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A NOTE ON CLASSES OF REGULARITY 
IN SEMIGROUPS 

B E D R I C H PONDfiLICEK, Podebrady 

Let S be a semigroup. Denote by 8%s(m, n) classes of regularity in S (see 
R. Groisot [1]), i. e. 

0ts(m, n) = {a\ as amSan}, 

where m, n are non-negative integers and a° means the void symbol. 
In [2] I. F a b r i c i studies sufficient conditions for ffls(m, n), where m + n S> 

^ 2, to be subsemigroups of S. In this note we shall study necessary and 
sufficient conditions for Ms(m, n) to be subsemigroups, semilattices of groups, 
right groups and groups, respectively. 

It is known [3] that 

(1) if 0 <: mx < m2 and 0 ^ m ^ n2, then Ms(2, 2) c Ms(m2, n2) c 
c &s(ml9 m); 

(2) ggs(l, 2) = 9ts(l, 1) n &s(0, 2); 

(3) Sts(2, 1) = &s(l, 1) n ^ ( 2 , 0). 

Denote by JE7 the set of all idempotents of a semigroup $. Then (see Theorem 3 
in [2]). 

(4) if 1 ^ m and 1 ^ n, then ^s(ra, n) 4= 0 if and only if JS7 4= 0. 

Theorem 1. T/le cZass of regularity Ms(l> 1) is a subsemigroup of a semigroup 8 
if and only if 

(5) E #= 0 amZ -#2 <= <05(1, 1). 

Proof. Let ^S(l> 1) be a subsemigroup of 8. I t follows from (4) that E 4= 0. 
Since E c <^(1, 1), hence JP* c ^ ( 1 , 1). 

Let (5) hold. Then (4) implies that Sts(l, 1) 4= 0. Let a,be Ms(l9 1). Then 
a = a#a, 6 = byb for some x,y e S and #a, &?/ ei£. According to (5) we have 
(xa)(by) = (xa)(by)z(xa)(by) for some zeS. Therefore, ab = (axa)(byb) = 
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= a(xa)(by)b = a(xa)(by)z(xa)(by)b = (axa)b(yzx)a(byb) = (ab)u(ab), where-

u = yzx. Hence ab e &s(I, 1). 
R e m a r k . From [3] (p. 108) it is known that if &s(h 1) is a subsemigroup 

of S, then 0ts{\, 1) is a regular semigroup. 

Corollary 1 (cf. [2], Theorem 4(c)). If E is a subsemigroup of S, then &s(l, 1} 
is a subsemigroup of S. 

Corollary 2 (cf. [2], Theorem 4(d)). ^ ( 1 , 1 ) is an inverse subsemigroup 
of a semigroup S if and only if 

(6) E 4= 0 and any two idempotents of S commute. 

Proof . I t is known [4] tha t a semigroup S is inverse if and only if S is 
regular and any two idempotents of S commute. Evidently (6) implies (5). 
The rest of the proof follows from Theorem 1 and from the Remark. 

Let a be an element of a semigroup S. The right (left) principal ideal generated 
by a is denoted by R(a) = a\J aS (L(a) = a U Sa). 

Lemma 1. Let a, b e S. 
1. If ab e 0ts(^, 0), then ab e R(aba). 
2. If ab e R(aba) and ba e R(bab), then ab e &s(2, 0). 
P roof . 1. If ab e 3ls(2, 0), then ab = (ab)2x for some x eS. This implies 

tha t ab = aba(bx) e R(aba). 
2. If ab e R(aba), then ab = abax for some x e S or ab = aba = aba2 and 

in both cases we obtain tha t ab = abau for some u e S. If ba e R(bab), then 
analogously we can prove tha t ba = babv for some v e S. Hence we have 
ab = (ab)2z, where z = vu. 

Theorem 2. Let S be a semigroup and 8&s(%, 0) 4= 0. Then 0ts(%, 0) is a sub-
semigroup of S if and only if 

(7) ab e R(aba) for any a,b e &s(%, 0). 

Proof . Let ^ ( 2 , 0) be a subsemigroup of S. If a, b e 0ts(2, 0), then ab e-
e &s(2, 0). I t follows from Lemma 1 tha t (7) holds. 

Let (7) hold. If a, b e &s(%> 0), then from Lemma 1 it follows tha t ab e 
e &s(%, 0). This means t h a t ^ s ( 2 , 0) is a subsemigroup of S. 

Right identities of an element a e £%s(%, 0) of the form ax are called local 
right identities. 

Corollary 1 (cf. [2], Theorem 5(b)). If the product of local right identities 
of the elements a,b e &s(2, 0) is a right identity of the element ab, then Ms(%, 0} 
is a subsemigroup of a semigroup S. 

Proof . If a, be &s(%, 0), then a = a2x and b = b2y for some x, y e S.. 
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The element ax (by) is a local right identity of a (of b). According to the 
assumption we have ab = ab(ax)(by) e R(aba). Hence Theorem 2 implies 
tha t 3?s(2, 0) is a subsemigroup of S. 

Corollary 2 (cf. [2], Theorem 5 (c)). Jf every local right identity of any element 
of £%s(2, 0) belongs to the centre of a semigroup S, then &s(2, 0) is a subsemigroup 
of 8. 

P r o o f If a,be &s(2, 0), then a = a2x for some x e S. Therefore ab = 
= (a2x)b = a(ax)b = ab(ax) e R(aba). I t follows from Theorem 2 that £9S(2, 0) 
is a subsemigroup of S. 

Theorem 3. The class of regularity 0ts(2, 1) is a subsemigroup of a semigroup S 
if and only if (5) and 

(8) ab e R(aba) for any a,be &ts(2, 1) 

hold. 
Proof . Let 8%s(2, 1) be a subsemigroup of S. I t follows from (4) that E 4= 0. 

Since E a &s(2, 1), hence, by (1), we have E2 cz &s(2, 1) c &s(\, 1). This 
means that (5) holds. If a, b e 2%s(2, 1), then ab e 3#s(2, 1). According to (1) 
we have ab e Ms(2, 0). I t follows from Lemma 1 tha t ab e R(aba) and thus (8) 
holds. 

Let (5) and (8) hold. Then (4) implies tha t Sks(2, 1) * 0. Let a, b e 0ts(2, 1). 
Then by (1) we have a, b e Ms(\, 1). Theorem 1 and (5) imply tha t 0ts(\, 1) 
is a subsemigroup of S and thus ab e Ms(\, 1). According to (8) we have 
ab e R(aba) and baeR(bab). Lemma 1 implies tha t ab e @£s(2, 0). I t follows 
from (3) that ab e 3ts(2, 1) -= 0ts(\, 1) n 0ts(2, 0). The class of regularity 
@s(2, 1) is a subsemigroup of S. 

Corollary. 3?s(2, 1) is a subsemigroup of a semigroup S if and only if 0ts(\, 1) 
is a subsemigroup of S and @%(2, 1) c: &ts(2, 0). 

Lemma 2. The class of regularity 8&s(2, 2) is a union of all subgroups of 
a semigroup S. 

Proof . From [3] (pp. 139, 424) it is known that an element a eS belongs 
to some subgroup of S if and only if a is totally regular, i. e. a = axa for 
some x e S and xa = ax. We shall prove that ffls(2, 2) is the set of all totally 
regular elements of S. 

Let a be a totally regular element of S. Then a = axa for some x e S and 
ax = xa. This implies tha t a = (axa)x(axa) = a2x*a2 e 0ts(2, 2). 

Let now a e 0ts(2, 2). Then a = a2ya2 for some yeS. Pu t x = aya. Then 
we have a = axa and xa = aya2 = a2ya2ya2 = a2ya = ax. 
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Lemma 3. 0ts{2, 2) = 0ts{2, 0) n # s (0 ,2) . 

(See Lemma 1 in [2].) 
P roo f . I t follows from (1) that 0ts(2, 2) a &s(2, 0) n 0ts(O, 2). Let 

x e 0ts(2, 0) n ms{0, 2). Then x e x2S cz R(x
2) and x2 e xS cz R(#). I t follows 

tha t R(x) = R(x2). Analogously we can prove that L(x) = L(x2). From [5] 
it is known that x belongs to some subgroup of S. Lemma 2 implies tha t 
x e 0ts(2, 2). Therefore 9ts{2, 2) = 0ts(2, 0) n 0ts(O, 2). 

Theorem 4. Tine class of regularity 0ts(2, 2) is a subsemigroup of a semigroup S 
if and only ifE^0 and 

(9) ab e R(aba) n L(bab) for any a, b e 0ts(2, 2) 

holds. 
Proof . Let 0ts(2, 2) be a subsemigroup of S. I t follows from (4) that E 4= 0. 

If a,be 0ts(2, 2), then ab e 0ts(2, 2). By Lemma 3 we have ab e Ms(2, 0) n 
n ^,s(0, 2). Lemma 1 and its dual imply that ab e R(aba) n L(bab). Hence (9) 
holds. 

Let E + 0 and let (9) hold. Then (4) implies tha t 9ts(2, 2) =f= 0. Let a, 6 e 
e ^,s(2, 2), then by (9) we have ab e R(aba) n L(bab) and 6a e R(bab) n L(aba). 
Lemma 1 and its dual imply that ab e ^ s ( 2 , 0) n ^ ( 0 , 2). I t follows from 
Lemma 3 that ab e 0ts(2, 2). The class of regularity 0ts(2, 2) is a subsemigroup 
of S. 

Corollary 1. If 0!s(2, 2) is a subsemigroup of a semigroup S, then 0ts(\, 1) 
is a subsemigroup of S. 

Proof . If0ts(2, 2) is a subsemigroup of S, then£/ + 0. Since E a 0ts(2, 2), 
hence, by (1), we have E2 cz g?s(2, 2) cz 0>s(i, l) . I t follows from Theorem 1 
tha t 0ts(\, 1) is a subsemigroup of S. 

Corollary 2. 0ts(2, 2) is an inverse subsemigroup of a semigroup S if and only 
if (6) and (9) hold. 

The p r o o f follows from Theorem 4 and from Lemma 2. 

Corollary 3. 3%s(2, 2) is an inverse subsemigroup of a semigroup S if and only 
if 0!s(2, 2) is a subsemigroup of S and 0ts(\, 1) is an inverse subsemigroup of S. 

Lemma 4. A semigroup S is a semilattice of groups if and only if S is regular 
and E c. Z, where Z is the centre of a semigroup S. 

Proof . Let S be a regular semigroup and E cz Z. If a e S, then a = axa 
for some x e S. Evidently ax eE and thus we have a = (ax)a = a2x. From 
this it follows that S = 0ts(2a 0). Analogously we can prove that S = 0ts(O, 2). 
I t follows from Lemma 3 tha t S = ^,s(2, 2). Lemma 2 implies tha t S is 
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a union of groups. Hence, by Corollary 2 of Theorem 2 in [6] we obtain tha t S 
is a semilattice of groups. 

Let S be a semilattice of groups. If a e S, then according to Lemma 6 in [7] 
we have R(a) = L(a). Since S is a regular semigroup, then aS = a U aS = 
= R(a) = L(a) = Sa U a = Sa. This means t ha t S is a normal semigroup. 
I t follows from Lemma 1 in [8] t ha t E c Z. 

Theorem 5 (cf. [2], Theorem 6). Let S be a semigroup and let 1 <; m, 1 ^ n. 
Then the class of regularity Ms(m, n) is a semilattice of groups if and only if 

(10) E 4= 0 and ae = ea for any a e 8%s(m, n) and any eeE. 

Proof . If Ms(m, n) is a semilattice of groups, then from Lemma 4 and (4) 
it follows tha t (10) holds. 

Let (10) hold. If a e 0ts(m, n), then from (1) it follows tha t a e Ms(I, 1). 
This means tha t a = axa for some xeS. Since axeE, hence, by (10), we 
have a = (ax)a = a2x e £%s(2, 0). Similarly we obtain tha t a e 0ls(§, 2). 
From Lemma 3 we have a e 2%s(2, 2) and thus Ms(m, n) <= 0ls(2, 2). By (1) 
0ts(m, n) = 0ts(2, 2). 

We shall prove tha t (9) holds. If a, b e £%s(2, 2), then a = a2xa2 for some 
x e S. Since axa2 eE, hence, by (10), ab = a(axa2)b = ab(axa2) e R(aba). 
Similarly we obtain that ab eL(bab). Theorem 4 implies t ha t ^ ( 2 , 2 ) is 
a subsemigroup of S. I t follows from Lemma 2 tha t 0ts(2, 2) is a regular 
semigroup. According to Lemma 4 and (10) we obtain t ha t 0ts(m, n) = 
= &s(2, 2) is a semilattice of groups. 

Corollary. Let S be a semigroup and let 1 ^ m, 1 ^ n. If (10) holds, then 
&s(m, n) — S%s(w + k, n + I) for any non-negative integers Jc, I. 

A semigroup S is called right simple if S is the only right ideal of S. A semi­
group S is said to be left cancellative if in S the left cancellation law holds, 
t ha t is ax = ay implies x = y for all a, x, y in S. A semigroup S is called 
a right group if it is right simple and left cancellative. 

Lemma 5. A semigroup S is a right group if and only if S is regular and 
fe = e for any e,feE. 

Proof . Let S be a regular semigroup and fe = e for any e,f eE. Let 
a,b e S. Then a = aua, b = bvb for some u,veS. Pu t x = ub. Since au, bv eE, 
hence ax = aub = (au)(bv)b = {bv)b = b. Therefore, S is right simple. Let 
ax = ay for a, x, y e S. Since S is regular, hence a = aza, x = xux, y = yvy 
for some z, u,ve S. Thus we have axux = ayvy. Postmultiplying by z, we 
have zaxux = zayvy. Since za, xu, yv eE, then x = (xu)x = (za)(xu)x = 
= (za)(yv)y = (yv)y = y. Therefore, S is left cancellative. Thus S is a right 
group. 

316 



Let 8 be a right group. From Theorem 1.27 in [4] it follows that 8 is regular 
and E is a right zero semigroup. 

Theorem 6. Let 8 be a semigroup and let 1 ^ m, 1 <; n. Then the class of 
regularity Ms(m, n) is a right group if and only if 

(11) E 4= 0 awd fe = e for any e,feE. 

Proof . If ^S(ra, n) is a right group, then from Lemma 5 and (4) it follows 
tha t (11) holds. 

Let (11) hold. This and (4) imply that 0ts(h 1) 4= 0. I t follows from the 
Remark and from Lemma 5 that ^ ( 1 , 1) is a right group. Since «^/s(l, 1) 
is a union of groups, then, by Lemma 2, we have ^ s ( l , 1) c ^S (2 , 2). 
According to (1) we obtain tha t 0ts(m> n) c Ms(l9 1) c &s(2, 2) c Ms(m,n). 
Therefore, «^;s(m, n) = Ms(l, 1) is a right group. 

Corollary. Let S be a semigroup and let 1 ^ m, 1 ^ n. If (11) holds, then 
gts(\, 1) = ^ s ( 2 , 1) = ^ ( 1 , 2) = ^ ( 2 , 2). 

Theorem 7 (cf. [2], Corollary of Theorem 4). Let 8 be a semigroup and let 
1 ^ m, I ^ n. Then the class of regularity Ms(™>, n) is a group if and only 
if cardi? = 1. 

The p r o o f follows from Theorem 6 and its dual. 

Corollary. Let 8 be a semigroup. If cardi? = 1, then ^ s ( l , 1) = &s(2, 1) = 
= &s(l, 2) = 0ts(2, 2). 
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