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A NOTE ON THE STRUCTURE OF THE SEMIGROUP
OF DOUBLY-STOCHASTIC MATRICES

STEFAN SCHWARZ, Bratislava

. n
An n X n matrix P = (ps) is called stochastic if px = 0 and > pux =1
n k=1
(for 1 = 1,2, ..., n). If moreover Zpﬂc =1 (for k=1,2,...,n), the matrix
in
is called doubly-stochastic. '

Since the product of two stochastic [doubly-stochastic] matrices is again
a stochastic [doubly-stochastic] matrix, the set S, of all stochastic and the
set D, of all doubly-stochastic matrices are semigroups. Clearly D, < Gj,
for n > 1 Dy # Gy

Introduce in S, [and D, respzctively] a natural topology by the requirement
Pm = (p®) - P = (px) if and only if p{¥ - piu . The sets S, and D, become
compact Hausdorff semigroups.

In paper [1] we have studied the structure of S, and, in particular, we have
shown that the fundamental results concerning Markov chains follow from
" the general theory of compact semigroups.

The present paper contains some notes concerning the structure of D, (n > 1).
First: In contradistinction to S, (n > 1) the semigroup D, contains only
a finite number of idempotents. Secondly: If I is an idempotent matrix € S,
of the rank s it has been shown in [1] that the maximal group Go(I) belonging
to I is isomorphic to the symmetric group of s letters. This is not true in .
The maximal groups belonging to two different idempotents of the same rank s
need not be isomorphiec.

Some further comments on the structure of D, are given.

1. THE IDEMPOTENTS € D,

Lemma 1. A doubly-stochastic matrixz 1s either irreducible or completely
reducible into irreducible doubly-stochastic matrices.

Proof. Suppose that P = (pi&) is a reducible doubly-stochastic n X n
matrix, i. e. there is a permutation matrix W such that
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where A4; and A4 are square matrices of orders s > 0 and n — s > 0 respec-
tively and B is a rectangular (n — s) X s matrix. We shall show that all
elements of B are zeros.

Write W-1PW = (z). By supposition we have for 1 < k < n

1—lek+zxtk

t=8+1

By summing the first s equatlons we get

Z Z-’L‘tk+z quc-

k=1 i=1 k=l i=8+1

Now for any ¢ with 1 £ ¢ < s we have by supposition Z xg = 1, so that
LK 8
> > @ = s. Hence Z = 0. Smce i = 0, We conclude T = 0
t=lk=l k-l t=8+1
fort=s8-+4+1,...,nand k= 1,2,...,8

In the matrix W-1PW = diag (41, 42) both matrices 4,, A2 are doubly-
stochastic. If for instance 4, is reducible, we may apply the same argument,
which shows that 4, is completely reducible. Repeating this process we obtain

Lemma 1.

Lemma 2. There exists a unique irreducible idempotent r X r doubly-stochastic
1
matriz, namely the matriz A = (au) with all ay equal to the number P

Proof. It is well-known that a non-negative » X r matrix 4 is irreducible
if and only if 4 + 42 4 ... + Ar is positive. If 4 is an idempotent, then
A = A2, hence an irreducible idempotent matrix is necessarily positive.

For 1+ =1,2,...,r denote by p(¢) the least integer j such that a; =
= min (@, @2, ..., dr). Since 4 is an idempotent,

r
Qo) = 2, Aot kU, -
k=1

r
With respect to 1 = > a@,a),x this can be written in the form
Bl

r
Z o0,k [@xt — Bou),i] = 0.

Since ae(a) x > 0 and ax — @), = 0, we have ax,; = aoiy,s for k=12, ..., 1.
1
Furtherz arg = 1 (for every i) implies 7 . ap),s = 1. Hence aix = apu),1 = "
k-l

for any ¢ and any k. This proves our statement.
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Let now I be any idempotent € D,. By Lemma 1 the matrix I is either
irreducible or completely reducible into irreducible doubly-stocha,stlc matrices,
i, e, there is a permutation matrix W such that W-LIW = diag(@1, @2, ..., @s),
where Q; are irreducible matrices, This implies the following result:

Theorem 1. Any tdempotent I € Dy is of the form I = WLUW, where W
is a permutation matriz and U is a matriz of the form

@0
U— 0 @s2...0

00 ..0
1
Here Q; 18 a ri X 7 square matrix with all elements equal to o and 1 + r2 +
+ ... 4 rs = n. Conversely: E’very matriz of this form is an idempotent € Dy

and it is of the rank s.

Corollary. D, contains only a finite number of idempotents.

By choosing suitably the permutatlon matnx W we can obtain that in the
expression for U we have r, 2 1, = ... 2 Ty,

If U contains oy matnces of order g1, a&matnces of order 02, - .., 0g matrices
of order gy, we shall say that I is of the type (o, 0%, ..., 0%). Hereby we
may suppose g1 >g2 >...>p0; and we have a + w2+ ... +as=3,
101 + 202 + ... + 06 = M. o ‘

To find all idempotents € D, it is sufficient to find all partitions of n into
non necessarily different summands, and after constructing the matrix U to
apply all permutation matrices W (which, of course, need not necessarily
lead to different idempotents € Da).

Example. To find all idempotents € D3 we consider the partitions 3 =
=24 1=1+1+4 1, There is one idempotent of the type (3!), namely

the matrix
] 3
I 0= % % ’
3 3/

which is the zero element of Ds. There is a unique idempotent of the type (13),

namely .
1 0 0
Li=|{0 1 0],
0 01

which is the upit element of Ds. Finally there are three different idempotents
of the type (21, 1!). These are the matrices

cof= Sl eop
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O rop= o=

} 30 3 0 % 1 0 0
I;=(} 0), I;=(o 1 0), 1§=(o 3 %).
0 1) 1 01} 0 % %

Hence D3 contains exactly 5 different idempotents.

2. MAXIMAL GROUPS

We shall now study the maximal group G(I) belonging to a given idempotent
I€Dy.

We retain the notations from Theorem 1. If I = W-1UW, then it is easy
to see that G(I) = W-1G(U)W. (Cf. [1], Lemma 8.) Hence to get informations
concerning the structure of G(I) it is sufficient to study the maximal group
GQ(U) belonging to an idempotent of the form

U= dla«g (Ql)Q?a ---sQ‘)'

Recall that an element P € D, is contained in the group G(U) if and only
if: 1. We have PU = UP = P. 2. There is an element P’ € G(U) such that
PP’ = P'P= U and P'U = UP’' = P'.

A) We shall first find the form of an element P € D, for which

(1) PU=UP=P

.P 11y ceey P 18
P=|: ’
P 8ly ooy P 88
where Py is a rectangular 7; X }k matrix. The relation (1) implies Py =
= QP = PiQr. Now QP and PuQr are r; X ri matrices of the forms

holds.
Write

1T ... U1
'L‘b]_, U2y wees Uy V2 ... V2
: ) .
UL, U2, .ov, U, )
* Uy ooe Yy,
respectively. Hence w1 =...=u, =v1=...=v, and Pg is a scalar

multiple of the matrix Ex, where Eg is the r; X 7 matrix with all entries
equal to 1.
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For convenience we shall write Py in the following in both forms:

c11 C1s du dis

—Eu, ..., — Ess —BEn, ..., — Ej,
r1 Ts r 1
(2) P=|: ' =1:
Cs1 Css ds dss
Esl’ A _ESS ESI, ey E38
71 Ts Ts Ts

Hereby (since P is doubly-stochastic)
(3) Z Cik =_z dy = 1.

Conversely: Direct computation shows that if P is of the form (2), and (3)
holds, then PU = UP = P. For

‘1 C13
n E 11Q1 9 ooy E ISQJ
PU =|:
Cs1 §
" EaQ, ..., — EQs

and with respect to

Cik Cik

Cik
EnQ: =

1 Cik Cik
Ey.—Ey=— BxiBu)=—— .11 . Bxg = — Ent
e Tk Tk Tk

— -
Tk Tk

we get PU = P. Analogously UP = P.

B) Suppose now that P is contained in G(U). Then there is a matrix
P’ € G(U) such that PP’ = P'P = U. The matrix P’ is of the same form

8 8
as P with coefficients c;;, dj; satisfying > ¢ =1, > d; = 1.
k=1 i=1

The relation PP’ = diag (Ql?, Q2, ..., Q) implies

8
, 1 .
Cik Cu Eu for 1= 7,
— B — En =
Tk ]

=1 0 (zero matrix) for I # 4.
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Since EwEwx = rxEy, we have

8 ’
Z Calp =
¥=1

1 forl=1,
0 for I #+.

Analogously P'P = diag (@1, @z, ..., @;) implies

5, 1 for = 1,
2, CCil =
k-1 0 for I3.

Hence the product of the matrices
C11 ... Cis C]i oo c;c
c=|.. ) c'=|..
651 coe 653 0;1 cee c‘”
is the unit matrix of order s and both matrices are non-singular (of order s).

8
With respect to the relations > cax = > c; = 1 we get

k-1 k=1
3 , P ,
D el —ew) =0, > ea(l —cy) =0.
k=1 &

Since each summand is non-negative, we have

Gl — ) =0,  cu(l — ) =0

fori, k= 1,2, ..., s. If (for some !) ¢y = 1, then for all k& £ I we have ¢ = 0.
On the other hand, if for some 4,7, we have ¢; <1, then cy(1 — cx) = 0
implies ¢;; = 0 and with respect to cu(1 — c;) = 0 we get ¢;y = 0. This means:
If ¢is < 1, then ¢ = 0. This proves that both matrices C, C’ are permutation
matrices of order s. By the same method it follows that the matrix D = (di)
is a permutation matrix of order s.

We have proved: If P € G(U), then (ci) and (dix) are permutation matrices.
Now both matrices explicitly described in (2) are identical. This implies:
If o # O (and hence ¢y = 1), then di # 0 (hence dy: = 1) and we necessarily
have r; = r;. Summarily:

The necessary condition tn order that
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Ells ey Eld
n 8
P =
C1s . Css
_Egl, ceey _Eu

belongs to G(U) is that (cix) is a permutation matriz and if cix %= 0, then r¢ = rx.

Conversely: If these conditions are satisfied, direct computation shows
that PU = UP = P and there is a matrix P’ € Q(U) such that P'U = UP’ =
= P’ and PP’ = P'P = U. Clearly if (c;) is the inverse matrix to C it is
sufficient to take for P’ the matrix

c'11 clc
— En, Ejs
1 s .
P =]|:
c;l 6;,
0 Egl ) e Egg
| s

If the numbers 7, rs,..,,7s all differ from one another and P e G(U),

then ¢ = 0 for all ¢ %k and G(U) contains a unique matrix, namely U
itself.

In the second ,,extreme case‘ if ¥, = rg = ... = r, = r, the matrix
1 (CuEu, coey Clelilg )
aE
c1lls1, ..., CosBlss

is contained in G(U) for any permutatiori matrix (cix) so that the number
of elements of the group G(U) is s!. .

In general the following theorem follows immediately from our considera-
tions:

Theorem 2. If U is an idempotent of the type (o, 03, ..., 05), then G(U)
18 a finite group of order ! a2! ... ag!.

Example. Consider the case n = 4. The semigroup D, contains (among
others) the following two idempotents, both of rank 2:

1 300 100 0
st b0 [0 b 11
003 3 0%} 3
004 % 0%} 3

Here G(I') is a group of order 2 which contains besides I’ the matrix
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while G(I"’) is a one point group containing only I'’ itself.

Theorem 2 shows a striking ,loss of symmetry“ of G(U) in comparison
with Go(U) [the maximal group belonging to U in ©,]. In [1] we have proved
that if U is of rank s, then Go(U) is isomorphic to the symmetric group of s
letters. But in D, even the order of G(U) depends on the partition of » into s
positive summands. (See our example.) This result is rather unexpected since
the set of all doubly-stochastic matrices seems to be at first glance a ,,much
more symmetric entity‘‘ than the set of all merely stochastic matrices.

To explain the situation call — for a while — a matrix C-stochastic if it
is non-negative and all the column sums are equal to 1. Denote by &, the
semigroup of all C-stochastic matrices and by G,(U) the maximal: group
in &, belonging to a doubly-stochastic idempotent matrix U. Clearly Dy =
=G, NG, and U e D,. The groups Go(U) and G;(U) considered as sub-
groups of the semigroup of all non-negative matrices are isomorphic. But
they are not identical. The intersection Go(U) N G;(U) is a subgroup of Djs
and we clearly have G,(U) N G;5(U) = G(U).

This can be illustrated by our example. Consider the idempotent I'’. Then
Go(I'") is a group of order 2 containing 1"’ and the stochastic (but not doubly-
stochastic) matrix

0 0 01
0 001
0 001
I 330

Analogously G;(I'’) contains I’ and the C-stochastic (but not doubly-
stochastic) matrix

000 }
00 0 }
00 0 }
1 110

We have Go(I") N Gy(I"") = I".

Remark (added in October 1966). After this paper had been sent to print
the paper [2] appeared. It contains (in essential) the results of our paper.
The proofs are, however, different.
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In Theorem la—2a instead of ,tree with a finite diameter* there should be
»tree without infinite peths«. '
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