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ON THE MAXIMUM VALUE OF A CLASS 
OF DETERMINANTS 

JAROSLAV KURZWEIL, Praha 

1. Result 
For m = 1, 2, 3, . . . let X(m) be the set of mXm-matrices such that xtj e 

eE1, \xij\ ^ 1 for i, j = 1, 2, . . . m. 
Define 

g(m) = sup \det(x{,j)\ 
(xitj) e X(m) 

The aim of this note is to prove that 

(1) lim (g(m))lfmlm* = 1. (*) 
m->oo 

2. Preliminaries 
Hadamard inequality reads 

m m 

(2) |det (xt,})\ ^ IT (2 <i)m 

i=l 5=1 

hence 

(3) g(m) <, mlm 

so that it remains to be proved that 

(4) l iminf (g(m))Vmjml ^ 1. 
m-»oo 

Equality in (2) holds, iff (xij) is anorthogonal matrix . Hence g(m) = mlM 

iff there exists a matrix (yij) e X(m) such that \yij\ = 1 for i, j = 1, 2, . . . m 
m 

and 2 VUi VJcj = 0 for i -?--&; such a matrix (^j) is called a Hadamard 
i=i 

matrix, (xij) e X(m) is a Hadamard matrix, iff |det(xij) | = m*m. 

(*) Formula (1) was needed in an investigation on functional differential equations, 
cf. [1]. 
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Let J/f be the set of such m = 1, 2, 3, . . . tha t there exists a Hadamard 
matrix of order m. I t is well known (cf. [2], Chapter 14) tha t 

(5) if m, n e Jf, then mne^/f, 

(6) if m e ^ , m > 2, then m = 0 (mod 4), 

(7) 2keJff for k = 0, 1,2, . . . 

(8) if m = (pk + 1) == 0 (mod 4), p being an odd prime, k = I, 2, 3, . . ., 

then me J(?, 

(9) if m = h(pk + 1), he Jf, h > 2, p being an odd prime, k = I, 2, 3, . . ., 

then m e M9 

and there are known several other sufficient conditions for m e Jtif, but the 
conjecture that Jf contains all m = 0 (mod 4) remains undecided so far. 

J . H. E. Cohn in [3] showed tha t for every e > 0 

(10) g{m) = m^'£)m for all sufficiently large m. 

G. F . Clements and B. Lindstrom in [4] obtained an estimate of g(m) from 
below, from which it follows tha t 

- / 3 \ 1 / 2 

(11) \immf(g(m))Vm/m* = — . 
m -> oo \ / 

3. Lemmas. 

Lemma 1. Let /? be irrational /? > 0. Let $ be the set of all u + v(3, u, v 
being nonnegative integers. Let S = {s±, S2, S3, . . .}, s± < S2 < S3 < . . . . 
For every 6 > 0 there exists a D > 0 and to every d = D there exists a k, 
K = I, 2, 3, . . . such tha t Sjc = d < ^ + x < s* + 6. 

P roof . By the Dirichlet theorem (cf. [5], Chapter 2) for every d > 0 there 
exist integers £>, g such tha t 0 < q ^ d'1 + 1, p ^ 0, \qft — p\ < d. Hence 
p < d-ip + p + d. Let D be the least integer such tha t D > (\qp — p\~l + 
+ 1) (d-1/? + j3 + d) and let r = D be an integer. Let there be distinguished 
two cases: (i) qfi — p > 0, (ii) q/3 — p < 0. In the case (i) define u*i = r + 
+ i(<lP — V)> i = 0,1,2, ... J, J being the whole part of \qfi — J>|_1 + 1. 
I t follows that r — ip = 0, so tha t Wi e S for i = 0, 1, . . . J, r = wo < w\ < 
< . . . < wj, wj > r + 1, Wi+i < Wi +6. Therefore for every d e <r, r + 1) 
there exists an i = 0, 1, . . . J — 1 such tha t d e <w«, Wi+±), so that w* = 

= cZ < ^ + i < ^ + 6. In the case (ii) it is defined Wi = r + 1 + i(q/? — p), 
i = 0, 1, . . . J and the argumentation is similar. The proof is complete. 
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Lemma 2. For every s > 0 there exists a C > 1 and to every m ̂  C there 
exist a, b e Jf7 such that a <L m <b < a(\ + e). 

P roo f : Find s e J f such that z =£ 2*, 4 = 0, 1, 2, . . . (cf. (8), (9)). By (5) 
and (7) 2U .zv = 2U+PV e JP for u, v = 0, 1, 2, . . . and 0 = lg z\\g 2 is irratio­
nal. Put d = lg (1 + e)/lg 2, find D according to Lemma 1 and put C = 2D. 
If m ^ C, then d = lg ra/lg 2 ;> D and by Lemma 1 there exist two pairs 
of nonnegative integers (u, v), (u, v) such tha t u -\- fiv ^ d < u + fiv <u + 
+ fiv + 6. Hence 2^ . zv <, m < 2™ . zv < 2U . zv . 26 = 2™ . zv . (1 + e). The 
proof is complete. 

Lemma 3. g(m -f n) ^ g(m) . gr(n), m, n = \, 2, 3 This follows im­
mediately from the definition of g(m). 

4. P r o o f of (1 ) . By (11) there exists an a, 0 < a < 1 such that 

(12) g(n) ^ cxnnln, n= \,2,3, .... 

Choose e, 0 < e < e _ 1 and find C > 1 according to Lemma 2. Let ra ^ C 
By Lemma 2 there exists a n a e / such tha t a <^ m < a(\ -\- e). By Lemma 3 

(g(™))1/m 

and (12) gr(ra) ^ gr(a) #(ra — a) ^ a*a am~a(m — a)2(m"a), > 

t 
7US 

2*(l „-^pl 1 -^)^ 1 -^) j> ( 1 _'fi)*(l-«).fi*«.ae 
ra/ \ ra/ 

and (4) holds, as e is arbitrary. The proof of (1) is complete. 
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