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ON A PAIR OF CONNECTIONS ON A PRINCIPAL FIBRE
BUNDLE

ANTON DEKRET

Kol4t [3] introduced the difference tensor A(X) of an arbitrary semi-holo-
nomic jet X. In this paper it is first shown that the mapping X - A4(X) can
be extented on some subset of the non-holonomic jets. Futher, some properties
of a pair of the connections on a principal fibre bundle are found. All our
considerations are in the category C*. We use the standart terminology and
notations of the theory of jets (see [2]) with the following notational conventions.
We write 57 (y) = ji (v —y) for a fixed y and j*, k < r, denotes the natural
projection of Jr(M, N) into J*(M, N).

1. Let V, M, N be real manifolds. Let ¢5 or a? or y? be the local coordinates
on V,oron M,or on N determined by local charts z,or &, or {, respectively. De-
note by (t5, )y, @i, al,,, @) or (&, yBy, ¥P, Y5, y2:), where s, s1, s2 =

1, ...,dimV =w 14 01, 5=1,...,dimM=m; p=1,...,dim N = n,
the natural coordinates on JV, M), or J2(JM, N), respectively (see [5]).
Let X = (5, @hy, iy, @b, al,)eJXV, M), Y = (2, y%, 42> Y5, Y's) €
€ J3y(M, N). Then the composition Z = YX € J*(V, N) has the coordinates

(ts’ 2807 z;)lo’ zgsz’ z:SplSz)’ Where
(1) zgllo - yz?:ox;iO’ zgsz = y(zl)izx%fsz’
D D i1 it )
Zoise — Z/ilizx;()n’z)sz + ygolewz'
Lemma 1. Let X = (%%, ¥y, y70, Y, y2:) € JAM, N). Denote by A(X) the
set of re(il numbers Yyl .. =yl — yb, . Then A(X)is an element of Tpy(N) ®
x A2 T (M) if and only if
DJ 9

Proof. Let a € H; (M), be H;Y(N) be the holonomic 2-frames determined
by local charts &, or £, respectively. Then the jet b-1Xa has the coordinates
W7o, vty Yhe) Let A =(a, a,)el?, B= (b3 =0bl,="0,, b,)€
€Ly, pr,pr=1,...,%n Let Bb-1Xa4 have the coordinates (c2y, ¢fis chi)-
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It is necessary to show that

(3) (i = b”lyf’,;lkz]ak‘a’-“) < (2).

i 1 2

Using (1), we obtain
¥ __ }P k1 k2r, D1 , D2 p1 ,,P2 D, D1 k1 ka
c[[x‘ia] - b])lpzailafz (yk10y0k2 - y0k1yk20) + bpxy[klkzla’ilaiz ’

where k, k1, ks = 1, ..., m. That is why (3) is correct for any 4 € L2, Be L2
if and only if the jet X has the property (2).

Definition 1. T'he non-holonomic jets having the property (2) will be said to
be quasi-semi-holonomic. The tensor A(Y) determined by the quasi-semi-holonomic
jet Y will be called the difference tensor of Y. If A(y) = 0, we shall say that Y
s quasi-holonomic.

Remark. Let Y eJ%(M, N), ¥ = jiy0. Then the jets j3¥ and I}(Y) =
= jun(f o) determine the homomorfisms

L(j3Y), L(1}(Y)) € Hom (Toq)(M), Tpx)(N)).

It is easy to see that Y has the property (2) if and only if L(j3Y)[Tay(}M)] = 0
or if there is such a real number A that

L(I(Y)) = AL(j3Y).

If L(j3Y)[Tav(M)] + 0 and L(I(Y)) = AL(§3Y), the jet Y will be said to be
quasi-semi-holonomic with the coef ficient A. In the case of L(j3Y)[Tay(M)] = 0,
Y will be called quasi-semi-holonomic without a coefficient. We introduce two
examples. Let X eJYM, N), X =jlyo, then X® = jl.(u—jilo(w)]) is
quasi-semi-holonomic without a coefficient. Further, denote by J1(JI, N),
the set of 1-jets of M into N with the target y € N. Then Y = jl 0, where ¢
is & local cross-section of the fibre manifold (J1(3, N),, «, M), is quasi-semi-
-holonomic with the coefficient 0.

Some properties of the difference tensor A(Y), formulated in [4] for the

semi-holonomic case, can be easy generalized for the quasi-semi-holonomic
case.

Lemma 2. Let X e J(V, M), Y e j,%X(llI, N) be quasi-semi-holonomic with
the coefficients A1, A2 (ome of them is without a coefficient). Then Y X is quasi-
-semi-holonomic with the coef ficient 21 . Ao (is without coef ficient) and

(4) A(YX) = WA(Y)L(jpX) + L(jz Y)A(X).

Using (1), the proof is clear.

Now, let X e JX(M, W), YeJM, N), (X, Y)eJ3(M, W x N). If X, Y
are quasi-semi-holonomic, (X, Y) need not be quasi-semi-holonomic. But it
X, Y are quasi-semi-holonomic with the same coefficient 2 (X, Y are withouf
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a coefficient), then (X, Y) is quasi-semi-holonomic with the coefficient 4
(without a coefficient).

Lemma 3. If X eJ, W), Y eJ)M, N) are quasi-semi-holonomic with
the same coef ficient or without « coefficient then
5) A Y) = A0 i D),

where zl W1 x i(w) = (w, BY),
-N»meiMhﬂﬂw%
The proof is obvious.

Lemma 4. Let G be a Lie group. Let X, YeJXM, G), X = Y = e, be
quasi-semi-holonomic with the same coef ficient or without a coefficient. Then
A(X . Y) = A(X) + 4(Y),

where X . Y denotes the extension of the group operation on G.
Proof. Let f: G X G — G be the group operation on . Using (4) and (5),
we get

AX . Y) = foud(X,T) = fi(i, A(X) + 124 4(Y)) = A(X) - A(T),

because fX = Y = eis the unit of ¢ and thus f(i1(9)) = f(g, €) = g, f(22(9)) =
f((’, g) =
2. Let IV be a parallelizable manifold and let
Wy, o v, 0. ... =1, ..., r=dim N

be a basis of T*(N). Consider the trivial fibre manifold £ = Rm x N with the
base Rm; the elements of R™ will be denoted by («1, .. .,a™). Then o = pr;’:w;’)‘,
dtt  pridat is a basis of T*(E). Let X be quasi-semi-holonomic. We will need
the coordinates of A4(X) at the basis dx? and the basis dual to . dti. Every
element Y e JJiE, B Y = z, can be identified with the subspace Im L(Y) <
< T.(E) determined by

(6) (%), = AZ(dti),, see [3].

We get some real functions 4% on J1E. Every Y € JIE is uniquely determined
by the point §Y = z € E and by the real numbers A%Y). Let X e JiE. X =

jag, BX = z. It is obvious that X is uniquely determined by the jets I}(X) =
= jo(Bo), j3(X) = o(0) and by the real numbers 4% determined by

dAi(o)o = Af(dx?)o.
Denoting A4f(a(0)) by AF.
(7) (0?); = AZ(dt?); or
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(%), = Azi(dﬂ)z,

are the equations of the subspace Im L(j3X), or Im L(l3(X)), respectively. Let
(#%, z%) be a local chart on E. Then the natural coordinates of X are (2%, a7, ag;,
a?;) and thus

(8) (dz%), = aj,(dti), or
(dz%), = aj;(dt),,

determine Im L(j1X), or Im L(I}(X)), respectively. The numbers af; are given by
da(o), = ag(dr)o,

where @} are the coordinate functions of the chart (z!, 2%, «7) on JE. Let
% = B} dzf, dB; = B}, dzv and let f}f,f Bﬁ = 6. Using (6), (7), (8), we can
compute

i = — B‘;‘B;fy E;EgAng?o + EEA?]
If X is quasi-semi-holonomic, A}, = 0 or Ay = i. Aj,. Therefore, if X is
quasi-semi-holonomic,
iy = — E;BEV]E/SEES,A?OA?O}' e le’,?Aﬁ-j]-

Let dot = K}, 0 A ”, K}, = — K;,. Then for y < ¢,

Bf.dzv A dzt = 2K, BiBidzy i dzb.
We have B[, = 2K;, B:B;. Now,

afyy = 2BiK;, AL 450 + BiAL,

(5] *

Denote by E,, E; the basis of T(Z) dual to w®, dti. Then
(9) A(X) = (2K;,A5A470 + A7) dzi v da? @ B, 1 <.

Br~io T jo

3. Let @ be a Lie group and let & be its Lie-algebra. Let ey (e, 8, v, ... =
=1,... r=dim @) be a basis of ® and let [es, 5] = — clse,. Let (v)) be
a local chart on M defined on some neighbourhood of 2o € M.Let Y € Ji.o (M, q),
Y = j;o0(x). Y can be identified with L(Y). Let L(Y) be given by the tensor
A5(dxT)z, @ (ea)o(zy - Let E denote the subspace of ® determined by Im L(Y),
i. e. generated by the vectors E; = Afe,. The mapping J : G — Gl(r), g > 4d(g71)
is a representation of ¢/. Let X1, X5 € . Then

(10) [/(X)](X2) = —[X1, Xo], see [1], p. 56.

Let (93) be the matrix of the linear mapping Ad(g!) = fi, f(u) = g~lug, at
the basis ey : gj are some real functions on . Now using (10), we compute
dgs(0)r,- Let X1 = Adai(v)en, v €T 5(M), v = jiy(t). Consequently X; =
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= jolo™2(0) . o(y(¢))], where o71(Xo) . o(y(t)) denotes the product of g~1(xo),
o(y(t)) on G. Hence the linear mapping J, (X1) is given by the matrix

l 1
jgé[g‘l(xt))e(}'(t))]tﬁo = j [95(e(y () ]e-0g}(0™(x0)),
as Ad(ab)™t = Ad(b1)Ad(a1). Let Xy = e¢5. Then (10) yields
d

- Ig3(elr N0 ghle™ e = — (A5 (0)r, <o)

d A .
This implies m [9:(0((1))) -0 95(07 (o)) = cZyATdai(v), i. e.
[

{ )
:I—'t [95(o(y(D)]e=0 = clgp(o(xo)) AJda’ (v), i. e.

(11) dg;(0(@))z, = c5yg(0(0)) A} (da?)z,

Let P(J, G, z) be a principal fibre bundle. Let I, be a distribution on P
determining a connection I" on P. Then Tp(P) = Ty(P,) ® I, for any p e P,
7p = . Denote by H the natural projection 7'5(P) - I',. Let ¢ be the funda-
mental G-valued form of the connection I" and let @ be the curvature form of
I'yi.e.® = D¢ = dpH. Let us recall the relations

(12) dp = —1/2[p, ¢] + 2,
(13) D@ = 0 and
(14) do = —[¢, o] + Do,

where o is a ®-valued equivariant horizontal p-form on P. Let I, I's be two
different connections on P. Let ¢1, g2 or @1, D2, or Hy, Ho, be the fundamental
forms or the curvature forms, or the natural projedctions of I'1, I'>, respectively.

It is obvious that
(15) HHs; == Hy, HyH; = H>.

Denote by ¢12=q¢1 — @2, @21 = @2 — ¢1. @12 and ¢21 are equivariant
®-valued horizontal forms on P (see [1]). The form ¢; 2 will be called the
fundamental difference form of the pair /7, Is. It is easy to see

(16) g2 = g1ls, @21 = @M.
Let Q be a real or vector valued form on P. The form d2 H,, s =1, 2, will
also be denoted by sDQ. Now, using (14), we obtain

do12z = —[g1, p172] + Dgy2,
dprje = —[g2, g172] + 2De1j2.
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Then
a7 1Dg1jz — *Dq1 2 = [@112, qr2]-

The form [@12, ¢1/2] Will be called the 2-difference form of the pair I, I%.
Using further (15) and (16), (12) implies

Doy = —1/2[¢12, ¢172] + D1,

D = —1/2[¢1,2, ¢1/2] + D2.
Then

(18) 2Dp1 — 1Dgs = D1 — D,.

The form @; — P> will be said to be the 2-difference curvature form of the
pair I'y, I's. Let dim (I'1)p, N (I'2)p &= 0 be constant on P. Axdy; » = —1/2 [ 2,
g1 + @2] + D1 — D2, the distribution determined by ¢1 2 = 0 i~ integrable if
the 2-difference curvature form of the pair I, I's vanishes.

Remark. Let 2 be an equivariant G-valued form on P. If (2), = 0, then
(Q2)ug = 0. Therefore, if (2), = 0, we can say that Q vanishex at zu € JI.

4. It is well known that every connection on P can be identified with a global
(G-invariant cross-section I' of the fibered manifold (J1(P), P. p). satisfying
I'(ug) = I'(u)g for any u € P, g € G. Let I'1- I's be two different conuections on
P. We can uniquely construct the jet R(u) € JL (M, G)e, u € P. as follows. Let
I'(u) = ji01, I's(w) = jt,02. Denote by o(x) a local mapping of ) into @
determined by

O'z(.T) = G‘l(w(‘,)g(:v).

We put
R(u) = jruo(v).

Evidently, pR(u) = e € G, e is the unit of ¢. The independence of B(u) from
the choice of ¢, and oy is obvious. Now, Is(u) = jic1()o(x) = I(u)R(u),
where I'1(w)R(u) denotes the extension of the action of ( on P. In the expres-
sions g . R(u), R(u).g, I's(w)g, we identify ¢ with ji,(g) and the dot denotes
the composition on ¢ and its extension.

Lemma 5. Let we P, ge G. Then R(ug) = g1 . R(u) .g.

Proof. I'y(ug) = I'a(u)g = [I(w)R(w)lg = [{I1(ug)g ™} R()lg = I(ug) (g *.
. R(u) . g). Therefore R(ug) = g1. R(u) . g.

In the case of r = dim M, a pair of connections I'1, Is will be called regular
or singular, at v € M if R(u), mu = =, is regular, or singular, vespectively. It
is easy to see that a pair of connections I'1, I'; is singular if and only if
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Im L(I'(u)) N Im L(I'5(u)) + 0.
Further, let I" be a connection on P, I'(u) = j%,0. Let 2 be a G-valued ¢-form

on P. Let v € T'xu(B), v = jly(t). Denoting kv = jio(y(¢)), we define
"y, ..., vq) = 2(hor, ..., hog), v1, ..., Vg € Tru(M).

Lemma 6. Let we P. Then
(19) L(By(u)) = "(@1/2)u-

Proof. Let I'(u) = jlo1, I'o(u) = jl02, Ri(u) =ji0. Let veT (M)
v = joy(t). Then ke = w = jsoa(y(£)) = jolor(y())e(y(1))] and thus Pe(gy/e)u(v) =
= qu2(w) = g1(w) = joo(y(t)) = L(B(u))(v) . QED.

Put Ris(u) = jr Ri(os), s = 1,2. Analogously to Lemma 6, we have
(20) Ris(ug) = g1 . Ris(u) . g.

Lemma 7. Ry(w) ¢ J2 (M, @), is quasi-semi-holonomic with the coefficient
0 and
(21) Riz(w) = (Bi'(«))® . Ru(u) . (Ba(w))®.

Proof. The first part is clear. To prove (21), we use the definition of R (u)
and (20). Bus(u) = jLRi(0oa) = jLRi(01(x)e(@)) = jllo71(2) . Ra(oa(x)) .
0(®)] = (B! (w)® . Ru(u) . (B1(w))®.

Putting further
Fsls2(u) :j;ursx(asz(x)), 81, S2 = 1’ 2:

we get some connections of the order 2 on P. I'y; or Iy, is the first prolongation
of I't, or I}, respectively. They are semih-holonomic, whereas Iz, % are

non-holonomic. It is easy to see
(22) Ia1(u) = I'i(w)Bu (),
Iap(u) = I'u(w)[Bua(u) . (Bi(u))®],
Iio(u) = Tua(u)(Ba(u))®.

5. Let us consider a trivial principal fibre bundle B™ X (/, where the Lie
group G acts on BR™ X G by the rule (x, 9)g = (z, qg). Let ey be a basis of the
Lie algebra ® of the left-invariant fields on G, [es, e,] = —cj.e,. Let o> be
the dual basis of ®* to ey. The manifold B” X @ is parallelizable. Put o =

priot, dtt = pridx’. Denote by E,, E; the dual basis to o%, dti . E, is the
fundamental vector field on Rm X @, corresponding to e,. Let H denote the
distribution on 27 x @ determined by

WY = A:dti,

65



where A7 are some real functions on B X . Let us consider a ®-valued form
@ = (0% — A%dt’) ® ey. Denoting Q = 0 @ ey and A = A%t* O ey, we have
@ =2 — A. Obviously, ¢(Es) = ex. ¢ is the fundamental form of a connection
I'on R x @ if and only if it is equivariant, i. e. if

(23) PRy, = Ad(971)g.
Let w= (x0,9)eRm X G, let XeT,(Rm X @), X = X; + Xo(0w*Xy =0,
dtiXy) =0, a=1,...,r52=1, ...,m). As 2 is equivariant, R4 (X) —

= Ad(g1)2AX1) — ARy, (X5). Since  Ad(gl)p(X) = Adlg1)Q(X;) —
— Ad(g1)A(X5), (23) is correct if and only if

(24) ARgy (Xo) = Ad(g71)A(Xz).

Put Xo = ai(E;)(z,q). Then Rgy(X2) = ai(E;)(ze,q0)- Let Ad(g~1) be expressed
at the basis e, by the matrix (g5). Then (24) yields

Ao, q9)aiex = g5A% (w0, q)aien.

Denoting the restriction of the functions A% to the section x> (, e) by I'j(.x),
(23) is equivalent to

(25) Ai(x, g) = ga(g)[x).
Putting gi(x, 9) = g3(9) and I(x, g) = I'j{(x), we have
Aj(w) = g I(w), u = (z,g).
Now, let In, I> be two connections on P = Rm X G. Let ¢5 = (0% —
9% *Idt) ® ey be the fundamental forms of I's. Then
B %
(26) Q12 = g§(21"‘? — ) ® ey.
Let I's(u) = jsos, w = 0. ‘Since dgshs = d[gj(os)], therefore "(*Deyjs), =
= Mdgr2Hs)u = {d(g5(0,) 2] (0) — 111’5’(0)] + 959y 1T — T )o}dat A dat @

X ex.
Using (11) we obtain

(27) sDyyjo = {20/3/gkg§‘“’]1 [2T _ 1]"5] +
+ G5O — ogTi)ide & dtt @ ea, j < i

Theorem 1. Let P(M, G) be a principal fibre bundle. Let I'y, I's be some con-
nections on P. Then

hs(sD(p]/Z)u = —A(R15(u)).

Proof. Since our problem is local, we may suppose that P is the trivial
fibre bundle P — Rm x (. Relations (19) and (26) imply that the numbers
A%, determining the jet Ry(u) at the basis w?*, di¢, are

66



(28) Aifu) = gi(w)CT(w) — (w)).

To determine the numbers Aj(Ris(x), we use (11). Let mu = 0. As Ri5(u) =

jiRy(0y), Au(Bis(w))dal = dlgjles)]o(*I(0) — TH(0)) + ga(w)o;[F -
— 1Pdat = cigfu)gliu)Ti(0) (3 (0) — ¥(0)) + ghw) Y — odad,
Therefore Af; = ~cﬂ/gt(u)g}’fu)s’]’( 0)[2[3(0) — 1H(0)] + gﬁ(u)(afjrﬁ —

ELTo

[° 1l
Butjblg(u) is quasi-semi-holonomic with the coefficient 0. That is why (9)
yields
— M Rys(u) = —A[undat » dad @ ex], 7 < j.

Comparing with (27), we complete the proof
As Rii(uw) and Ry2(u) are elements of the group J2, (M, G),, Lemmas 2 and 4
imply

A(Ryz . Ry}) = A(Ri2) 4 A(R;}) = A(Rig) — A(Ru) = A(R;] . Rua).

Now, Theorem 1 and relation (17) yield

Theorem 2. Let uw € P. Then

A(Riz . Ry})u = m(ADg1jo)y — "(*De1j2)u = "[@1/2, @1/2]u-

Putting further 2R(u) = Rni(u) . (Ri(u))®, we have ng(u) T(uw)’R(u). It is
easy to see that 2R(u) is semi-holonomic.

Theorem 3. Let w € P. Then
(29) ACR(u)) = n(Pa)y — "(P1)y-

Proof. (29) can be proved by direct computation. However, Kolat [3]
showed: A(I22(u)) = w,"(DP2)u, A(I'1(u)) = u,™(P1)y, Where u is the mapping
G — Py, u(g) = ug. Since I'11(u) and I'22(u) are semi-holonomic and /13 (u)2R ()
is the extension of the action P X G'— P, Lemmas 2 and 3 imply directly (29).

6. Let @ be a Lie grupoid over M. Let a, b : @ — N denote the right and left
unit projections. Let I : M — @ denote the natural inclusion of the manifold
of units into the groupoid. A non-holonomic or semi-holonomic or holonomic
infinitesimal connection of the order » = 1in® is a C* map I": M — Jr (M, D).
or M — Jr(M,®), or M — Jr(M, ®D), respectively, satisfying

pr =1, jral'(x) = jilx], 371 (x) = 4% (see [6]),

for all »» € M, where j’a is the r-jet of a and j; is the jet of the identity mapping
on M. For » = 1 this corresponds to the above introduced connection on any
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of the principal fibre bundles determined by @. Conversely, the principal fibre
bundle P(M, () determines the grupoid ® = P X P/G and the connection on
P determines the connection on @. Denote by G(®) the isotropy group bundle,
i. e.
Gy ={0ed:al = b0 = a}.
Let I, I's be two connectios in @. Put
Iis(@) = gzl - (Ds(@)®, Tos(@) = jola . ([s(@)®  (see [6]),

where the dot denotes the composition in @ as well as its extension. [
is a 2-connection in @. Put

152

Rls(:c) = ]‘1_81(‘%‘) . ng(x), 2R(1‘) = Tli(x) . F_g_)(.%‘)

Ris(x) € D¥(G(P)) is quasi-semi-holonomic with the coefficient 0 and 2R(x)
is semi-holonomic. The pair of the connections I'1, I will be said to be quasi-
-holonomic with respect to Iy, or quasi-holonomic, or holonomic at a € M if
Ri5(x), or Rij(x) . Ris(x), or 2R(z) is quasi-holonomic, or quasi-holonomic, or
holonomic, respectively. Now, Theorems 1, 2, 3 give.

Theorem 4. The pair of the connections I, I's is quasi-holonomic with respect
to I's or quasi-holonomic or holonomic at x € M if and only if the form sDe 2
or the 2-difference form of the pair I, I3, or the 2-difference curvature form of the
pair I, I's, respectively, vanishes at x € M.
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