Matematicko-fyzikálny časopis

Štefan Znám Generalisation of a Number-Theoretical Result

Matematicko-fyzikálny časopis, Vol. 16 (1966), No. 4, 357--361

Persistent URL: http://dml.cz/dmlcz/126978

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1966

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

GENERALISATION OF A NUMBER-THEORETICAL RESULT

ŠTEFAN ZNÁM, Bratislava

1

Let $k \geq 3$ be a natural number and let M be a set of natural numbers. We say that M is a k-thin set if from the condition

$$a_1, a_2, \ldots, a_{k-1} \in M$$

it follows that

$$a_1 + a_2 + \ldots + a_{k-1} \notin M$$
.

With other words: the set M is k-thin if in its numbers the equation

$$a_1 + a_2 + \ldots + a_{k-1} = a_k$$

is not solvable (the numbers a_i can be equal).

Let us denote by f(k, p) the greatest natural number for which there exist p disjoint k-thin sets S_1, S_2, \ldots, S_p such that

$$\{1, 2, \ldots, f(k, p)\} = \bigcup_{i=1}^{p} S_i.$$

The existence of f(k, p) for arbitrary k and p follows from Theorems 3 and 4 of article [3].

The case k=3 was treated by 1. Schur in article [4]. He proved namely the inequalities

(1)
$$f(3, p-1) \ge 3 \cdot f(3, p) + 1,$$

(2)
$$f(3, p) \approx \frac{3^{p} - 1}{2}$$
.

In our article we shall generalize the inequalities (1) and (2) for the case of an arbitrary $k \geq 3$ and show their application to the theory of graphs.

Theorem 1. Let $k \ge 3$ and p be natural numbers. We have

(3)
$$f(k, p + 1) \ge k \cdot f(k, p) + (k - 2).$$

Note 1. For an arbitrary $k \ge 3$ we have $f(k, 1) \le k \le 2$ and therefore because of (3)

$$f(k,p) \geq k \cdot f(k,p-1) + (k-2) \geq k^2 \cdot f(k,p-2) + k(k-2) + (k-2) \geq k^2 \cdot f(k,p-2) + k(k-2) + (k-2) \geq k^2 \cdot \dots + k(k-2) + (k-2) + (k-2)$$

and this is a generalisation of the relation (2) for any $k \geq 3$.

Note 2. If in (3) we put k=3, we get the relation (1).

Proof of the Theorem 1. From the definition of f(k, p) it follows that there exist p disjoint k-thin sets S_1, S_2, \ldots, S_p such that

$$\{1, 2, ..., f(k, p)\} = \bigcup_{i=1}^{p} S_i.$$

Let us put

$$S_{p+1} = \{f(k, p) + 1, f(k, p) + 2, \dots, (k-1) | f(k, p) + (k-2)\}$$

From the inequality

$$(k-1)\{f(k,p)+1\} > (k-1)f(k,p)+(k-2)$$

it follows that S_{p+1} is a k-thin set. Now, to accomplish the proof, it is sufficient to show that the numbers

(4)
$$|(k-1)f(k,p)| + (k-1)| \cdot |(k-1)f(k,\rho)| = k|....$$

$$|kf(k,p)| + (k-2)|$$

(the number of which is f(k, p)) can be divided into S_1, S_2, \ldots, S_p so that after adding some numbers from (4) to S_ℓ we get again a k-thin set A_ℓ .

Let us denote $d = (k + 1)f(k, p) \pm (k + 2)$. Every number a from (4) can be written in the form $a = c(a) \pm d$, where c(a) is a natural number fulfilling the condition

$$0 < c(a) \le f(k, \rho).$$

Now let us add each number a from (4) to the same set to which the number

c(a) belongs. The sets arisen in this way denote by $A_1, A_2, ..., A_p$. We shall prove that every A_i (i = 1, 2, ..., p) is a k-thin set.

Let be $a_1, a_2, \ldots, a_{k-1} \in A_i$. We shall distinguish three cases.

- 1. $a_m = f(k, p)$ for every m = 1, 2, ..., k-1. In this case we have: $a_1 = a_2 + ... + a_{k-1} < d$. From the construction of the set A_i it follows that $a_1 = a_2 + ... + a_{k-1} \notin A_i$.
- 2. Let exactly one of the numbers a_m be greater than d and the other less or equal to f(k, p). We can assume that just a_1 is greater than d and so a_2 , $a_3, \ldots, a_{k-1} \in S_i$. Since $a_1 > d > f(k, p)$, a_1 is one of the numbers (4); hence $c(a_1) = a_1 d \le f(k, p)$ and from the construction of the set A_i it follows, that $a_1 d \in S_i$. The set S_i is k-thin, hence we have

$$(a_1 - d) + a_2 + \ldots + a_{k-1} \notin S_i$$
.

We shall show that $a = a_1 + a_2 + \ldots + a_{k-1} \notin A_i$. We shall prove indirectly. Assume that a belongs to A_i . Since a > d, we can write a = d + c(a); obviously

$$c(a) = (a_1 - d) + a_2 + \ldots + a_{k-1}$$
.

From the construction of the set A_i it follows that c(a) belongs to S_i . This is a contradiction.

3. Let at least two of the numbers a_m be greater than d. Then we have

$$a_1 + a_2 + \ldots + a_{k-1} > 2d > kf(k, p) + (k-2)$$

(since $k \ge 3$) and therefore $a_1 + a_2 + \ldots + a_{k-1} \notin A_k$.

The proof of the Theorem is completed, because the above considerations are correct for arbitrary i = 1, 2, ..., p.

Note 3. The Theorem gives in fact also a method of the direct splitting of the numbers

$$1, 2, \dots, \frac{k-2}{k-1} (k^p - 1)$$

into p k-thin sets. We shall illustrate this method on the case $k=5,\ p=3$ Because of note 1 we have

$$f(5, 3) = \frac{3}{4}(5^3 - 1) = 93.$$

The division of the numbers $1, 2, \ldots, 93$ into three 5-thin sets is the following:

$$A_1 = \{1, 2, 3, 16, 17, 18, 76, 77, 78, 91, 92, 93\}$$

 $A_2 = \{4, 5, \dots, 15, 79, 80, \dots, 90\}$
 $A_3 = \{19, 20, \dots, 75\}$

We shall apply the above results to the solving of a known problem of the theory of graphs. All considerations of part III are direct generalisation of those of [1].

Let g(k, p) denote the greatest natural number such that all edges of a complete graph of g(k, p) vertices can be coloured by p colours so that there does not arise a complete subgraph of k vertices, all edges of which are coloured by the same colour.

The existence of g(k, p) for any natural k and p follows from the article [2].

Theorem 2. Let $k \ge 3$ and p be natural numbers. We have:

(5)
$$g(k, p) \ge f(k, p) + 1$$
.

Proof. Let A_1, A_2, \ldots, A_p be such k-thin sets that each of the numbers $1, 2, \ldots, f(k, p)$ belongs exactly to one of them (existence of such sets follows from the definition of the number f(k, p)). Let G be a complete graph with f(k, p) + 1 vertices. Let us denote them by $P_0, P_1, \ldots, P_{f(k,p)}$. Colour all edges of graph G by the colours C_1, C_2, \ldots, C_p in the following way: colour the edge interconnecting vertices P_i and P_j by the colour C_m if and only if $|i-j| \in A_m$. Let us suppose that all edges of a complete subgraph with k vertices $P_{i_1}, P_{i_2}, \ldots, P_{i_k}$ are in this colouring coloured by the same colour C_{m_0} . We can suppose that

$$i_1 > i_2 > \ldots > i_k$$
.

i. e.

$$(i_1-i_2), (i_2-i_3), \ldots, (i_{k-1}-i_k), (i_1-i_k) \in A_{m_0}.$$

Since A_{m_0} is a k-thin set, this is a contradiction, because

$$(i_1-i_2)+(i_2-i_3)+\ldots+(i_{k-1}-i_k)-(i_1-i_k)$$

The proof of Theorem 2 is complete.

The author is thankful to Prof. T. Šalát for his very valuable notes regarding this paper.

REFERENCES

- [1] Abbott H. L., Moser L., Sum-free sets of integers, Acta arithm. 11 (1966), 393-396.
- [2] Greenwood R. E., Gleason A. M., Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955), 1 - 7.
- [3] Radó R., Studien zur Kombinatorik, Math. Z. 36 (1933), 424 480.

- [4] Schur I., Über die Kongruenz $x^m+y^m=z^m\pmod p$, Jahresber, Dtsch. Math.-Ver. 25 (1916), 114—117.
- [5] Erdős P., Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292 - 299.

Received October 13, 1965.

Katedra matematiky Chemickotechnologickej fakulty Slovenskej vysokej školy technickej, Bratislava