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Matematicky Easopis 17 (1967), No. 4

ON k-THIN SETS AND n-EXTENSIVE GRAPHS

e
STEFAN ZNAM, Bratislava

This article is a sequel to paper [7]. We deal here with the generalised form
of a well-known problem from the theory of numbers (originated in 1916 by
I. Schur, see [6]); further we give some applications of resnlts in the graph
theory (see [4]). '

I

Let k, n and p be natural numbers, with & > 3.

Definition 1. We say that the set M is a k-thin set if from the condition

a, az, ...,ak_16ﬂ.[
it follows that :
a1 + az + ... —[—ak_1¢M

(the numbers a; need not be different).
Definition 2. The greatest natural number N for which there exist p disjoint
k-thin sets Sy, S, ..., Sp such that

mon+1,.. Ny =U S,
=1

will be denoted by f(k, n, p)(1).

Remark. The f(k, 1, p) is identical to f(k, p) introduced in paper [7].
In the present paper we shall determine the value, resp. the lower estimation
of f(k, n, p). Our main result is

Theorem 1. For arbitrary natural k 2 3, n and p we have

(1) [k, n, p) 2 kf(k, n,p — 1) + (k —n —1).

(1) From results of [5] the existence of f(k, n, p) for an arbitrary natural ¥ = 3, nand p.
follows.
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Remark. The special tase of this Theorem (case » = 1) is proved in paper
[7]. The proof of Theorem I is completely analogical to the proof of its special
case and therefore we shall not demonstrate it here.

Corollary 1. Let u and v be natural numbers, with v = u. We have

o k—mn—1
(2) f(k, m,0) 2 Bouf(h, m, w) + ———— (= — 1).

Proof of Corollary 1. If we apply the inequality (1) to the number
f(k, n, v), we have:

f(k!n’v) gkf(k;n,v—l)'*"(k—n—l) 2 sz(k,n3072)+
+kk—n—1)+Ek—n—1) .. gk”‘“f(k,q,u)—f-
+(k—n—1) (kv 4 ov2 4 .+ k4 1) =
n—1

k —
= kvuf(k, m, u) + ————

ko—v — 1).
1 )

Corollary 2.

@ [k, n, p) 2 k—_": (k» — L)yn + (n — 1).

Corollary 2 is a special case of Corollary 1 (case of u = 1; obviously
f(k, n,1) = (k — 1)n — 1 for arbitrary k& and n), but we mention it separately
due to its great inportance: it gives a lower estimation of f(k, n, p). The
estimation (3) is not the best possible and for the case of n = 1, k = 3 it was
already improved (see [1]). For an arbitrary p = 4 it is true that

89.3r%—1

f(?’, l:p) = ’f’

which is obviously better than the estimation following from (3):

3r—1
2

f3,1,p) 2

Again, in the case of p = 2 we have in (3) an equation for an arbitrary
n and & = 3. We state it in the form of a Theorem:
Theorem IL. For an arbitrary n and k = 3 we have

flk,m, 2) = i—f(k2-—1)n+(n——1)=(k2-k——-1)n—1,
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""Remark. Hénce in the case of p == 2 our problem is solved completely,
since we found the exact value of f(k, x, 2).
Proof of Theorem II. From (3) it follows that

flk,n,2) = (B —k — 1)n — 1.

To finish our proof we must show that

flen,2) s (2 —k— Lm — 1.
Hence it is suffucient to show that the numﬂers ! ‘ L
(4) n,e+1,...,(2—k— 1)n

cannot be divided into two k-thin sets for any n and k& = 3. Wé shall use the
methods used for the proof of analogical assumptions in paper [8]. "

We shall prove indirectly. Let us suppose that there exists a division of the
numbers (4) into two k-thin sets. Let us denote them 4 and B. Without loss
of generality we can suppose that n € 4. Since the sum of ¥ — 1 elements
of A cannot belong to A, the number (k¥ — 1)n belongs to the set B. From
analogical considerations it follows that the number

(f—1)2n = (k2 — 2k + 1)n

r\

belongs to the set 4 (this number is smaller than (k2 — *— l)n) We can
write

B —k—Un=_>F—2).n+1.# — 2k + ).

The numbers (k2 — 2k - 1)n and n are from the set 4, hence the number
(k2 — & — 1)n belongs to the set B.

Now we shall distinguish two cases:

a) Let kne A. We have: n, kn, (k2 — 2k 4+ 1)n € A, where

D =2k lm=1.n+(k—2).kn

(%n is smaller than (k2 — k — 1)n, since k = 3). It is a contradiction, because 4
is a k-thin set.
b) Let kn € B. We have (k — 1)n, kn, (k2 — k — 1)n € B, where

B—k—1n=1.(—1)n+ (k—2).kn.

It is a contradiction, because B is a k-thin set.

From a) and b) it follows that the number kn cannot belong to any of the
sets A and B; hence the numbers (4) cannot be divided into two k-thin sets
in any way; q.e. d.

Remark. Our method — so simple for the case of p = 2 —is already very
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complicated for the case of p = 3. To prove that the numbers 1, 2, ..., 14
cannot be divided into three 3-thin sets in any way, we must distinguish
17 cases (we have here k = 3, n = 1, p = 3). In the cases p = 4 it is advisable
to use computers.
* ok K
We give now the second proof of the relation (3) (independent of Theorem I),
which gives a good method for the direct division of the numbers

(5) nn+1,...,

—f(kr—l)n+(n—1)

into p k-thin sets.
Second proof of (3). First we prove relation (3) for the case of n =1,
i. e. we prove that the numbers’

k—
(6) L2, ...,

2k 1
D —
lc—l( )

can be divided into p k-thin sets.
Let us form from the numbers (6) the following sets:
Fi. ={&:2=12,...,(k—2) (mod(k— 2)k)},
s ={x:z=(k— 1),k ..., (k— 2)k (mod (k — 2)k2)},

Fp = {x ‘x= ’7: —'f(km—l —1) 4 1,..., (k— 2)bm1 (mod (k — 2)km)],

T k—
Fp = x:xsk_

?(kl’-l —1)+1,...,(k— 2kt (mod (k— 2)70?)} .

Now we prove that
a) all Fy, are k-thin sets,
b) every number from (6) belongs to at least one of the sets F,y,.

a) Let 1,2, ..., %x-1€Fy (Where m is an arbitrary of the numbeérs
1,2,...,p). From the construction of F,, it follows that we can find such
numbers yi, Y2, ..., Yx-1 that we have

21 = y1 (mod (kK — 2)km), z3 = ys (mod (k — 2)km), ...,
Tr-1 = Yr-1 (mod (b — 2)km),
‘where -
. -

(7) S (k"“ —D+12yLyz . yer S (b — 2)km
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From (7) it follows:

k=1 -
(8) S 4 < (k= 1) (k = 2kn < (k — 2)km,
j=1 .
r—1
(9 Syzk—2)Et =)+ (k-1 =E—2km1 41
=1 . .
Because of (8) and (9) we have:
—1
(k — 2)km—1 < > y< (7c - 2)k’"
oo i=1

From the last inequality it follows that the number z y; cannot be congruent

j=
with any of the numbers of F,y (mod (k — 2)km). The same holds for the
number
k—1 k—1 k—1

Z x;, since z x; = Z ys (mod (k — 2)km). Hence 2 s

cannot be equal to any of the numbers of F,, and Fy, is a k-thin set. Since m
was an arbitrary of the numbers 1, 2, ..., p, the proof of part a) is finished.

b) We have to prove that each of the numbers of (6) belongs at least to one
of the sets Fs. We shall prove it by induction with respect to p.

It is very easy to verify that the assertion is valid for p = L

Let'p > 1. Let us S Suppose that the assertlon is valid for p — 1 (i. e. that
the numbers

; —9
‘1,2, ..., k-1 — 1
belong to the sets F1, F, ..., Fp_1). We shall prove that the assertion is valid
for p, too. '
The numbers "
k=2 S (Bl —1) 41, k= 2(k2’-1 )42, ..., (—2)wt
k— E—1 =1 > eer (B —2) A
obviously belong to the set . We must prove yet that each of the numbers
k —9 N ]
(10) 6 = 2t 1, (k= B 42, ., (0 — 1), )
belongs at least to one of the sét's Fp. Since
kE—2
(k — 2)lot + (kp—l — )= -1, )
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every of the numbers (10) can be written in the form

kb —
(k — 2)701’—1 +1Y, where 1 £ ¥ < I:-— (k-1 —1).

Because of the inductional assumption every such Y lies at least in one of the
sets F'1, Fo, ..., Fp_1. The same is valid for the numbers (10), since they are
congruent Wlth the related Y (mod (k¥ — 2)k?=1), hence also (mod (K — 2)k*),
where 1 < s £ p — 1. A number from (10) belongs therefore into the same
set as the Y related to it. i _

The sets Fy, are not disjoint, but we can easy get from them a system of
dlS]omt sets. The proof of (3) for » = 1 is finished.

 Now ‘we prove (3) for an arbitrary natural » > 1, i. e. we prove that the
numbers (5) can be divided into p k-thin sets. :

Let us divide the numbers (5) into n-tuples in the following way:

ay = {n,n’—{-l, ...,27&—1}, . )
az= {2n,2n 41, ...,3n — 1}, N

;?.z = {in,in 4 1, ..., (in —i—n — lA)},

: _ k—2
ak_g(m_” lk — (kl’ - l)n, R (k?’ - I)n + (v —1) ‘

ey '
. JLet us form from the numl%ers (5) the, sets G’;, Gz, ..., Gp in the following
way: we put the whole n-tuple a; in the set Gy, if and only if ¢ belongs to the
set Fy, (where Fy are the sets introduced above). Every number from (5)
belongs exactly to one n-tuple, every n-tuple belongs to at least one set Gy
(since each of the numbers in (6) belongs to at least one F), hence each of
the numbers in (5) belongs to at least one of the sets Gy . We must prove yet
that Gy, are k-thin sets.

Let z1, %2, ..., x_1 € G (m is an arbitrary of numbers 1,2, ..., p). Let
us denote ‘ i
(11) 21+ X2 + ... + Tp_1 = 29.

It is well-known -that every number a; (¢ = 0, 1, ..., k¥ — 1) can be written
in the form:

(12) @ = rn + i, ‘
where r; and ¢; are not negative integers, and
(13) @ sn—L
If we put (12) in (11) we shall have
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k—1

’ . k—1 ' R
(14) n > ri+ D ¢=rm + qo. , o
-1 is1

k—1
According to (13) > ¢:< (k — 1)n, hence we can write
i=1

. k—1 .
(15) C Za=®k—imta,
where .
(16) 2<jSk 0sgsn—1 |

From (14) and (15) we have the following 'e‘quation

k—1

(17) n;h + (B —j)n + ¢ = ron + qo.

From (13), (16) and (17) it follows that go = g, hence B

k—1
z n—i—(lc—j):r(').
i=1

According to the assumption the numbers z;, 2, ..., xp—1 belong to the
set G, therefore from the construction of n-tuples and the sets Gy, it follows
that the numbers 71, 72, ..., rr—1 belong to the set F,. Further from the
construction of the sets F'y, the existence of such numbers #;(: = 1,2, ..., k—1)
follows that r; = # (mod (k — 2)km), where

(18 =1+ E—2E—1) S 5 b S (b —1) (b — k-
i=1
(see (7), (8) and (9)). From (16) and (18) we get the inequalities:

k—1

St (b — ) 2 (b —2) (Bm=t — 1) + (b — 1) + (& — ) > (b — 2knY,

i=1

—1
‘21 i+ (k—j) £ (b —2) (b — 1)k 4 (k — j) £ (b — 2)km

k—1 .
Hence 3 t; + (k — j) ¢ Fm, thus the number
i=1
s L
ro= o r+ (k—j)= '21t¢+(k—j) (mod (k — 2)km)
i=1 i= -
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is not from F,, either. But from this it follows that z¢ = ron + qo ¢ Gy,.
The proof of (3) is completed.

\

o II

In this part we shall show an application of the above results by the solving
of a well-known problem from the graph theory,

Definition 3. Let n and N be arbitrary natural numbers. We shall say that
a graph G of N vertices is an n-extensive graph if we can denote all vertices of G
with numbers 0, 1, ..., N — 1 so that two vertices Pyand Py (3,5 = 0, 1, ..., N—1)
are connected by an edge if and only |i — j| Z n. '

Remark. Obviously every complete graph is an 1-extensive graph.

Definition 4. Let the natural numbers n, p and k& 2 2(t = 1,2, ..., p) be
given. We shall denote by g(n, p; k1, ke, ..., kp) the greatest natural number K
JSor which all edges of an arbitrary n-extensive graph of K vertices can be coloured
by p colours so that there does not arise any complete subgraph of k; vertices, all
edges of which are coloured by the same colour Ci(t = 1, 2, ..., p)(2).

Definition 5. A complete subgraph, all edges of which are coluored by the same
colour (C;) will be called monochromatic (Ci-chromatic).

Papers [4] and [7] deal with the case of n = 1 (i. e. with the case of the
complete graph). The results of our paper give a generalisation of the results
of [4] and [7].

We shall determine the lower and the upper estimation of the function
g(n, p; k1, ke, ..., kp).

Theorem III. For an arbitrary natural n,p and k; =2 3@ =1,2, ..., p)
we have

(19) 9(”»2’;701» k27---’k11) =

P
< 21 g, 3k, ey kica, e — 1, kiga, o, kp) + 7.

i

Proof. Let @ be an n-extensive graph of

» o
N = 2 g(”hp;’ﬂ: veey ki—l’ kl - 19 ki+1, ---’kp) + n + 1
=1 .

(2) The existence of the number K = g(n, p; k1, k2, ..., kp) for n = 1 follows from the
article [4]; for » > 1 we shall prove it in our paper.

304



vertices. We shall prove indirectly. Let us suppose that we find such a colouring
of all edges of G by p colours that there does not arise any Cj-chromatic;’
complete subgraph of k; vertices (i = 1, 2, ..., p). Let us denote the vertices
of @ with numbers 0, 1, ..., N — 1 in such a way that two vertices P; and Py
are connected by an edge if and only if |¢ — j| = = (it is obviously possible,
because @ is an n-extensive graph of N vertices). The vertex denoted by 0
denote by V,. There exist exactly » — 1 vertices which are not connected
with Vo by an edge. Let 7'y denote the set of this vertices of G' which are
connected with Vo by an edge of colour C;. Let the number of elements of
T be m;. Then we have:

1+§: mi+ (n —1)=N.

=1

From this it follows that we cannot have for every (= 1, 2, ..., p) inequality
my £ gn, Py k1, ey ki, ke — 1, kg, ooy kp)

but there exists at least one ¢ for which
my >g(n, p; k1, oeny kica, ki — 1, By, ..o, k).

Whence it follows that in 7'; either there exists a Cs-chromatic(s = ¢) complete
subgraph of k; vertices, or there exists a Cj-chromatic complete subgraph
of ks — 1 vertices. If we give to the later the vertex Vo (which is connected
with all vertices of 7'y by an edge of colour (i) we shall have a C;-chromatic
complete subgraph of k; vertices. It is a contradiction and the proof of the
Theorem is finished.

Remark 1. A special case of Theorem III (» = 1,1i. e. the case of complete
graphs) is proved in paper [4], the methods of which are used in our paper.

Remark 2. Obviously g(n,p; ki, ..., ki_1, 2, ki1, ..., kp) = g(n,p — 1;
kv, ooy ki1, ks, ... kp), therefore by (19) it can be proved by induction
(with respect to p) thay the function g(n, p; k1, ..., k) is finite for an arbitrary
n,pand k (¢t = 1, 2, ..., p).

Remark 3. We can state further: by analogical considerations as in the
case of n = 1 (see [4]) we can prove the inequality

(k1 + ... + kp)!

(20)  g(n, pika, ..., kp) £ + n(p 4 1)Eut e+ k)
kal ... k!

This upper estimation of the function g(n, p; k1, ... kp) is very rough and
probably can be essentialy improved. For the case of n = 1 a better estimation
is shown in paper [4].
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Now we shall deal with the lower estimation of the function g(n, p; k1, ..., kp).
Determining lower estimations we shall use the results of part I of our article.
A connection between the problem of colouring the edges of a graph and the
problem of division of numbers into k-thin sets was shown first in paper [1].

Further we shall consider only the case ky = k2 = ... = kp = k. For the
sake of simplification we introduce the notation g(n, p; k, ..., k) = g(k, n, p).
Hence g(k, n, p) is the greatest of such natural numbers for which all edges
of any n-extensive graph of g(k, », p) vertices can be coloured by p colours
so that there does not arise any monochromatic complete subgraph of k vertices.

Theorem IV. For an arbitrary natural k(= 3), n and p we have
(21) g(k, n, ,p) 2 f(k! n, p) + 1.

Proof. Let @& be an arbitrary n-extensive graph of N = f(k,n,p) + 1
vertices. Let us form p such k-thin sets I3, Iy, ..., I, that each of the numbers
n,n + 1, ..., f(k, n, p) belongs exactly to one of them (existence of such sets
follows from the definition of f(k, n, p)). Let us denote the vertices of G with
the numbers 0, 1, ..., N — 1 so that two vertices P; and P; are joined by
an edge if an only if |¢ — j| = n (the possibility of such notation follows from
the assumption that G is an n-extensive graph of N vertices). The edge joining
the vertices P, and P, is coloured by the colour Cn(m =1, 2, ..., p) if and
only if |s — r| € I,,. We shall show that this colouring fullfils the demands, i. e.
there does not arise any monochromatic complete subgraph of k vertices
(Obviously each edge of @ is“coloured exactly by one colour). We shall prove
indirectly. Let us suppose that by this colouring there arises a C:-chromatic
(t=1,2,..., p) complete subgraph with the vertices

P' Pi” -ul,P'

nu? e ®
We can suppose that
1 >t > ..'. > k.
G is an nm-extensive graph, hence we have:
nEh—1t2,n S lg—13,...,0 S tp_1 — kg, N S 0 — k.

According to the assumption all edges of this complete subgraph are coloured
by the same colour C; and so we have

il — izEI;,’l:z _— ’1:361;, ...,i;;_l —_ ’l:kEI;,ﬁ — 7:]‘;615.
Obviously the following is valid
(11 — t2) + (b2 — 13) + ... + (81 — %) = (81 — ).
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But this is a contradiction because I; is a k-thin set. The proof of the Theorem
is completed. '

Remark 1. Special cases of (21) are proved in the papers [1] and [7].

Remark 2. It is easy to verify the following assertion: Let @ be a subgraph
of an nrextensive graph @' of N = f(k, n, p) + 1 vertices. All edges of G can
be coloured by p colours so that there does not arise any monochromatic
complete subgraph of % vertices.

Remark 3. From (3) and (21) we have:

E—2
glk,n, p) 2 b (k? — I)n + .

It is a good lower estimation only for the case of a small & (for the case of
a great k see [2]). .
Remark 4. From (20) and (21) we have the inequality

k,n SM-{-n 1)pk — 1
Jmp) S o nlp + 1% — 1, _

which gives an upper estimation of f(k, n, p).
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