q, if there is a set M of lower k-chains such that Q@ = Qo - z {Q,; re M.
If Qo is the identity on L, we say that @ is a k-generated congruence on /

Note. By 3.5 the definition will not be changed if we replace ,lowevr
by ,,upper® in it.

4. k-generated congruences

4.0. If we want to show that L is a subdirect product of k chains, we can
do it by induction and it is necessary and sufficient to find a linear congruence
@ in L such that lodim L/Q < k. Namely, if we denote R = @+, then L/R
is a chain and L is a subdirect product of L/R X L/Q. In the previous section
we have seen that, for any k-chain r in L, @, fulfils a weaker condition
lodim L./Q; < k. This fact will be generalized now.

4.1. Let @ be a linear congruence on L, B = Q. We denote by R° the
least element in L/R, or set R = 0 if such an element does not exist. R! is
defined dually. Finally we set L(R) = L — (R° U R?).

Note. If r is a convex chain in L, then L, = L(R;).

4.2. By /(L) we shall denote the set of all non-identical linear congruences
Q on L satisfying the condition lodim L(Q4)/Q < k. <Zk(L) will be the set
of all k-generated @ € <Z(L).

If Qo € (L), then o7(Qo, L) is the set of all k-extensions @ of Qo, @ € /().

4.3. (L), (L), L (Qo, L) satisfy the condition of maximality, if ordered
by inclusion.

Proof. The proof suffices to be done for o/(L), &(Qo, L). Hence let M be
a chain in o/(L). Let us denote @y = U M, evidently Qu is a linear congruence
on L. If M is a chain in &/(Qo, L), then Qu is a k-extension of Q. If we denote
M+ = {@+; Qe M}, then by 2.2 we have Qf = Ry = N M* and clearly
also Ry =n{R; ReM'}, Ry, =n{R;ReM}. So L{Ry) =1L —
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— By URY) = L—(Nn{R; ReM}UNn{R; ReM'}) = Ln—nN
N{ROUR; ReM‘}=LNnU{— (RRUR); ReM+}=U{L N — (ROU RY);
Re M} = U {I(R); R € M*} holds, if we use the fact that R, R! for B e M+
are linearly ordered by inclusion.

Now let b be a k-system over z in L(Ry), then there isQeM, Q- =R
such that b < L(R), € L(R), therefore {xy> €@ and {xy) e@u for some
ye€b. So lodim L(Ru)/Qm < k and Qu € (L), s/ (Qo, L) respectively.

4.4. Let Q be a maximal element in sZ (L) or in &Z(Qo, L). If [xy] s a k-chain
and {xy) ¢ B = @+, then {xy) €.

Proof. Let us suppose <zy)> ¢ Q. The assumption z €'R! gives y € R! and
{xy) € R, hence x ¢ R! must hold.

First we shall assume that for any ¢ € [xy], ¢ ¢ B!, there is (xt) € Q. Then
evidently ¥ € R! must be true. We denote r == [xy] and show that {uv) € @,
u & v, v¢ R imply <(uv) € Q. Namely, [uv] is projective with [pq] < [zy].
If w + v, by 1.4 we have 7(v) =¢, ¢ =2V (g A v) and x ¢ R, v ¢ R! give
g NvE R qg¢ Rl Thus <{xq), {pg)> €@ and {uv) €Q.

We define a relation N in L as follows: {uw), {wu) € N, if there is v € I,
% < v < w such that (uv) € Q and {vw) € Q. The reflexivity, the symmetry
and the compatibility of N with the lattice operations are evident. To verify
the transitivity of N let be {uw), <{wg) € N.

Let w <v<w<p<g {uww), <wp)e@, {vw), {pgd>e@,. If w=p,
then {vg) € @r, <ug) € N. If w + p, then w ¢ R, {vw) €@, {up) € Q, {ug> € N.

Further let v <v<w, ¢ <p<w (w), {p)eQ, {vw), {pw)eq,.
Then {vp) €@r holds and v, p are comparable, let e.g., v < p. There is
v<oVg<p ie. (0, vV, (AN GEG, and g <vVg<p, ie.
(gvV e If g<wvVg then g¢ B, (wAg g, (wvVgeQ and
{vg> €@, i.e. {ugy €@, N.

If g=vV ¢, then {ug> e N.

Finally, let w < v <u, w<p<yg W), wpde, {vu), {pg)> Q.
Hence (vp) € @ and v, p are comparable, let e. g., p < v. Thenw < v A q < v,
Le (wAgv, {(gqVv>eEQ, and p<SvAg<yq ie {(vAgq>eq.
If v Ag<g<wvVgq then ¢g¢ R, (v AN q. 9> €@, <vgd> €@, v|lq, which is
a contradiction. Hence ¢ =v A ¢ and {ugye N, or g=1v\/q, v =10 A q,
{vg)> €Qr, {ug) €@r, N. The proof of the transitivity of N is complete. We
see that N is a linear congruence on L and that N = @ + ,, hence N is
a L-extension of Q.

Let u € RO, then {z, z V u) € R, <z, (x \V w) A y) € R. Therefore (z \/ u) A
Ay¢R and (o, (@ Vu) Nyre@, ie. x=(x\Vu)Ay. By 11, 1.2
7(u) = « and therefore u € R} holds. Thus R° c R?.

Nowletue R;,i.e.7(u) =y.Theny e RLy =x \/ (y A u)give y A we R!
and u € R!. Hence R! < R.

A
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We denote N+ = P and by 2.2 weget P° = R° N R) = R’, P! = R' N R! =
= R!. Therefore L(P) = L — (R° U R}).

Let ¢ be a k-system in L(P) over u, such that (uv) ¢ N for any v € c. Then
u € Ly would give ¢ < L, and {uv) ¢ @, for any v € ¢, which is a contradiction
according to 3.4. Thus we have u € RY, #(u) = « and w ¢ R!. By the linearity
of L/R and by lodim L(R)/Q < k, there is vec such that {(uv) ¢ R and
{uwy e K for wec, v =i: w. As {uv> ¢ @ holds, there is v € Rl. Then 7(v) =
=y A (F(v) V v) e B!, hence x<7(v) and <{uv) ¢ R,. By the linearity of
L|R, we have (uw) e R,, 7(w) =« for any weec, v + w. By 1.9, there is
[st] = [uv] such that (st} €@, {su), {tv) € R,. As v € L,, #(v) < y, then the
assumption ¢ < » leads to a contradiction by 3.3. Further, {su) € R, gives
7(s) = x and s ¢ R!. Therefore (us) €@ holds, and from {st) €@, t = v we
get (uv) e N. Thus we have proved lodim L(P)/N <k and therefore N
belongs to &Z(L) or o/(Qo, L), respectively. Here <{xy) ¢Q, {xy)e N give
a contradiction with the maximality of ¢, therefore our assumption at the
beginning of the proof cannot be fulfilled.

So there is ¢ € [xy], t € R, {xt)> ¢ Q. In an analogous way as in the proof
of 3.5 we find an upper k-chain [t'z’] transposed to [zf]. We get 2’ ¢ R1,
2"y ¢Q and (x's) €@ for any s e [i'z'], s¢ RO. If L(R) + 0, we can choose
t € L(R). Then also z’ ¢ R° holds and the situation is dual to the previous one.
If L(R) = 0, then by 2.5 there is a prime interval p = [uv] such that @ = @, .
Then z€ R, ye R! gives up = (x V u) A ye RO, vo= (x V v) A ye R! and
{ugvey € Q) implies that po = [uge] is a prime interval projective with p.
Hence @ = @,, and @, = @ is again a contradiction with the maximality of Q.
That proves {(zy) €Q.

5. Dimensions

5.0. We have mentioned already in the previous section that the proof
of the equality of the local and lattice dimensions of L will be done by in-
duction through k. Now we formulate the induction hypothesis.

5.1. Induction hypothesis. If L; is a distributive lattice and lodim L; <
<< k, then for any Q; € &7 (L) there is N3 € &/(Q:, L) such that lodim L;/N; <
< lodim Ll.

5.2. Let Q be a maximal element in /(L) or in o/(Qo, L), R = Q+. If x € R
s a lower k-element, then x is an upper bound of —R1, i. e. x € U(—RY).

Proof. Let x be a lower k-element, x € B!, z ¢ R!. For any k-system b over
x let us denote by={y;ycb&y A@Va)==za}, bo={y;yeb&y A
ANzVa)y>aht=Vbh,s=xANz=1Az2 Ly = [st]. Thenb, = {y A 2;
y € by} is an independent system over s of the same cardinality as bs, ortho-
gonal to L; over s. That implies lodim L; <k— card b = card b;. On the
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other hand we have lodim Z; > card b1, so lodim L; = card b,. Analogically
lodim [z, x \/ 2] = card by is shown, therefore card b; depends only on the
elements «,2. Let us denote m(z,z) = card bz and set m = max {m(x, 2);
« being a lower k-element in R! & z ¢ R'}. In the following we shall suppose
that card b = m > 0, i. e. « is not comparable with z. As 2> s holds, we
have lodim L; = card b; > 0, so m << k and b; & 0.

Further, if L(R) + 0, the element z can be chosen so that ze L(R). If
L(R) = 0, then L/R has only two elements R, R! and according to 2.5, we
can choose z in such a way that thereis 2’ e Bl, 2 <2’ < 2 V z and {22") €@.
Then ' =z A 2’ € RL, {(ss'> €@ and by 2.5 we have s < s’ < z. Hence for
any yeLiNR, y<y =y Vs €L n R holds. Therefore there is
lodim (L; N R%) < lodim L; as well as in the case z € L(R).

Let us denote @1 = @ N (L1 X L1), Ry = RN (L1 X L) the restrictions
of @, R to L;. Analogously as in 1.10 we can show, using 1.9, that R; = @j-.
Evidently L(R1) < L; N L(R) and, as {sy> € R holds for any y € b,, the ortho-
gonality of L; and b, over s implies lodim L(R1)/@1 < k — m = lodim L;.
Hence the linear congruence §; belongs to .7(Li).

By induction hypothesis there is a congruence Ny on L;, which is a (k — m)-
extension of @, and fulfils lodim Iy/N; <<k —m. By 24, N = U {@r;
re Ly/Ni} = U {@r; r = [uv] & {wv) € N1} is a linear congruence on L and
Ni = Nn (L1 x Ly).

If Cuvd e N, u < v, v R, then {uv) €@. To prove it let us assume that
{uv) ¢ Q. Then [uv] is projective with some [u1v1] < L1, <urv1) € N1, <uqvr) ¢ Q.
By the definition of N; then [uiv:1] (or some its non-trivial subinterval) is
projective with a lower (K — m)-chain [21y1] in L1, {@wyi) € N, {x1y1) ¢ Q1.
By 3.2, there is a lower (k — m)-system ¢; < L; over x1 such that y; ecy.
We denote ¢ = {y V z1; 9 € bé}, then ¢ = ¢; U ¢ is a k-system in L over ;.
For any y ecs we have {(z1y) € B and for y ec; we have {(z1y) ¢ Q. Thus,
by 4.4, {x1y> € R holds for any y € c1. As the element z was chosen so that
lodim (L N RO) << k — m, ¢; < RY, x1€Ry. If we denote 23 =2V (v A 11) ¢
¢ R!, then for y e b, there is y < z1 and (y V 1) A (21 V 1) =y V @1 > 1.
Thereis also 1 Az Vo) =y AV @A) Vo=@ A2V (1 Av)V
Vi Az)=s8V (1 A (vV x1)) =8V y1 = y1 > x1, using the projectivity
of [uv], [#1y1]. Hence m(z1, z1) > m and we have obtained a contradiction
with the maximality of m.

Now we define a relation J in L as follows: (uw), {wu) € J, if there is
velL, u < v < w such that {uv) €@ and {vw) € N. Evidently, J is reflexiv,
symmetric and compatible with the lattice operations in L. The transitivity
of J is proved quite analogously to the transitivity of N in the proof of 4.4.
Thus, J is a linear congruence on L and, as the orthogonality of L; and bé
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over s implies that every lower (¢ — m) -chain in L, is a lower k-chain in L, J
is a k-extension of Q. We denote Ny = P;, N+ = P, Jt = K.

Let y ¢ K9 then there is r = [uv], (uv) €J, u % v such that 7(y) = v.
Then [ A y, v A y] ~ [uv] holds, therefore » can be chosen so that v < y.
The assumption y € R0 gives us u, v € R, {uv) €@, v = v. Thus y ¢ R and
we have proved R < K9, i. e. R0 = KO according to 2.2.
~ The definition of N; implies that there is y; € by such that {xy:> € N; and
{xyy € Py for ye b1, y1 + y. Let us denote p = [xy1].

First let ueR), u¢ R, then yy Au¢ R As [x A wu, y1 A\ u] ~ [ay1]
holds, there is <{x A u,y1 A upe N and therefore <z A u,y1 N\ u) €@,
{xy1> €Q, * = y;. This is a contradiction with y; € by and we have proved
R, = R.

Now let weR), u¢ Kl Then also for uy = (u A 1) V s€ L, ui € Ry,
u1 ¢ K holds. Thus there are v, w € L such that ¢owdeJ, v<wand us A v =
= w1 A w. Then [vw] ~ [u1 V v, w1 V w] shows that we may assume u; < v.
But u; eR}, and u; € R! implies (vw) € N. Thus there are w»;, w; € L such
that [vw], [viwi] are projective and again we may assume u; < v;. Hence
we have {(viwi)d € N1, wp € v < wy < t. On the other hand, if we denote
s1=V (b1 — {y1}), we get [wy1] ~ [s1t] = g, therefore uy € R}, i.e. u; \V s =
=u; Vt=1 and {(sit) € N1. From the properties of transposed intervals
it follows that we have obtained a contradiction with the linearity of N;.
So Rl < K! has been proved. At the same time we have K! < P! c R},
thus K! = P! = R]. Therefore L(K) = L — (R° U R)).

Let d be a k-system in L(K) over w, such that (wv) ¢ J, i.e. (wod ¢@Q
and by 4.4 {wv) € R for any v €d. Then d < R!, w € R must hold.

We denote 1 = \/ {p(v); v €d}, r = [x191] and have 21 € p, 21 < y1,d < RY.
Then r is a (k — m)-chain in I; and there are a (k — m)-system ¢; in L; and
a k-system a in L over z; such that y1ea;, V a1 =¢, a; < a and for y eaq,
(zV x1) ANy = a1 if and only if y €a;.

If we denote u = x; A w, then u € Rl and denoting ap = {w A y; yea &
@ Vw) ANy>z}, do={m1 Nv;ved & (x1 V w) Av>w), co={y A v
yea& (@ Vuw)Ny=mn&ved&@m Vw)ANv=w&yVw) A @V ar)>
> a1V w} we obtain from the proof of 2.4 [1] that ¢ = ay U coU dp is
a k-system over wu.

We have we R? and therefore (x; \/ w) A y1 = 1. As y € R? holds for
y€a,y + yi, there is ap < R°. For any v ed,v € R holds, hence (y1 \/ w) A
A @V 2) =21V w and do, co = R°. We have shown ¢ < R?.

Let us denote ¢; = {v;vec&v A(zVu)=u}, ca= {v;vec&v A
A (z V u) > u}. The maximality of m implies that card ¢z < m. On the other
hand, we denote w3 = s \V u, 11 =8V v, v =t Av,v; =8\ v =t A v for
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any vecy, ¢, = {v;;vec} and get (z\V ) A(@ Vo) = (2VauVa)A
A@Vv)=(zVu) Av)Var=uVx = for any veci. As [uv] is
a chain, then [x;, z; V v] is also a chain. If x; < #1 \V v, then, by 3.2, 1 V »
is comparable exactly with one element y e a1 (¥ + y1 as v € R?) and ;<
<YAN@Vo)y=tA@V©v).As [x1 Av,v]~[x1 A v, 0]~ [#1, 21V v]=
=[x, 21 V1], also ;3 Av<<v', 11 A< vi, 1. e w1 < vi must hold. If
r1=x1 Vo, thenv <2 <t v <4, vi = v; and again w43 < 'vi. Hence c; is
an independent system in L; over u; with the same cardinality as ¢;, therefore
card ¢ < k — m and card ¢s = m, card c¢; = card ci =k — m.

By the definition of Ni, there is v € ¢; such that (uw{) € Ni. The linearity
of Ny implies that x; << 21 \/ v is impossible, so that v < #1, v, v1 < 1, vi = v,
ummY>eNi. Now u < v Aumw=vAGVu)<vAEVuU)=u vV uy=
=vVsVu=vVs=nuv, [u] ~ [wv1] give {uv) e N.

From v < 21 we get vedy (see also the proof of 2.4 [1]), hence there is
ged such that ¢ = (x1 V w) A¢>w and v =21 A q. We have v A w =
=1 ANgANw =z Aw=u and vVw= (@1 Aq)Vw=(x1V w)A
A(gVw)=4q, ie [u] ~ [wg'] and <wqg’) e N. By the linearity of N,
for any yed, y + ¢, w<<y' < y there is (wy'> ¢ N.

If ¢ <q then d' ={g} U {¢ Vy; yed &y + ¢} is again a k-system in
L(K). this time over ¢’, and again there is y¥' €d’ such that {¢'y") € N for
some ¥, ¢ <y <y.Ify ¢ iey =q9gVuy, yed y * ¢, then [wy] ~
~ [¢y1and [w,y A Y"1~ [y ie [w,y Ay leN, w<y Ay <y, which
is impossible. Therefore y' = q¢ and <{q'¢"> e N, ¢'<< q¢" < q. Then [¢'q"] ~
~[rrVw x V'] e ;s Vw<ar V¢, <e1Vw, 21V ¢'>eN. On the
other hand z; \/ w, x1 \V ¢” € R? give [ziy1] ~ [x1 V w, y1 V w]and (31 V w) A
A (21 V ¢") = 1 V w. That is a contradiction with the linearity of NV.

Thus ¢’ = ¢ holds and <{wq) € N, {wq) € J. We have proved that
lodim L(K)/J < k. Therefore J € o/ (L), &/(Qo, L), respectively, and {xy:> ¢ @,
{xy1) € J give a contradiction with the maximality of @. Hence the assumption
m > 0 is false, m = 0 holds and the proof is complete by 3.2.

5.3. Let us define a relation P in /(L) as follows: {NQ) e P if N =@ or
if P= N+, R=Q"', PLUR® = L holds.

Then 2 is a partial order in o/ (L).

Proof. The reflexivity of & follows immediately. Let (N@>, (QN)e 2,
then have P < RO, P° > RO, i.e. P® = RO and analogously P! = R1. Hence
R'U RO = L, L|R is the two-element lattice and P = E. From 2.5 also
N = @ follows. Therefore £ is antisymmetric. To prove the transitivity of 2,
let us set <JN>, (NQ>e P, J + N, N +@Q, K =J+. Then K1 U P =L,
gives K12 Pl and P! U R0 = L implies K1 U R® = L, i.e. {JQ) e £.

5.4. Let M be a chain in (/(L), P). Then the congruence Qar = > M is
linear.
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Proof. First let us define the relation @ as follows: (uv), {vu) € Qy
if there are wp =4 < 43 < ... € Up = v, n > 0, such that (u;_1u;> e U M,
1 =1,...,n. If we show that Qi defined in this way is transitive, then
evidently @ar is a congruence fulfilling Qy2Qe M, Qy Z M, i e.
Qu =2 M.

Thus let x <y, x<z {xypeNeM, {xz)e@Qe M, P= N+, R =Q:,
N + Q. The congruences N, @ are #-comparable, let e. g., (NQ> € . There
is « ¢ P1, otherwise y € P1, x = y. Therefore x € R0 and z ¢ R, z € PL. If y € RO,
then y Aze R0 and x < y Az < 2 gives {x,y A 2) €@, x = y A 2. Hence
[zy] ~ [2,y Vz]and z <<y V 2, {2,y V z) € N, which is a contradiction with
z € Pl, Therefore ye Pland y AN ze P, x < y ANz < yimply {y A 2,y>€EN,
yANz=1y,y <z {yz)e@. The transwlwt) of Z is proved by iteration of
the previous and dual reasoning. The linearity of @ follows immediately
from the definition.

5.5. Let M be a maximal chain in {Z(Qo, L) U (L), P, fulfilling
(i) if b is a k-system over x and {xy) ¢ Qs for any y €b, then for any Q € M,

R = Q* there is x € U(—R!) or \/ beZL(—RO).

Then lodim L/Qy < k.

Proof. Let us suppose lodim L/@x > k. By 2.1, there is a k-system b in L
over z such that for any ye€b, {xy) ¢ @y holds. We denote ao = {Q; R =
=QL&ze % —RY)}, a1 ={Q;R=Q+ & \V beL(—R")}, then a = {apm)
is a cut in M. Further we denote L= N {¥(—R°); R=Q' &Qe€cai},
I =N {%(—R'); R =Q*+&Qeao}, Ly = L° N L' and see that L, is a con-
vex sublattice of L and [z, \/ ] < Lq, hence &7x(L,) + 0. Let N, be a maximal
element in &f/k(La) let N be the congruence induced in L by Ng, let P, = N},
P = N*. N is linear by 2.4.

As N, is k-generated in Lg, there is a set My of lower k-chains in L, such
that No = > {@r N (L X La);r e My}. By 2.2,2.4, then N = 3 {Qr; r € My},
i.e. Nesli(L) and PO = N {RY;re My}. If Q €ag, R = @+, then for any
r€ My we have r < L,, therefore r < %(—R'), R? 2 —R!, i.e. P* 2> —R1,
POU Rl =L, (QN) e . Dually we can prove (N@Q> e £ for @ € a1, hence
K = M v {N}is a proper extension of M to a chain in {o7(Qo, L) U Zx(L), 7).
We shall show that K also fulfils (i), which will be a contradiction with the
maximality of M.

Let d be a k-system over u, for any v € d let (uv) ¢ Qx, hence {uv) ¢ Q.
Let a cut ¢ = {coc1) in M be determined by d in the same way as the cut
a by b.

At first let a + ¢, let there exist @ € a1 N ¢y (the case @ € ap N ¢ is dual).
Then (NQ> e £, i.e. PL U R® = L holds. Then P!> R!, —P! < —R! and
U(—P1) 2 %(—R"). Therefore u e %(—R!) gives us u € %(—P?).

Now let a =:¢, i.e. [u, \V d] S L,. As {uv) ¢ N, {uv) ¢ N4 holds for any
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ved, the maximality of N, implies u € P} or \V de P%. Let u e P}, then
by 2.4 ue Pl. Let us suppose u ¢ %(—P), i.e. let there be z¢ PL, z < u.
Asuel! = N {%(—R'); R = Q" & Q € ag}, z € R! must hold for any R = @-,
Q € ap. But v € R! for any v € d holds too and therefore u € R and s = u A z €
eN{R'; R=Q"&Qcap}. Hence by 5.2, any lower k-chain r in [s, V d]
fulfils r < L. As V d €LY, evidently also r < L% holds, i.e. r = L,. The
proof of 5.2 gives us an extension N’ of N, generated by a set of @,, where r
are lower k-chains in [s, \/ d], hence N, = N’ N (Lg X L,) is a k-extension
of N, in L,. Moreover, we have, denoting P’ == N'+, P, = N'+, u ¢ Pt and
w ¢ P}, therefore N, is a proper k-extension of N,, which is a contradiction
with the maximality of N,. We have proved u € %(—P!). In the case \/ d € P,
V d e#(—Py) is shown dually. The proof is complete.

5.6. For any Qo€ (L) there is N € &/ (Qo, L) such that lodim L|N < k.

Proof. By 4.3, there is a maximal element @ € 27(Qo, L). By 4.4, 5.2 the
one-element chain {Q} in {/(Qo, L) U Zx(L), #) fulfils 5.5(i). As the set
of all chains in {(/(Qo, L) U (L), &) fulfilling 5.5(i) satisfies the condition
of maximality, there is a maximal chain M in (& (Qo, L) U (L), #> ful-
filing 5.5(i) such that Qe M, i.e. @y 2 Q. Then evidently Qum € (Qo, L)
and lodim L/Qy < k by 5.5.

5.7. Theorem. If L is a distributive lattice and lodim L is finite, then lodim L =
= dim L = ldim L. :
Proof. By induction is given by 4.0, 5.0, 5.1 and 5.6.
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