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Matematický časopis 22 (1972 ),No. 4 

ON THE EMBEDDING OF SEMIGROUPS 
INTO 2-ENGEL GROUPS 

JOSEPH E. KUCZKOWSKI 

Purdue University-Indianapolis, Indianapolis, Indiana, U.S.A. 

The following definitions and notation are presented for the convenience 
of the reader. If x and y are elements of a group G, the element [x, y] = 
= x~xy~xxy is the commutator of x and y. For elements x, y and z belonging 
to the group G, [[x, y], z] is the commutator of the elements [x, y] and z and 
is denoted by [x, y, z]. y~xxy is the conjugate (or transform) of x by y; it 
is denoted by x&. The reader is also referred to P. Hall [1] and E. Schenkman 
[3, Chapter VI] for basic techniques of the commutator calculus. 

A subsemigroup £ of a group G is said to satisfy the 2-Engel condition 
if [x, y, y] = 1 in gp{S} for all x, y e S, where gp{S} denotes the group generated 
by S in G and 1 is the identity element of G. Accordingly, a group is 2-Engel 
if it satisfies the 2-Engel condition. 

N e u m a n n — T a y l o r [2, p. 1] have shown that a semigroup S can be 
embedded in a nilpotent group of class ^ 2 if, and only if, it is cancellative 
and satisfies the law xyzyx = yxzxy for all x,y,ze S. I t is natural then to 
consider the law xyyx = yxxy for all x, y belonging to S. This law will be 
referred to as the E2 law. 

The purpose of this paper is to prove the following. 

Theorem. A semigroup can be embedded in a 2-Engel group if and only if 
it is cancellative and satisfies the E2 law. 

Proof . If S is a subsemigroup of a 2-Engel group, then S is cancellative. 
The commutator [x, y] commutes with y since 1 = [x, y, y] = [x, y^y'^x, y]y. 
[x, y] also commutes with x since its inverse [y, x] commutes with x as indi­
cated by the fact that 1 = [y, x, x]. Consequently, xy = yx [x, y] = [x, y]yx = 
= x~Yy~xxyyx and yxxy = xyyx for all x, y in S. 

Thus, it remains to show that a cancellative semigroup satisfying the E2 
law may be embedded in a 2 Engel group. I t will in fact be shown tha t such 
a semigroup generates a 2-Engel group of the form S . S~x. 
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(1) Since S is a cancellative semigroup satisfying a non-tautological law, 
it follows from N e u m a n n — T a y l o r [1, p. 1] that gp{S} = S . S'1 = S-1 . S. 
Thus the group generated by S exists and its elements are all of the form 
st~x for s, t e S. 

(2) The elements of S satisfy the 2-Engel condition. 
I t suffices to demonstrate tha t yxy^x^y^xyy = xy since this implies 

that [x, y, y] = 1. Using the E2 law, x . xyxy . x = xy . xx . xy and xyxyx — 
— yxxxy. Then, 

yxxy . y~xxy = xyxyx, 
xyyx . y~xxy = xyxyx, 

yx . y~xxy = xyx, 
yxy-^x^y^yx . xy = xyx, 
yxy^x^y-1 . xyyx = xyx. 

Hence, yxy^x^y^xyy = xy for all x, y in S. 

(3) [aft-1, c, c] = 1 for all a, b, c in S. 
[ab-1, c, c] = [b-^a, 6_1], c, c] = [b_1[a, &_1]a, c, c] = 

= [ft-^fe, a]a, c, c] = [b-itWa-ibaa, c, c] = [[tWcWa-1, c]6 a a [baa, c], c] = 
= [[b-ib-ia-1, c] f t a a-c , c] . [baa, c, c] = [[c, abb]ft«a, c] = 1. 

The last equality follows from the fact that 1 = [x, yz, x] implies [[x, y]z, x] = 
= 1 for all x, y, z in S. 

(4) I t will now be shown that [a, cd'1, cd-1] —- 1 for all a, c, d e S. 
[a, cd'1, cd'1] = [[a, rf-1] . [a, cf\ erf"1] = 

= [[a, d-1] . [a, cf\ d-1] . [[a, rf-1] . [a, c]'"1, c]d~\ 
Thus, 

[a, erf-1, erf"1]* = ([[a, c]d \ rf-1] . {[[a, rf-1], c ] ^ 1 } ) * = 
- rf-1 . rf[c, a]d-i . rf . rf[a, c] i- i . rf-1 . rf{[[a, rf-1], c][a>c *x}cM- . rf = 

= [[a,c],d-1].[[a,d-1],cr>*dl. 
Both sides ate now conjugated by [c, a]^ x so that 

[a, cd-^cd-1]*'^1 = 
= [a, c]d \[a, c], rf"1]^ a ]^ 1 . [[a, rf--], c] = 

—- rf[a, c]rf_1[c, a]rf[a, c]rf-1 . rf[c, ajrf"1^, rf-1, c] = 
=--. [rf-1, [c, a]] . [a, rf"1, c] = [[c, a], rf] . [rf, a, c] . 

Part (3) is used to show that [rf-1, [c, a]] = [[c, a], rf] and a slight modi­
fication of the proof to Par t (6) which follows implies tha t [rf, a, c] = [a, c, rf]. 

Hence, 
[a, cd'1, cd-i]*-1^*1 = [[c, a], rf] . [[a, c], rf] = 

[a, c]rf_1[c, a]rf . [c, ajrf-1^, c]rf = [a, c]rf~-[c, a]rf . rf_1[a, e]rf[c, a] = 
= 1 which gives the result. 
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The second to the last equality is true because [a, c]d commutes with a 
and c, a fact indicated by the last statement in the proof of part (3). 

(5) [[g, b]c, b] = 1 and [[&, g]c, g] = 1 for g e gp{S} and &, c~S. 

1 = [gc, &, &] = [[g, b]c[c, &], &] = [ g, b]c, b] 

using (3) and the fact that S satisfies the E2-law. Using (4) and the E2-law, 

1 = U>c, g, g] = [[&, g]c[c, g], g] = [[&, g]c, g]. 

(6) [&, g, c] = [g, c, &] for g e gp{S} and b,ceS. 

Prom Par t (5) it is known that [[g, b]c, &] = 1. According to (3) 

1 = [g, be, be] = [[g, c][g, b]c, be] = 

= [[9, c][g, &?, c][[g, c][g, b]c, b]c. 
Using (3) once again and the initial statement above, the following is obtained: 

1 = [[</, &]', c\{[g, c, bf^J. 

Transforming this last expression by c_1, 
1 = [g9 &, c][g, c, b]{g,b]\ A second conjugation by [&, g]c yields 1 = [c,[&, g]] . 

. [g, c, &] or [&, g, c] = [g, c, &]. 

(7) If S is a cancellative semigroup which satisfies the E 2 law, then S gene­
rates a 2-Engel group. 

According to Par t (1) gp{S} = S . S~' and it will be shown tha t [a&_1, 
cd-1, cd~'] = 1 for all a, &, c, eZ belonging to S. 

[a&-1, cd-i, cd-1] = [[a&-i, d-^aft-1 , c]*~\ cd-1] = 

= [[afi-i, d-iftafc-1, cf \ d-^ffaft-i, eJ-itfaft-1, c]d \ c]d * = 

= [[ab-1, c]d \ d-^lttaft-1, d-i], c][ab~l>c]dy\ 

In the above calculations, [a&-1, d_1, d_1] = 1 follows from the fact that gxxg = 
= xggx for g e <7^{£} and £ e # using Parts (3) and (4); and [[ab-1, cf~\ c] = 1 
is true since 1 = [c, a&-1 . d'1, c] by (3). 

Now, 
[ab-1, cd-1, cd-if-e*h i]d'1 = [d~\ [c, a&-i]][a&-i, d -1 , c] = 

= [[c, a&-i], d][d, aft"1, c] = [[c, a&~-], d][[a&-1, c], d] = 1, 

where the last two major steps are applications of parts (5) and (6). Conse­
quently, [ab"1, cd'1, cd'1] = 1 and gp{S} is 2-Engel. The theorem is now 
proved. 

A well known theorem of Levi (see Schenkman [3]) states tha t a 2-Engel 
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group is nilpotent of class ^ 3. This fact in conjunction with the Theorem 

produces the following. 

Corollary, i / S is a cancellative semigroup satisfying the E2 law, then S gene­

rates a group which is nilpotent of class ^ 3 . 
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