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Matematicky &asopis 21 (1971), No. 4

PARTIAL GROUPOIDS WITH SOME ASSOCIATIVITY
CONDITIONS

RENATA HRMOVA, Bratislava

In the theory of semigroups not only subsemigroups of a semigroup [S,.]
are of some importance but also subsets of § which with respect to the
operation (.) do not form a subsemigroup of [S,.] (e. g. equivalence classes,
relative ideals, a.s.0.). However, by the operation (.) a partial operation
on every subset of S is induced, so that these objects may be regarded as
partial groupoids. Of course, for all elements a, b, ¢ of these partial groupoids
a(bc) = (ab)c holds, provided that all ,,products‘‘ are defined. Partial groupoids
with this condition have been called associative partial groupoids and they
are studied in section IT of the present paper. It turns out that a generalization
of the notion of a relative ideal of a semigoup and other notions connected
with it makes it possible to obtain generalizations of many results from the
theory of semigroups. However, some generalizations are rather complicated.
It turned out that such generalizations become simple and natural if we
consider such an associative partial groupoid where for all its elements a, b, ¢
the following holds: 1) If b¢c and (ab)c is defined, so is a(bc), 2) If ab and a(bc)
is defined, so is (ab)c. For such a partial groupoid the term partial semigroup
has been chosen and this notion is studied in section ITI of this paper. In
this section also some results which follow from the study of partial semigroups
are given for semigroups.

Section I contains such notions and results which can be formulated most
generally, i. e. for partial groupoids without a further condition.

I would like to express my gratitude to Professor S. Schwarz for useful
suggestions and criticism.

I

Definition 1,1. Let P be a set, K a subset of P X P and (.) a mapping of K
into P. The mapping (.) will be called a partial binary operation on P and the
pair [P,.] will be called a partial groupoid.

The set K will be called the domain of [P,.] and will be denoted by K[P,.].

The set P is called the carrier of [P,.].
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If K[P,.] + 0 and K[P,.] + P X P, we shall say that [P,.] is a proper
partial groupoid.

If K[P,.] == 0, we identify [P,.] with the set P.

The case K[P,.] =0 and P = ) will be regarded in accordance with [3]
as a case of a semigroup. This semigroup will be called an empty semigroup.

A partial groupoid [P,.] is said to be finite if its carrier P is finite.

The image of an element (a, b) € K[P,.] will be denoted by a . b and if there
is no risk of misunderstanding, simply by ab.

Instead of (a, b) € K[P,.] we shall write ab € P; further, (ab)c € P means
(a,b) e K[P,.] and (ab,c) e K[P,.]. Analogously a(bc)e P means (b,c)e
€ K[P,.] and (a, bc) € K[P,.].

Let A< P, B P. If A X B< K[P,.], we denote the image of 4 X B
in P by A . B or simply AB and we shall say that the set product 4B of the
subsets 4 = P, B < P is defined. If either A or B is a one point set {a}, we
omit the brackets in the set products 4{a} and {a}B.

If A< P, B=0, we define AB = A.

If A=0, B< P, we define AB = B.

If [P,.] is a partial groupoid, @ < P, then [@,.] means the partial groupoid
with an operation induced by the operation of [P,.].

Definition 1,2. Let [P,.] be a partial groupoid, @ < P. Ifa €@, be@, abe P
imply ab € Q, we shall say that [@,.] is a stable partial subgroupoid of [P,.].
A stable partial subgroupoid [Q,.] of [P,.] is said to be a subgroupoid of [P,.].
if for every a €@, b eq, ab € P holds. In particular, if a subgroupoid of [P,.]
is a semigroup (group), it will be called a subsemigroup (subgroup) of [P,.].

Definition 1,3. By a partial subgroupoid of a partial groupoid [P,.] we mean
any partial groupoid [4,.], 4 < P.
Evidently we have:

Lemma 1,1. Let [P,.] be a partial groupoid.

a) If [@Q,.] is a stable subgroupoid of [P,.], then K[Q,.] = K[P,.] N (@ X Q).

b) If [@..], [R,.] are stable subgroupoids of [P,.], then also [@ N R,.] is a stable
subgroupoid of [P,.] and K[Q N R,.] = K[@,.] N K[R,.].

c) If [A,.] is a partial subgroupoid of [P,.], then K[4,.] = K[P,.] N {(a, b) €
€A X A:abed} =K[P,]NAXA—{(abed x A:ab€ A4}

d) If [4,.], [B,.] are partial subgroupoids of [P,.], then not only [A N B,.]
but also [A U B,.] is a partial subgroupoid of [P,.] and K[4A N B,.] = K[4,.] N
N K[B,.], K[A vV B,.] o K[4,.]U K[B,.].

e) Let [Q),.] be a partial subgroupoid of [P,.]. If [R,.] ts a stable partial sub-
groupoid of [P,] and R < @, then [R,.] is also a stable partial subgroupoid
of [@-].
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The reverse of the statement e) need not hold. A stable partial subgroupoid.
[R,.] of [@,.] need not be a stable subgroupoid of [P,.].

Definition 1,4. Let [P,.] be a partial groupoid. An element ze€ P (e € P) is
called a right zero (identity) element of [P,.], if pz € P itmplies pz = z (pe e P
implies pe = p) for every p e P. An element z € P (e € P) is called a left zero
(identity ) element of [P,.], if zp € P implies zp = z (ep € P implies ep = p)
for every p € P.

An element ze P (e € P) is said to be a two-sided zero (identity) element
of [P,.], if it is both a right and a left zero (identity) element of [P,.].

We note that neither a zero element nor an identity element of [P,.] (one-
sided or two-sided) need be idempotents. Further, in a partial groupoid
there can exist many left, right and even two-sided zero and identity elements.

Definition 1,5. Let [P,.] be a partial groupoid. A right zero (identity) element
z (e) of [P,.] is said to be a universal right zero (identity) element of [P,.], if
pz € P (pe € P) for every p € P.

A universal left zero (identity) element z () of [P,.]is a left zero (identity)
element z (e) of [P,.] with the property zp € P (ep € P) for every p € P.

If z (e) 1s both a universal right and a universal left zero (identity) element
of [P,.], it will be called a universal two-sided zero (identity) element of [P,.].

Evidently, if there exists in [P,.] a universal two-sided zero (identity)
element, then it is unique and no other right or left zero (identity) élements.
can exist. :

Further, if there exist in [P,.] a left and a right zero (identity) element,
at least one of them being universal, then they must coincide.

Definition 1,6. Let [A,.], [B1,.], [B2,.] be partial subgroupoids of a partial
groupoid [P,.] with the property BiA < A and ABs < A. Then [4,.] will be
called a (B, Bs)-ideal of [P,.].

In accordance with [3] let us denote I(B;, B:) = {4 < P:BjA < P,
ABs; = P} and I = {I(B1, Bs): By < P, B, = P}. Then [4,.], 4euU I will
be called a relative ideal of [P,.].

Notation. In the following 4 € I(B;, B2) means that [4,.] is a (B1, B2)-
ideal of a partial groupoid [P,.].

We underline that in this paper all definitions and statements concerning:
a pair of sets By, B include the case By = 0 or By = 0.

Our definition implies:

1) For every partial subgroupoid [4,.] of [P,.] we have 4 € I(0, 9).

2) @ e I(B1, Be) if and only if B; = B = 0.

Analogously as in the theory of relative ideals of semigroups the following: _
lemma holds:
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Lemma 1,2. Let [P,.] be a partial groupoid and B, Bs1, Bz, Baa subsets
Of P with Bii N Bys = By, Byy N\ Beg = By. Let A; EI(BH, le) and As €
€ I(Blg, B22). Then

1) AU Az e (B, Bs).
2) If Air N As = O, then A1 N A GI(B]_, Bz)
In the following [P,.] is a partial groupoid and B; < P, By < P.

Definition 1,7. Let (Bia)Bs = Bi(aB3) = BiaBz, for a€ P. Denote the set
aVU BiaVaBy U BiaBs by g,(a)s,. Then the partial subgroupoid [p,(@)s,,.]
of [P,.] will be called a (By, Bs)-partial subgroupoid of [P,.] generated by the
element a.

Remark. The foregoing definition is, evidently, a formal generalization
of the notion of a principal (Bi, Bs)-ideal of a semigroup as defined in [3]
in the case when [B;,.], [Bz,.] are subsemigroups of a semigroup.

Definition 1,8. Suppose that under the suppositions of the preceding Definition
B,(@)B, = B,(b)B, for some a € P, be P. Then we shall say that the elements
a and b are g, S p,-equivalent and write (a, b) € p, 5, .

Evidently we have:

Lemma 1,3. The relation g,.#B, 18 symmetric and transitive on P, thus it is
a partial equivalence on the carrier of a partial groupoid with the domain
. O(8,7B,) = {p € P : (B1p)B: = Bi(pBs)}.

Remark. Evidently it can happen that g, 5, = 0.

Notation. In the following p,.# means g, £, for B; = (); analogously
£, means p,.fp, for B; = 0. '

The relations g,.#, #B,, B,F B, are generalizations of Green’s relations.
They are also generalizations of the notions introduced in [3]. We shall call
them partial Green’s relations (with respect to By, Bs).

We note that in contradistinction to the case when [P,.] is a semigroup
B# < B, FB,, FB, < B, Fp, for By £ 0, By &+ 0 need not hold if [P,.]
is a partial groupoid which is not a semigroup.

On the other hand we can introduce for every pair of partial subgroupoids
[B1,.], [B2,.] of [P,.] the following two partial equivalences on P.

Definition 1,9. Let a U Bia U aBs U (BlCl,)Bg = buU BbUbBs U (Blb)Bg,
for ae P, beP. Then (a,b)e1S.

Let a U Bia U aBs U Bi(aBz) = b U Bib U bBy U B1(bBy), for ac P, b e P.
Then (a, b) € Fs.

Corollary 1. 1.# and Fs are partial equivalences on P with the domains
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01f) = {peP:pB, < P, (Bip)Bo< P}, O(F) = {peP:Bp <P,
31(1032) < P}.

Corollary 2. From Lemma 1, 3and Definition 1,9 it follows: O(z,55,) < 00F),
O(BlvﬁB.) [ O(fz) and on O(Bljgﬂ) we have 1F = SF9 = B, IB,. Thus
BB, < 1F N S, :
+~Tt may be shown on examples that 1. N #2 + @ implies in general 5,5, &
S 1£ N Sy,

i, Remark. In addition to the foregoing three partial equivalences on the
carrier of a partial groupoid we can consider for every pair of partial sub-
groupoids [Bi1,.], [B2,.] of [P,.] other three partlal equivalences on P, 8L By s
1,2” P2, defined as follows:

1) (a, b) € B, ¥s,, if and only if BiaB,; = B1bB; with the domain 0(8,%5.) =.

= {p eP: (Blp)Bz = B]_(])Bz)}, i.e. O(Blsz) = 0(31332).

2) (a, b) €1Z if and only if (Bya)Bs = (B1b)B; with the domain 0(.%) =
={peP: (Bp)Bs < P}, i.e. 0:1F) < 0(:.F).

3) (a, b) €25 if and only if B(aB;) = B1(bB:), with the domain O(Z2) =
= {p € P: Bi(pB;) = P}, i.e. O(F2) < O(ZL>). :

Analogously as in the case of the partial equivalences given by Definition 1,9,
we have 5, %5, © 1.€ NZ; and in general the equality need not hold.

‘Definition 1,10. A partial equivalence o on P 1is said to be a partial right
congruence on [P,.] if for each p € P, (a,b) € p itmplies either that (ap, bp) €0
or that meither ap nor bp belong to the domain of o.

-Analogously we define the partial left congruence on [P,.].

Definition 1,11. Let 4 eI(Bl, Bs) and there is mo A’ < P, A’ C A such
that A' € I(By, Bs). Then [A,.] is called a minimal (B, Bg)-ideal of [P J

Notation. In accordance with [3] A € Inn(B1, B2) will mean that [4,.]
is a minimal (B, By)-ideal of [P,.].

_ Corollary. Let Ay €lIn(Bi, Bs), Az € In(By, Bs). Then either. A1 = Az or
A1 N Ay = Q.

Definition 1,12. Let In(Bi, Bs) = {4;:j€J}. The partial subgroupoid
[U 4;,.] of [P,.] will be called the (B1, Bs)-socle of [P,.]. |J.A4s will be denoted

jeJ
by 6(B1, Bz)
Evidently, it may happen that S(Bi1, Bs) = 0 and [P,.] is a finite partlal
groupmd

Definition 1,13. Denote ae = a2 of and only if aa € P. Let further a’a<€ P,
aa? € P and a?a = aa?. In this case and only in this case we shall say that there
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exists the 3rd power of a€ P. In general, suppose that recurrently aam-1 —
=a2am2=...=a" g, m=2,3,...n.

Again in this case and only in this case the element t = aa®~1 = a2qn—2 —
= ... = a*la is said to be the n-th power of a and will be denoted by a™.

Corollary. If a exists for all n = 2, then [{a, a2, a3, ...},.] is a subsemigroup
of [P,.). If its order is finite, then analogously as in the case of a semigroup there
exists a cyclic subgroup in [P,.].

We note that in contradistinction to the case of a finite semigroup a finite
partial groupoid need not contain idempotents.

Definition 1,14. Let [P,.] be a partial groupoid. Suppose that there exists
an element a € P such that xa € P for every x € P. Then the transformation gq
of P defined by xo, = za for all x € P will be called the inner right translation
of [P,.] corresponding to the element a € P.

Analogously we define the notion of the inner left translation 1, of [P,.],
corresponding to the element a € P.

Of course, the set of inner right or inner left translations of [P,.] may be
empty.

Definition 1,15. By an inner right translation of [P,.], corresponding to the
element a € P and relative to the set P’ = P, P’ + (), we mean a mapping of
of P’ into P given by pol = pa for every p € P'. (This means: P’ contains
only such elements p € P for which pa € P.)

Remark. Evidently, to an element a € P there exists a P’ + @ such that
o is defined if and only if there exists at least one element p € P with pa € P.

Analogously we define an inner left translation of [P,.], corresponding
to the element a € P and relative to the set P’ < P, P’ + (.

Definition 1,16. A transformation o of P will be called a right translation
of [P,.] if for xe P, ye P, xy€ P and x(yo) € P we have (vy)o = x(yo). By
a left translation of [P,.] we shall mean such a transformation A of P that with
zeP, yeP, zye P and (xA)y € P we have (xy)A = (xA)y.

Remark. There exists at least one right and one left translation for every
[P,.], namely, the translation given by the identity mapping of P.

Further, we note that, in general, an inner right (left) translation of [P,.]
is not a right (left) translation of [P,.).

Definition 1,17. Let [P,.], [T,4] be partial groupoids and ¢ be a mapping
of P into T with the property that a . b € P implies (ap) 4 (bp) €T and (a . b)p =
= (ag)y (bp). Then @ will be called a homomorphism of [P,.] into [T,4]. If ¢ is
such a one-to-one homomorphism of [P,.] onto [T,,] that a .be P if and only
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if (a@) «(bp) €T, then ¢ is called an isomorphism of [P,.] onto [T, ]; the partial
groupoids [P,.] and [T,,] are then said to be isomorphic.

From Definition 1,17 there follows:

1) If K[P,.] = 0, then by every (one-to-one) mapping of the set P (onto)
into T' a (an isomorphism) homomorphism of [P,.] (onto) into an arbitrary
[T,4] is given.

2) If K[T,,] =0 and K[P,.] %+ 0, then no mapping of P into T' can give
a homomorphism of [P,.] into [T,,].

8) If K[P,]=P X P, K[T,,]=T X T, then Definition 1,17 coincides
with the definition of a homomorphism of a groupoid into a groupoid.

In the case 1) ¢ will be called a trivial homomorphism (isomorphism).

Example. Let [G,.] be a group, [H,.] a subgroup of [@,.]. It is easy to
prove that K[Ha,.] = 0 for every a ¢ H. Therefore

1) The one-to-one mapping ¢ of Ha onto Hb, a¢ H, b¢ H defined by
(ha)p = hb is a trivial isomorphism of [Ha,.] onto [Hb,.].

2) By the one-to-one mapping ¢ of the set Ha onto H, a ¢ H, defined by
(ha)p = h a trivial homomorphism is given, but not a trivial isomorphism
of [Ha,.] onto [H,.].

It is easy to prove

Lemma 1,4. 1) Let ¢ be a homomorphism of a partial groupoid [P,.] nto
a partial groupoid [T,.]. Then

a) [Pp,s] ts a partial subgroupoid of [T,,] and for tis domain we have
K[Pg,.] > {(c, d)} with (cp71). (dp™1) e P.

b) If [R.,4] ts a stable partial subgroupoid of [Pg,s], then [Rp1,.] is a stable
partial subgroupoid of [P,.].

c) If [A,.] 18 a (Bi, Bg)-ideal of [P,.], then [A@p,s] 18 a (Bip, Bep)-ideal of
[T,s] (but also of [Pe,y]).

2) Let [P,.] be a groupoid, [T,s] a partial groupoid.

If @ is a homomorphism of [P,.] into [T,.], then [Pg,s] is a subgroupoid of
[T

As we can see from the following examples, the reverse of b) and c) need
not hold.

Let us define on the set P = {a, b} the following partial groupoids:

[P,.] with the multiplication table
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[P,+] with the multiplication table
[a b
ala —

b|- b

By the identity mapping of P a homomorphism of [P,.] onto [P,,] as well
as of [P,.] onto [P,.] are given. We see that

1) [{a},.] is a stable partial subgroupoid of [P,.] but its homomorphic image
is not a stable partial subgroupoid of [P,,].

2) [{a},+]is a relative ideal of [P,4], but [{a},.] is not a relative ideal of [,.].

I

Definition 2,1. A partial groupoid [P,.] will be called an associative partial
groupoid, if for a€ P, be P, c€ P, (ab)c = a(bc) if and only if (ab)c € P and
a(bc) € P.

Our definition implies: If 4, B, C are subsets of the carrier of an associative
partial groupoid [P,.] with (4B)C < P and A(BC) < P, then (AB)C = A(BC).
In this case and only in this case we shall write ABC without brackets; in
particular, if 4 = {a}, B = {b}, C = {c}, we shall write abc.

Example 2,1. Let [S,.] be a semigroup, B < S. Then every partial groupoid
[B,y] with K[B,,] < K[B,.] and a,b=a.b for a€B, be B and (a,b) <
< KI[B,,] is an associative partial groupoid.

We evidently have:

Lemma 2,1. a) A partial subgroupoid of an associative partial groupoid
18 an assoctative partial groupoid.

b) An associative partial groupoid [P,.] is @ semigroup if and only if K[P,.] =
=P x P.

Notation. In what follows, [P,.]4 will mean an associative partial groupoid.

In this section we give some results which follow from Section 1 taking
the associativity into account.

Theorem 2,1. Let ,IB,, 1.7, F2 be partial equivalences on the carrier P
of [P,.]a given by Definitions 1,8 and 1,9. Then:

1) For the domain O(g,FB,) of the partial equivalence g, Ip, we have
O(B,fB,) = {p eP: (BLp)Bz c P, B]_(sz) < P}

2) BlfBa = 1f N Ss.
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Proof. The first statement is evident.

2) With regard to Corollary 2 following from Definition 1,9, it is sufficient
to prove 14 N Sy < g, Fp,. Suppose that (a,d) €1 N F, i.e. a U Bia V
U aBy U (Bla)Bz =bUBbUbLB U (Blb)Bg and a U Bia U aB; U Bl(aBz) =
=bU B1bUbB; U By(bBz). Now in [P,.]Ja we have (Bia)B: = Bj(aB2),
(Blb)Bz = Bl(sz) and so B\l(a))gz = Bl(b)Bg-

Remark. For partial equivalences 1., %2, 5, ¥p, introduced in the
Remark following Definition 1,9 we have in the case [P,.]4 analogously
31333 =1ZNPs.

We show on the following example that in the case of [P,.]4 from abe€ P,
bc € P there does not follow (ab)c € P, a(bc) € P.

Example 2,2. Let [P,.]4 be defined on the set P = {a, b, ¢} by the following
multiplication table (the sign (—) means that the corresponding pair of
elements of P is not contained in K[P,.]4):

la b
ala b
b|b a

cic —

Here ca € P, abe P, but (ca)b ¢ P, c(ab) ¢ P. Further we have c¢(bb) € P,
but (cb) ¢ P and so (cb)b ¢ P. )

This example shows that an associative partial groupoid [P,.]4 cannot be
in general embedded in a semigroup [S,.] by adjoining a zero 0 and defining:
If (a,b)e K[P,]4, then @, b=a.b, if (a,b)¢ K[P,]u, then a4, b=0.
(Compare with Conrad’s Lemma 3,7 in [1].)

S Q0

Definition 2,2. Suppose that on the carrier of [P,.]Ja another [P,.]a can be
defined in such a way that K[P,]a S K[P,y]a and for (a,b) € K[P,.]Js a4, b=
a .b. In this case we shall say that there exists an associative continuation of
[P,.]a. In the reverse case [P,.]4 is said to be a closed associative partial groupoid.

Example 2,2 is an example of a closed associative partial groupoid. For
defining ¢, b = a, the associativity law for the triple (b, ¢, b) does not hold.
Defining ¢4 b = b, the triple (c, b, b) is not associative. Finally defining
¢4 b = ¢, the triple (b, c, b) is not associative. On the other hand there exist
clearly [P,.]4 which have many associative continuations, closed or not closed.

At the end of Section III we shall construct all partial groupoids defined
on the two-point set P = {a, b}. It will turn out that no proper associative
partial groupoid defined on this set is closed. The closed associative partial
groupoids defined on P = {a, b} coincide with semigroups. Example 2,2 shows
that on a three-point set at least one closed. associative partial groupoid
which is not a semigroup can be defined. ’
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In the following we shall give some results concerning minimal relative
ideals of associative partial groupoids. The following theorems generalize
some theorems from the theory of minimal relative ideals of semigroups
(compare with [3]). We note that not all statements from the theory of semi-
groups can be generalized. There does not, e. g. exist a generalization of the
following statemant (See [3], Corollary of Theorem 2,2): If [Bi,.], [B2,.]
are subsemigroups of a semigroup [S,.], then for every minimal (B, Bz)-ideal
[M,.] of [S,.] we have M = ByaB; for every a € M. To see it take Example 2,2
and choose B, = {b}, B2 = 0. Then [M,.], M = {a, b} is a minimal (B1, By)-
ideal of [P,.]4 but neither Bija = M nor Bib = M hold.

It can be shown on examples that the assertion of the Theorem just men-
tioned need not hold even in the case when [P,.], is a semigroup and [By,.],
[Bs,.] are partial subgroupoids of [P,.]4,” which are not its subsemigroups.
On the other hand, from the following theorem it follows that the statement
just mentioned can be generalized in the case when [P,.] is an associative
partial groupoid and [B1,.], [Bz,.] are subsemigroups of [P,.].

We use the notation introduced after Definitions 1,6 and 1,11.

Theorem 2,2. Let [By,.], [Bs,.] be partial subgroupoids of [P,.]a, Ly € I(Bi, 9),

L1 (= Bl, RgeI(ﬂ, Bz), Ry < Bs.

a) If M € In(Bi1, Bs), then M = LyaR; for every a € M.

b) If [P,.]a is a semigroup, M < P, then M € Ix(B1, B2) if and only if
M = LiaR; for every a € M.

Proof. a) We shall first show that under the suppositions of our Theorem
LyaRy < P,i.e. (L1a)Rs < P and Ly(aR;) < P for every a € M. Since Ly < By,
aeM, we have Lija =« M < P and also (Iha)R; < P, because (Lia)Ry <
< (L1a)Bs = MBy; =« M < P. Analogously we obtain that L;(aR2) < P. This
implies in [P,.]u (L1a)Rs = Li(aR2). (Recall our convention in using the
symbol LjaRy). With respect to the foregoing we have LiaR: < M, hence
it is sufficient to prove that LiaRs € I(B;, Bs). Since Li(aRz) < M and Bi1M <
< M < P, wehave Bi(LiaRz) = Bi[Li(aR2)] < P, moreover, (B1L1)(aRz) < P,
since B1L1 [t Ll, Ll(aRz) < P. Hence B]_(LlaRz) = (BlLl)(aRz) < Ll(aRz) =
= L1aR;. Analogously we get (LjaR2)Bs = [(L1a)R2]B: = (L1a)(ReBs) <
< (L1a)By = LijaR,. Since M € In(B,, Bz), we have M = LaR; for every
acM.

b) With respect to a) it is sufficient to prove that M e I,(B1, By) if M =
= LR, for every a€ M. Let C = }, C e I(B,, B;). Then for every ceC
we have LicR; = M < C, since Ly < Bi, Ry < Bs, thus M € Iy(By, Bs).

Corollary. 1) If [By,.], [Bs,.] are subsemigroups of [P,.14 and [M ;-] 18 @ minimal
(B1, B2)-ideal Of [P,.]a, then M = BiaBs Jor every a € M.
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b) If [P,.]a is a semigroup, [B1,.), [Bs,.] are its partial subgroupoids and
there exist Li€ I(B1,9), In < By and R2€I(@, By), Ry < Ba, then for any
L€ln(B1,9), Reln@, B:) and c€ P we have LcR € Iy(By, Be).

Proof. a) This statement is evident.

b) By a) of the foregoing Theorem we have L = Ll for every l e L and
R = rR, for every r € B. Hence M = LcR = LyjlcrR; for every a = ler € M,
thus LcR € In(By, Bz) (by b) of the foregoing Theorem).

Remark. In order to obtain an analogous statement as in Corollary b) in
the case of a proper associative partial groupoid, it will be necessary to add
some supplementary suppositions. For, 1) in [P,.]4 the set LcR need not be
defined for any ¢ € P (this is the case if one or both of the sets (Lc)R and L(cR)
are not defined), 2) even if both (Lc)R and L(cR) are defined for some c € P,
i.e. (Lc)R = L(cR), it may happen that LcR ¢ I(Bi1, Bs).

Notation. Unless otherwise stated, [Bi,.], [Bs,.] will mean partial sub-
groupoids of [P,.]Ja. We recall that the cases By = @ or By = 0 are included
in our considerations.

Theorem 2,3. a) Let L e In(B1,0). If for some ce P Bi(Lc) < P, then

Lece Im,(B].; ﬂ)-
b) Let B € In(9, By). If for some ¢c € P we have (cR)Bz < P, then cR € I4(0, Bs).

Proof. a) If By =0, then for every M € I;y(B1,9) M is a one-point set
and conversely. The supposition Bi(Lc) < P means in this case {ac} < P,
i. e. ac € P. This implies {ac} € In(B1,9).

Let By & 0. We then have By(Lc) = (BiL)c, because all products necessary
for this equality are defined. Hence b(lc) = (bl)c for every be By, le L.
Further we have By(Lc) = (BiL)c < Lc, hence Lc € I(By, §). Let M € I(B, 9),
M < Lc. Then M =Be, B={teL:tce M}. Let le B< L. Since M€
€ I(B1,0), we have b(lc) e bM < M for every b e B;,. We further have bl e
€bB c bL <= L, (bl)ce M, so that ble B. Hence BeI(B;,0), B< L and
thus M = Le.

The dual case b) can be treated analogously.

Remark. If [P,.]4 is a semigroup, Theorem 2,3 coincides with Lemma 2,1
[3].

If [P,]s is a proper associative partial groupoid, then the condition
Bi(Lc) = P is an essential supposition in a) and the condition (cR)B: < P
is an essential supposition in b) of the foregoing Theorem. The former con-
dition includes the inclusion L¢ < P, the latter condition includes the in-
clusion cR < P. However, it is not sufficient to suppose only Lc < P in-
stead of Bj(Lc) < P, ¢cR < P instead of (cR)B: < P. We want to show it
(for the former case) on the following example:
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Example 2,3. Let [P,.]4 be defined on the set P = {a, b, ¢} by the followmg
multiplication table:

S o
QIR
o o o o
o o

Then {b} € In({a}, 0), {bc} = {c} = P, but {c} ¢ In({a}, @) since {c}¢
¢ I({a}, 9). !

Corollary. Suppose that the suppositions of Theorem 2,3 are satisfied. :
a) If Bi[(Lc)R] <= P, then (Le)R = J Ly, Ly € In(B1, 9) and thus by Lemma

jed
2,1 we have (Lc)R € I(B1, 9).
b) If [L(cR)]B: < P, then L(cR) = | By, Ry € In(®, B:) and by Lemma 1 2

jeJ’
we have L(cR) e I1(9, Bz).
We note that, in general, (Lc)R ¢ I(@, B:) and L(cR) ¢ I(By, 9).

Lemma 2,2a. Let Ly € 1(B1,0), In € By, Rye I(0, Bg), Ry < Bs. If for o set
M < P we have .

1) M = (Ina)R, for every a € M,
2) Bi(Iha) < P for every ae M,
3) a) B]_M < P, b) MBz < P,

then [M,.] is @ minimal (B, Bs)-ideal of [P,.]a.

Proof. If follows from 2) and 3a) (by the foregoing Corollary) that M e
€ I(B1,0). From 3b) it follows that M e I(), Bz), since the supposition
[(Lla)Rz]Bz c P 1mp11es [(L]ﬂ)Rz]Bg (Lla)(Rsz) (L]_(Z)Rz. Hence ‘ME
€ I(B1, Bz). Let M’ = M, M' e I(B1, Bs). By 1) for every a € M’ we have
M = (Lia)Ry = M’', hence M € I;5(Bi, Bs).

Theorem 2,4a. Suppose that there exists in [P,.]Ja a (By, 9)-ideal [Ly,.] with
Ly © By and a (@, Bs)-ideal [Rs,.] with Ry < Bs.

If [L,.] is any minimal (B, 0)-ideal and [R,.] any minimal (9, Be)-ideal
and moreover for some c € P

1) Bi(Lc) < P,

2) Bi[(Lc)R] < P,

3) [(Lc)R]B: < P,
then [(Lc)R,.] is a minimal (By, Bs)-ideal of [P.]4.

Proof.*By Theorem 2,2 a) we have L = Iil for every l e L, R = rR, for
every r € R. By the assumption lc € P and Li(lc) € P, since Ly < Bi. Hence
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Ly(lc) = (Ixl)c. By the supposition (lc)r € P and [(Lc)r]R2 < P. This implies:
[(Le)r]Re = (Lc)(rRg). Thus we have (Lc)R = (Lc)(rRs) = [(Leyr]Re =
= {[(Zahel}Re = {[La(l0)}R: = {Lil(le)r}Re (since by 2) [La(le)lr =
= Ly[(lc)r]).

Denote (Lc)R = M. Then we have M = (Lia)R; for every ae M (since
every element @ € M is of the form a = (lc)r with some le L and r € R).:
By the suppositions 2) and 3) we have BiM < P, MB; < P and further
Bi(Lia) = Bi[(Lc)r] < P (by the supposition 2)) for every a € M. It follows.
from Lemma 2,2a that M = (Lc¢)R € In(B1, Be).

Analogously the dual of Lemma 2,2a and of Theorem 2,2a can be proved:

Lemma 2,2b. Let L1 EI(Bl, 0), L1 c Bl, Rz EI(@, Bz), Rz < Bz. If fOT'
some set M < P we have

1) M = Ly(aRs) for every a € M,
2) (aR2)Bs = P for every a € M, )
3) a) Bllkl < P, b) MB; < P,

then [M,.] ts @ minimal (B1, Bs)-ideal of [P,.]a.
Theorem 2,4b. Replace in suppositions of Theorem 2,4a the conditions 1), 2), 3),

by 1') (¢R)Bs < P,
2') [L(cR)]B: < P,
3') By[L(cR)] < P.

Then [L(cR),.] is a mintmal (B1, Bs)-ideal of [P,.]a.

Corollary. Let [S,.] be a semigroup, [By,.], [Bs,.] partial subgroupoids of [S,.].
Suppose that there exist in [8S,.] a minimal (B, 0)-tdeal [Lo,.] with Ly < By
and a minimal (9, Bz)-tdeal [Ro,.] with By < Bs.

Then 1) for every minimal (Bi, Bs)-ideal [4,.] of [S,.] we have A = LoaR,
with some a € S,

2) for every a €S [LoaRy,.] is a minimal (B1, Bz)-ideal of [S,.]. (Compare

with Theorem 2,4 of [3] differing from our Corollary only by the supposition
that [Bi,.], [Be,.] are subsemigroups of [S,.].)
* Remark. As we have shown the generalization of the mentioned Theorem
in the case of a proper associative partial groupoid does not have such a sym-
metric form. A straightforward analogy exists only for the first part of this
Theorem, since to obtain an analogous assertion of the second part of this
Theorem we are obliged to add further suppositions and none of them can be
omitted..

Under the suppositions of the foregoing Corollary the (By, Bz)-socle
S(B1, B2) of a semigroup [S,.] is not empty and we have S(Bil, Bs) = LoSRo.
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In the case of an associative partial groupoid [P,.]4, which is not a semigroup
such an assertion, in general, does not hold since LyPRy < P need not hold.
Our results imply in this case only the following statement: If at least one
minimal (B, By)-ideal of [P,.]u exists, then there exists a set P’ < P with
S(B1, Bs) = LoP'Ry (Lo and Ry have the same meaning as in the foregoing
Corollary). The description of the set P’ is rather complicated and we shall
not approach it here.

In the first section we have introduced the notion of the n-th power of an
element of a partial groupoid. In the case of an associative partial groupoid
[P,.]a we have:

Theorem 2,5. In [P,.]4 the n-th power of an element a € P exists if and only
if akam*eP for k=1,2,...m —1,m=2,3,...n.

Proof. 1) With regard to Definition 1,13 it is sufficient to prove the equality
of all akam—*, For n = 2 it is trivial. If aa? € P, a%a € P, then we have aa? = a2a,
thus our statement is true for n = 3. Let a® be defined for 2 < h < n, i.e.
agh™l = a?ah2 = ... = a?la. We shall prove that aa” 1 =aq2%" 2= ... =
= an1q. Let a*a" %, a¥a™ % be two arbitrary elements of the considered set.
Without loss of generality suppose that k; <k, i.e. 1 < i<k, n — Iy <
<n—ki <n—1. It follows from the induction supposition that a"™* =
= gl bgnk  oft — ghgb %, Hence we have daFa"* = g¥(a¥ g P,
aba"® = (a*a¥*)a"*®, However, in [P,.]a this implies the equality of the
considered elements.

2) The reverse is trivial.

For translations of an associative partial groupoid introduced by Definitions
1,14—1,16 the following holds:

Theorem 2,6. 1) If fora € P, b € P, ab € P the inner right translations 94, 0», Qab
of [P,.]4 exist, then gap = ga 5 0v. Dually, if the inner left translations Aa, Ay, Aav
of [P,.]a exist, then Agp = Ap 4 Aa. Hereby () means the symbol of the operation
in the semigroup of transformations on the set P.

2) Every inner right (left) translation of [P,.]4 is a right (left) translation
of [P,.]a-

Proof. 1) By assumption we have for every x € P z(ab) € P, x(ab) = xgu,
further xa = xg,, 2b = xpp. Hence (za)b e P and in [P,.]s, thus (za)b =
= z(ab). Analogously for left translations.

2) This statement is evident.

Remark. While the set of right and left translations of every [P,.]4 is not
empty, the set of inner right (left) translations of [P,.]4 may be empty.
Moreover, the set of right (left) translations of [P,.]4 may contain right (left)
translations different from those given by the identity mapping of the set P.
This is the case, for example, if 4 € I(, Bs), [Bs,.] being a partial subgroupoid
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of [P,.]a. The transformation g? of 4 given by ag® = ab € A for some b € By
is a right translation of the associative partial groupoid [4,.]. Evidently,
inner right translations of a (0, Bs)-ideal of [P,.]4 need not exist even in the
case if [P,.]a is a semigroup, if By + P. (If [P,.]4 is a semigroup, By = P,
then the right translations g, for b € 4, coincide with the inner right transla-
tions of (9, Bs)-ideal [4,.] of [P,.]a.

Let [P,.]a be a semigroup, Bz # P, A € I(, Bs) and there is no B < P,
B, < B with A € I(9, B). Then [4,.]is called a saturated (0, Bs)-ideal of [P,.]4
(compare with [3]) and [B,,.] is a subsemigroup of [P,.]4 maximal with respect
to the property that the inner right translations of [P,.]4 given by b€ B;
induce right translations of [4,.]. Inner right translations of [4,.] are then
induced by inner right translations g, of [P,.]4 for which @ € 4 N B,. Hence
the set of inner right translations of a saturated (0,Bz)-ideal [4,.] of a semigroup
is not empty if and only if 4 N By = 0.

If [P,.]4 is an associative partial groupoid, then, (using Definition 1,15)
we have analogously: Let [Bs,.] be a partial subgroupoid of [P,.]4, 4 € I(@, Bs),
b € By, and suppose that there exists A’ = P, A & A’ such that ¢’ is defined.
Then gi induces a right translation of [4,.]. Evidently, o exists for every
b € By and coincides with the mapping ¢ mentioned in the foregoing Remark.

Analogous considerations can be made for left translations.

We end this section with an example which shows that a homomorphic
image of an associative partial groupoid need again not be an associative
partial groupoid, even in the case when the mapping of the carriers is one-to-
one.

Example 2,3. By the identity mapping of the set P = {a, b} onto itself
a homomorphism of the associative partial groupoid [P,.]4 onto the partial
'groupoid [P,s] is given, if [P,.]4 is defined by the multiplication table

|ab

and [P,,] by the multiplication table

\a,b
b a

a
blb b

The partial groupoid [P,,] is not associative, (aa)a + a(aa).
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Definition 3,1. An associative partial groupoid [P,.]a will be called a partial
semigroup, if 1) (ab)c € P, bc € P implies a(bc) e P and 2) a(bc) € P, abe P
tmplies (ab)c € P for ac P, be P, ce P.

Example 3,1. Let [S,.] be a semigroup, B = §. Then the partial sub-
groupoid [B,.] of [S,.] is a partial semigroup. Namely, if (ab)c € B, bc € B,
then we necessarily have a(bc) € B, since a(bc) € S and a(bc) = (ab)c. Analo-
gously we get that [B,.] satisfies the condition 2) of the foregoing Definition.

We recall Example 2,1 and note that an associative partial groupoid [B,,}
with the domain K[B,,] ¢ K[B,.] need not be a partial semigroup.

Notation. In what follows [P,.]4c means a partial semigroup.

It follows from Definition 3,1:

1) In [P,.]ac (ab)c € P, bc € P holds if and only if a(bc) € P, ab € P holds.

2) If [P’,.] is a partial subgroupoid of [P,.]Jsc, then [P’,.] is a partial
semigroup. We shall call it a partial subsemigroup of [P,.]Jac. In particular,
if [P’,.] is a semigroup, we shall say that [P’,.] is a subsemigroup of [P,.]ac-

Clearly, [S,.] is a subsemigroup of [P,.]4¢ if and only if S is such a subset
of P that for every se€ 8, t€ S we have steS.

Theorem 3,1. Let the carrier of [P,.Jac contain an element xp with pxy € P

or 2op € P for every p € P. Then there exists a non empty subsemigroup of [P,.]ac -

Proof. Suppose the former case and denote S; = {x € P : px € P for every
p € P}. Then [S;,.] is a subsemigroup of [P,.]ac. For, if s e S;, t € S1, then
pse€ P and pte P. Thus we have st e P and (ps)t € P for every p e P. This
implies in [P,.]Jac p(st) € P for every p € P, hence st € S;.

Analogously in the second case Sy = {x € P:ap e P for every pe P} is
a non-empty semigroup.

The statement of Theorem 3,1 may be visualized as follows: If there exists
a non-empty set S; < P (Sp = P) such that the corresponding columns
(rows) in the multiplication table do not contain the sign (—), then [S,.]
([Sg,.]) is a subsemigroup of [P,.]ac.

It is possible that S; = 0 and Sz = . However, S1 = 0 and S; = # do not
imply that there are no subsemigroups of [P,.]4ac. This is to be seen on the
Example 2,3. On the other hand, there may be S; #+ @, Sa + 0, S1 + Ss.
This is the case of Example 2,2, where S; = {a, ¢}, 82 = {a, b}. Clearly,
if there exists a universal zero (at least one-sided) element in [P,.]4c, then
at least one of the sets S; and S: is non-empty.

We emphasize that the assertion of Theorem 3,1 need not hold for an
associative partial groupoid which is not a partial semigroup. This is shown
on the following

\
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Example 3,2. Let [P,.]a be defined on the set P = {4, b} by the multi-
plication table ,

a
b

S}
>

S
S

In this case Sy = S2 = {a}, but [{a},.] is not a subsemigroup of [P,.]s. Notice
that [P,.]4 is not a partial semigroup (his is due the triple (a, a, b)).

" Further one can show on examples that a partial semigroup is not necessarlly
a closed associative partial groupoid.

We shall next deal with relative ideals in partial semigroups.

.Lemma 3,1. Let [P,.]ac be a partial semigroup, By < P, Bsy < P, Bys < ‘P,
By = P, Ayel(Bu, Ba1), Azel(Bi2, B2). If Ai1ds = P, then A;As €
eI(Bll,.Bzz). . :

The proof is evident.

Notation. In the following [Bi,.], [Bz,.] mean partial subsemigroups
of a partial semigroup [P,.]4¢ (including the case B; = @) or By = 0).

Lemma 3,2. Let [P,.]Jac be a partial semigroup, L € I(B1, 0), R € I(0, By).

a) If (Le)R < P for some ¢ € P, then 1) By(Lc) < P,
' 2) Bi[(Lc)R] < P,
3) [(Le)R]B: < P.

b) If L(cR) < P for some ce P, then 1') (¢cR)B: < P,
2') Bi[L(cR)] = P,
3') [L(cR)]B: < P.

Proof. a)

1) [(Lc)R] < P includes Le < P. It follows that Bi(Lc) < P, since (BiL)ec <
< Lec < P.

2) Since (Lc)R < P and Bi(Lc) = (BiL)c < Le¢, we have [Bi(Lc¢)]R < P.
In [P,.]ac this imlies Bi[(Lc)R] < P. o

.3) From (Lc)R < P it follows that (Lc)(RB2) < P, since (Lc)(RB2) < (Lc)R.
Thus [(Lc)R]Bs = (Lc)(RBz) and therefore [(Lc)R]B: < P.

b) This case can be treated analogously.

Theorem 3,2. 1) If Le I,(B1,90) and Lc < P for ‘some c€ P, then Lce
€ In(B1, 9).

2) If R eIn(D, Bs) and cR < P for some c € P, then c¢R € In(D, Bz).

The proof follows directly from Theorem 2,3 and from the foregoing Lemma.
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Corollary. If under suppositions of Theorem 3,2
1) (Lc)R < P, then (Lc)R € I(By, By), (Le)R = U Ly, Ly In(By, )
2) L(cR) < P, then L(cR)€ I(B1, Bs), L(cR) = U R;, R;e In(®, By).

jeJ’

Lemma 3,3. Let Ly € I(B1,9), Iy < B1, Ry €I, Bs), Ry < Ba. Then [M,.],
M < P is a minimal (By, Bp)-ideal of [P,)ac if and only if M = (Lia)R:
for every a e M or M = Ly(aRs) for every a € M.

Proof. 1) If M € I,4(B:, B:), then by Theorem 2,2a we have M — LiaR:
for every a € M. It means that M = (Lia)R; and simultaneously M = L;(aR2)
for every a € M.

2) Suppose the former case, i. e. M = (Lja)R; for every a € M. This means
that (Lia)Rs = P for every a € M. By Lemma 3,2a) Bi(Lia) < P, BiM < P,
MB; < P, hence by Lemma 2,2a we have M € In(By, Bs). The second case
can be treated analogously.

From Lemma 3,3 there follows

>

Theorem 3,3. Suppose that in [P,.]Jac there exists a (By, 9)-ideal [Ly,.] with
Ly < By and a (9, Be)-ideal [Rs,.] with Ry < Bs. Then [M,.] is a minimal
(By, Bz)-ideal of [P,.]ac if and only if M = LiaR; for every a € M. (Compare
with Theorem 2,2b of the present paper.)

Remark. It follows from Lemma 3,3 that in order to have M = LjaR»
for every a € M it is sufficient to suppose only M = (L1a)R; for every a € M
or M = Ly(aR;) for every ac M.

Theorem 3,4. Suppose that in [P,.]ac there exists a (By, 9)-ideal [Ly,.] with
L1 < B]_ and a (ﬂ, Bg)-ideal [.Rz,.] with Rz < Bs.

If [L,.] is any minimal (By, 9)-ideal, [R,.] any minimal (9, Bs)-ideal of [P,.]ac
and for some ¢ € P we have

1) (Lc)R < P, then [(Lc)R,.] is a minimal (By, Bz)-ideal of [P,.]ac,

2) L(cR) < P, then [L(cR),.] is a minimal (B, Bs)-ideal of [P,.]ac

Proof. 1) The statement follows from Theorem 2,4a and Lemma 3,2a).

2) The statement follows from Theorem 2,4b and Lemma 3,2b).

Remark. Theorem 3,4 is an analogy of Theorem 2,4a and 2,4b. It means
that in the case of a partial semigroup the conditions 1), 2), 3) from Theorem
2,4a can be replaced by a simple and natural condition (Lc)R < P, the con-
ditions 1’, 2’, 3’ from Theorem 2,4b by the condition L(cR) < P.

Corollary 1. Suppose that in [P,.]ac there exists at least one mintmal (By, 9)-
ideal [Lo,.] with Lo < By and at least one minimal (9, Bs)-ideal [Ro,.] with
Ry < .Bz. Then

a) for every minimal (Bi, Bs)-ideal [M,.] of [P,.Jac we have M = LRy
for some c e P;
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b) for every c € P either LycRy & P or [LocRy,.] is a minimal (B1, Bz)-ideal
of [P,.)ac;

c) if for some ¢ € P we have LocRy & P and either (Loc)Ro < P (or Lo(cRo) < P),
then either [(Loc)Ro,.] — (or [Lo(cRo),-]1) — t8 a minimal (B, Bs)-ideal of [P,.]ac.

We note that in order to have in [P,.]ac LocRy < P, it is sufficient to suppose
(Loc)Ry = P and cRy = P or Ly(cRo) = P and Ly < P.

Corollary 2. Suppose that in [P,.]Jac there exists a minimal (By, 0)-ideal
[Lo,.] with Lo = By and a minimal (9, Bz)-ideal [Ry,.] with Ry < Ba. Suppose
further that [P,.]Jac contains at least one minimal (By, Bz)-ideal Then for the
(B1, Bg)-socle of [P,]Jac we have:

S(By, Bz) = LoP'Ry,

where P’ < P has the following property: LoP'Ro < P, but there does mot exist
a set P" < P, P’ < P” such that LoP"Ry < P.

Of course, there may exist a set § < P, P’ & § with either LoP’'Ry —
= (L()S )Ro or LoP '.Ro = Lo(SRo).

In the following we shall deal with the partial equivalences 5 #3 , 1.7, S5,
introduced by Definitions 1,8 and 1,9 on the carrier of a partial semigroup.

Theorem 3,5. In [P,.Jac we have p Fp =19 = Fs.

Proof. With respect to Corollary 2 according to Definition 1,9 it is sufficient
to prove that the domains of these three partial equivalences coincide. But:
this is true, since in [P,.Juc the equality (Bip)Bz = Bi(pB:) (which defines
the domain of 5 £ ) is equivalent with the pair of inclusions (Bip)B; < P,
pBz = P and simultaneously By(pB;) < P, Bip < P. These pairs of inclusions,
however, define the domains of 1.# and £,.

Remark. As already mentioned, we include the case By = @ or By = 0.
For By = B; = {) the relation p £ is the equality relation on P.

In the following we shall give some results concerning special cases of the
partial equivalence .#p on the carrier of a partial semigroup. We also
complete some results proved in [3] concerning the theory of semigroups.

Theorem 3,6. Let [Bi,.], [Bz,.] be partial subsemigroups of [P,.]ac.

1) If for some a € P we have Bia < P, i.e. a €0(p,F), then the partial
equivalence g # on P is a partial right congruence on [P,.]ac.

2) If for some a € P we have aBs < P, i.e. a €0(Fp,), then the partial
equivalence Jy on P is a partial left congruence on [P,.]ac.

Proof. Let (a,b)epf, i.e. aUBia=0b0U Bib and ape0(zS), i e.
Bi(ap) < P for some p e P. Since Bi(ap) < P, Bia < P, we have Bi(ap) =
= (Bya)p. This implies (b U Bib)p = ap U Bi(ap) = bp U (Bib)p, hence bp € P
and further (Bib)p = Bi(bp). Thus we get ap U Bi(ap) = bp U By(bp), i.e.
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(ap,bp)€pf. If (a,b)ep S and for some pe P we have ap¢O0(yJS),
then by the foregoing bp € O(3,.#) cannot hold.

2) The second statement can be proved analogously.

Remark. In the case of associative partial groupoids which are not partial
semigroups, the partial equivalences ,.#, 5 are not in general partial
right (left) congruences. We show on the following example that in [P,.]4,
(a,b) € Fp, and pacO(Fy), pe P does not imply (pa,pb)e Fp even in
the case if p € O(Sp,).

Example 3,2. Let [P,.]4 be defined on the set P = {b,c,d.e} by the
multiplication table: '

|bcde
Bbl- b - —
cld ¢ d -
dic d — -
elb b — e

If we take By = {b, ¢}, then O(SFy) = {c,d, e}, (c,d)e Iy, dceO(SI),
but dd ¢ O(#5,). Note that [P,.]4 is not a partial semigroup (this is due to
the triple (d, c, b)).

It is known (see [3]) that in the case when [P,.]Jsc is a semigroup, [By,.],
[Bs,.] are subsemigroups of [P,.]sc; then the (B, Bs)-partial subgroupoid
p,(@)p, (introduced by Definition 1,7) is a (Bi, Bp)-ideal of [P,.]ac, further
52 is a right congruence on [P,.]Jac, Jp is a left congruence on [P,.Juc
and Blj [ BlfBz, fBg < B,jB,-

Suppose in the following that [P,.]4c is a semigroup, [By,.], [Bs,.] are its
partial subsemigroups and denote in this case [P,.]uc by [S,.]. Then BiaB; € S
for every a €S, so that O(s#p,) = S. But, in general, p(a)s, ¢ I(B1, Bs).

Note also that it may happen that g,(a)s, € I(B1, Bs), even if [By,.], [Bz,.]
are not subsemigroups of the semigroups [S,.].

On the following example we show that (by choosing suitable [Bi,.], [Bs,.]
which are not subsemigroups of [8,.]) p,(¢)s, € I(B1, Bz) holds for every z € S.

Example 3,3. Let [S,.] be a semigroup defined on S = {a, b, ¢, d, e} by
the following multiplication table:

la b c d e
ala a a d d
bla b ¢c d d
cla c b dd
did d d a a
eld e e a a
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a) Let By = By = {c¢}. Then [{c},.] is not a subsemigroup of [S,.] but
B,(a)Ba == {a} € I(Bl, Bz), }_L},(b)z;a = {b, C} = BL(C)Ba (S I(Bl, Bz), B;(d)Ba =
= {d} € I(B1, Bs), B.(¢)B, = {¢, d} € I(B1, By).

b) If we choose in the same example By = {c, d}, By = §), then p,(a)s, =
= p,(d)B, = {a,d} € I(B1, By), B,(e)B, = {e,a,d} € I(B1, Bs), but (), =
= g(c)p, = {b,c,d} ¢ I(By, Bs). In the sense of Definition 1,7 [5,(b)s,.]
and [g(c)s,,.] are merely (Bi, Bg)-partial subgroupoids of [S,.] generated
by b and ¢ respectively, hence partial subsemigroups of [S,.] which are not
(B1, Bg)-ideals of [8,.].

Clearly, in the case when [B1,.], [Bs,.] are partial subsemigroups of a semi-
group [S;.], we have (analogously as in the case when [By,.], [Bs,.] are sub-
semigroups of [S,.]) the following: p,.# < BB, FB, < B.FB., BS I8
a right congruence, /3, is a left congruence on [S,.].

It follows from the foregoing that in this case we can consider besides the
classes corresponding to the equivalences p,B,, 5., B, two further
classes of elements of S given by the following

Lemma 3,4. Let [S,.] be a semigroup, [Bi,.], [Bs,.] partial subsemigroups
of [8,], T4 ={ae8S:p(a)s, € I(B1, Ba)}, pTp = {a € 8: p(a)s. ¢
¢ I(B1, B2)}. Then

1) (a, b) € p,.#p, implies eithera e p T3 ,be g T} oracz Ty ,bez Ty,

2) g N Ty < T, pT VT = 315 (T, Tp mean pTp with
Bs = 0 and By = 0, respectively).

Proof. 1) This statement is evident.

2) Let aepT™*, aeT}, i.e. Bi(aV Bia) = Bia U BiBia < a U Ba,
(@ U aB3)Bs = aBs U aB:Bs < a U aBy. Then Bi(a U Bia U aB; U BiaBs) <
< a VU Bia VU aBs; U BijaB; and (a U Bja U aBy U B]_aBg)Bz' < aVU Bia U
UaBz U BiaBs, hence aep T . If ae Ty , then from the foregoing we
have a ¢ 5T" NT%,, hence aep T U Ty .

It follows from the foregoing Lemma:

1) The classes corresponding to the equivalences p,.#p, are refinements
of classes pT'; , pT'g, -

2) Taking By = 0, B = 0, we get 3 T3 = S, z T'p, = 0.

Note that the same as in 2) holds if [By,.], [Be,.] are subsemigroups of [S,.].
However, we have seen in Example 3,3 that T3 =8, 3 T3 = 0 may
hold also in other cases.

Further we note that the inclusions in 2) of Lemma 3,4 cannot be replaced
by equalities.

Theorem 3,7. If under suppositions of Lemma 3,4

1) gT+ # @, then pT+€I1(®, 8S),

2) T3, + 0, then T € I(8, 0).
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Proof. 1) Let aepT+, ie. Bi(eVU Ba)= BiayU BiBja < a VU Bia.
Then Bjas U BiBias = Bi(as U Byas) < as U Bias for every se€ S, hence
as € T+ for every seS.

2) The second statement can be proved analogously.

We illustrate the foregoing results on Example 3.3: .

Taking By = Bz = {c, d}, we get pT+ = {a,d, ¢}, T} = {a,d}, , T3, = S,
BT~ = {b,c}, Ty, = {b,c.e}, pTy =90. Here [{a,d, e},] is a right and
[{a, d},.] is a left ideal of [S,.]. For the corresponding Green’s relations with
respect to B,, By we have p,.f = /5, = p,fp,, thus they give a congruence
on [S,.]; the classes corresponding to this congruence are M, = {a, d}, Ms =
= {b, ¢}, M3 = {e}.

In the following theorem we consider again a partial semigroup [P,.]uc
while [B,,.], [B2..] are subsemigroups of [P,.]4c.

Theorem 3,8. Let [B,,.], [Bs,.] be subsemigroups of a partial semigroup
[P, )ac. Let BjaBs < P for some a€ P (i.e. at least one of the two pairs of
inclusions: (Bia)Bs = P, aBs; = P or Bi(aB:) < P, Bya < P - holds). Then
Bl(fl)B, S I(Bl, Bz)

Proof. Since the case B, = §) or By = 0 is included, it is sufficient to prove
Bi(BiaBy) < BiaBs, (BiaB:)B: < BiaBs. By suppusitions B: < B, < P,
hence Bi(BiaBs) = BiBi(aBz) = Bi(aB:) < Bi(aB:) = BiaBz.The second case
can be treated analogously.

Corollary. Under the suppostiions of Theorem 3,8 we have , T} = O(p,-#B,),
B,Tl_ig = {a € P : p(a)s, & P}

Altogether we can conclude that the cases which are close to the known
results concerning relative ideals in semigroups are the following:

1) [S,.] is a semigroup, [Bi,.], [B2,.] are partial subsemigroups of [S,.],

2) [P,.]ac is a partial semigroup, [Bi,.], [B2,.] are subsemigroups of [P..]¢.

In section II we have proved an assertion concerning the existence of the
n-th power of an element in an associative partial groupoid. In the case of
a partial semigroup we have

Theorem 3,9. Let [P,.]ac be a partial semigroup. The n-th power of an element
a € P exists if and only if akar—* € P for some ke {1,2,...n — 1}.

Proof. 1) Let a*e P for 2 < h<mn, i.e. at =aa? 1 =a2ah2 = ... =
=arlaforh=2,3,...n — 1. Let aa"* € P for some k; € {1,2,...n — 1}.
We shall prove that then a®a"* e P, for every k; + ki, kye {1,...n — 1}.
If ki<ky, then n —k;>n—k and n—1lki=n—Fk + k —k imply
a¥a" " = d* (@ *a™ ). Since afa¥ ¥ e P, we have a¥a" % e P. If ki > ky,
then n—/lj<n—1lk <n—1, da" ™= (¥ Ma"teP, ahg"tepP .
(by the induction supposition), hence a*a""* e P.
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2) The reverse is evident.

The following theorem shows that the set of idempotents E of a partial
semigroup (under supposition that £ + @) can be partially ordered in the
same way as in the case of a semigroup.

Theorem 3,10. Let the set E of idempotents of [P,.Jac be nonempty. Then the
relation = defined by : e < fif and only if ef = fe = e, e € K, fe E, is a partial
ordering on E.

Proof. The reflexivity and antisymmetricity are evident. Let ¢ = f, f < g,
i.e. ef =fe=ce, fg=gf =f Hence e(fg) =e, thus e(fg)eE < P. Since
efeE = P, we have (ef)ge P and (ef)g == eg = e(fg) = e. Analogously e =
= (gf)e = g(fe) = ge, hence ¢ < g.

In the following we shall give some results concerning right and left trans-
lations of a partial semigroup.

Notation. [Zp,,] means the semigroup of all transformations of a set P.

Theorem 3,11. 1) Let ITy be the set of all inner right translations of a partial '
semigroup [P..Jac. Then [y, ] ts a subsemigroup of [Zp,,].

2) Let Ay be the set of all inner left translations of [P,.Jac . Then[do,4] is a sub-
semigroup of [Zp,s ).

Proof. 1) Let ITy #+ 0. By Theorem 3,1 [Ty = {0, : x € 81}, [S1..] is a sub-
semigroup of [P,.]ac. By Theorem 2,6 gz » 0y = o0xy for every o €1y, oy €11y,
with Ozy GH().

2) This statement can be proved analogously.

Corollary. Let [P,.]ac be a partial semigroup.

1) If the set of inner right translations of [P,.Jac s given by the set S1 + 0,
S1 < P, then the mapping a -> 94, & €Sy 18 a representation of the semigroup
[81..] by transformations of the set P.

2) If the set of inner left translations of [P,.Jac 1is given by the set Sy + 0,
S2 = P, then the mapping a — Aq, @ € Sz 18 an antirepresentation of the semigroup
[82,.] by transformations of the set P.

Remark. We see that by a natural generalization of the notion of a regular
representation (antirepresentation) of a semigroup for the case of a partial
semigroup we have obtained again a representation (antirepresentation) of
a semigroup. However, in this case the representation (antirepresentation)
is given by transformations of a set on which is defined a partial semigroup
and which contains the carrier of the represented semigroup.

We note that by the set of inner translations (left or right) of an associative
partial groupoid which is not a partial semigroup need not be a subsemigroup
of given a [Zp,,] (this is shown on Example 3,2).

In Definition 1,16 a generalization of a right (left) translation of a semigroup
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has been given. It is known that in the case of a semigroup [S,.] the following
holds: [11,,] and [4,,] where IT is the set of right and A the set of left translations
of [S,.], are subsemigroups of [Zs,,]. Moreover, [Ilp,,] is a subsemigroup of
[I1..] and [Ao,4]is a subsemigroup of [4,,]. On the following example we show

that in the case of a partial semigroup which is not a semigroup this assertion
need not hold.

Example 3,4. Let [P,.Jac be a partial semigroup defined on the set P =
= {a, b} by the following multiplication table:

la b
ala —

bbb - .

The mappings 01 :a01 =b, bor =b and g2:aps =b, bgs = a are right
translations of [P,.]4ac, but the mapping g3 = 01 * g2 is not a right translation
of [P,.]Jac, since (ba)os + b(ags).

Remark. If [P,.]4c is a partial semigroup, IT the set of its right translations
and A the set of its left translations, then [71,,]and [A4,,] are,in general, merely
partial subsemigroups of [Zp,;]. As we have seen these partial semigroups
contain subsemigroups of inner translations of [P,.]4c (it may happen that
these semigroups are empty), but they can contain also other subsemigroups.
We can obtain an example of such a semigroup by using the following result
of [3]: If {S,.] is a semigroup, [P,.Jac a partial subsemigroup of [S,.] such
that there exists a subset B &+ 0, B < S with P e I(0, B), then P e I(3, H)
for some subsemigroup [H,.] of [S,.]. Evidently, the transformations g given

by agh = ah, he H, ac P, are right translations of [P,Jac and [{o}.,],
h € H is a semigroup.

We end our considerations by giving a complete list of all partial groupoids,
associative partial groupoids, partial semigroups and semigroups defined

on the set P = {a, b}. Those of them which are isomorphic are included in
classes denoted by T',.

1. If the domain is a one-point set, we obtain four classes. The multiplication
tables are as follows:

T]_I Tz: T,,:




All these partial groupoids are associative, as a matter of fact they are
partial semigroups.

2. If the domain contains two elements, we get the partial groupoids
with the following multiplication tables:

T: To: Ts: Ty:

|a b |a b la b |a b la b la b

alb - ala — ala - aj— b ala — alb -

bl— a; bi- b; bja -, b|- b ; bl—-a, b|-0b ;
Ts: Te: T7:

]ab !ab |ab |a b ]ab |ab

a a al|l- — al— a a a a|—- -

bl— —, b|b b ; bla -, b|b —; b -+ bla b ;
Tg Tgt Tlo

la b |a ]ab ‘ab |ab ]a

ala - al— a alb - al—a al—- — alb b

bib -, b|—- b ; b'b—, b|- a; bla a, b|—- -
Tn T2 Th3: T1a

| ‘ab ’ab ]ab |a,b ’a

a a al— - - alb - al— b al— a

bl - , b|b a; b a, bla —; bla —; b|b -

All these partial groupoids are associative. Those of them which are defined
by Ty — T are partial semigroups. The groupoids T'9 — T'14 are associative
partial groupoids but not partial semigroups.

3. If the domain contains three elements, then the multiplication tables
are as follows:
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T]_: Tz: Tg:
la b la b la b la b la b la b
ala a al- b al - alb b alae - ala b
bla -, blb b blaa, bl-b; bla b, b|-b:
T4: T5: TGZ
la b la b la b la b la b la b
ala — alb a ala a ala - a’—a ala b
blb a, bl-b; bl- b, blbb; bla 6, b|b -
Ts: Tg: Ty:
ja b la b la la b la b |a b
a b al- b ala a alb — ala b alb -
bja -, bla b ; bl-— a, Db|b b ; b a, bla b;
To: T Tio:
lab iab | a la b ‘ab |ab
ala a al- a aldb a a‘—b al- a alb b
blb -, b|b b ; bla - , blba; bla a, bjb -
Ths: Tha: T15
la b la b la b |a la b la b
ald « alb - al- a alb a ald b alb -
bl-a, blb a blb a, blb -; bl-a, blaa
T]_ei
la b |a
a’b b -
b[a -, bla

In this case the partial groupoids T; — T are partial semigroups; those
of T7; — T4 are associative partial groupoids but not partial semigroups.
In T'15 and T we have partial groupoids, which are not associative.

4. Finally, if the domain is P X P, we get the following classes:
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T:: Ts: Ts:

la b |ab la la b | la b
ala a alb b ald a ala b ala a ala b
bla a«, bL|b b ; bia 6, blb a; bla b, b|b b ;
774 T5 TG: T7 T8
_' b Iab |a |ab ] b |ab
ala a ala b a,’ba, alb b alb a ala a
blb b; blab; bib a; bla a; bib b, blb a;
T9: T10:

Iab iab lab ‘ab

ala b alb b alb a alb b

bla a, bla b ; bla a, bla a .

The groupoids defined in 7'; — T's are associative, thus they are semigroups;
those of Ty — T'1p are not semigroups.
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