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CUBIC MOORE GRAPHS

JURAJ BOSAK, Bratislava

By a tied graph of type (d, k) we understand — in accordance with [1]

a regular graph with a (finite or infinite) degree d and with a finite diameter £,
not containing any circuit of length < 2k. Finite tied graphs (i. e., tied graphs
of finite degree — so-called Moore graphs) were studied in [1], [2], [3]. In the
present paper  except in the last § 4 — we shall consider only tied graphs
of type (3, k), that is cubic Moore graphs. Obviously, there is no Moore graph
of type (3, 0) and there exists up to isomorphism exactly one Moore graph
of type (3, 1) (tetrahedron). It is known [2] that there exists up to iso
morphism just one Moore graph of type (3, 2) (the Petersen graph) and
no Moore graph of type (3, 3). In this paper we prove the non-existence of
Moore graphs of type (3, k), where 3 < k < 8. (1) For k& > 9 the question
of the existence of Moore graphs of type (3, k) remains open. In § 4 we give
a survey of known results on the existence and the uniqueness of tied graphs
of a given type.

§ 1. BASIC PROPERTIES OF CUBIC MOORLE GRAPHS

Let G be a Moore graph of type (3, k) where k£ > 3. Pick a vertex w of
As (g is a cubic graph, w is adjacent to three vertices a, b and ¢ of G (Fig. 1)
The distance of vertices  and y in G will be denoted by r(2, y). Vertices a
such that »(x, w) k, will be called w-vertices of G, edges joining such ver
tices — w-edges of Gy. As r(x, w) — k, the vertex x is adjacent to a vertex y
such that r(y,w) Lk 1. Considering the fact that Gy does not contain any
circuit of length < 2k, the remaining two vertices, adjacent to x, are w-vertices
Therefore the w-vertices and the w-edges form a quadratic subgraph of ¢,
the circuits of which it consists are called w-circuits of Gy. Evidently, G4 con
tains exactly 3.2% 1w-vertices and the same number of w-edges. Further, G has

(1) This 1esult was presented at the Colloquium on Graph Theory in Mancbach (G.D R.)
in May 1967.
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cdges. 1f we omit all w-cdges from G, the graph 7(w) obtained in this way
will be also connected (from every vertex there is a path to w in T'(w)). As T'(w)
has 3.28 2 vertices and 3(3.28 1 1) 3.2k 1_ 328 — 3 edges, T(w) is
a tree, namely a spanning tree of (fy. The symbol r,(z, y) denotes the distance
of vertices a and y in T'(w) and the symbol «, :, y denotes the unique path
connecting  and y n T (w). Obviously, 7,(x, ¥) > 7(x, y) and r(w, )  ry(w, x).

Fig. 1

Suppose r(x,w) > 2. Evidently, there exists a unique vertex y such that
r(x,w) r(y,w) and ry(xr,y) — 2. This vertex will be denoted by y oa
Obviously, «2x  =.

Let 2€{0,1,2,...,k} and r(w, ) > ¢. Then therc is exactly one vertex y
for which r(w, y) 4, r(w,y) + r(y,x) r(w, z). It will be denoted by y [,
Instead of f3 we shall write briefly 5. Evidently, if & > 4 and «x is a w-vertex
of Gy, then fax  pa. Gy is a tied graph, therefore it contains no multiple
edges. Thus we may denote the edge joining vertices  and y by (z, y) and
the path with vertices z1, @2, ..., xx by [x1, 22, ..., x.].

Lemma 1. Let (x, y1) and (2, ys2), where y1 % y», are w-edges of Gy. Then the
Jollowing equality of sets holds:

{h, Py, Pry2}  {a, b, c}.

Proof. Evidently, each of the elements fix, f1y1, fiyz2 belongs to the set
{a, b, c}. If the assertion of Lemma 1 were false, two of elements fix, fiy1,
Pz would coincide. If Sz puy: (¢ € {1, 2}), there exists in G a circuit
[z, :, yi, x] of length < 2k 1, which is in contradiction to the definition
of a tied graph. If fiy1  piye, there exists in Gy a circuit [y, :, ¥2, x, 1] of
length < 2k, a contradiction again. The lemma follows.

~1
w



Now we can assign to every w-vertex a of G a w-vertex ¥ ¢ adjacent
to x so that
if pfix — «, then p1y b,
if e =0, then piy =c,
if fre ¢, then fiy a.

Lemma 1 guaranteces the existence and uniqueness of g.a.
g /

§ 2. AUXILIARY RESULTS

Henceforth we shall use notation introduced in § 1.
Lemma 2. Let x be a w-vertex of Gy. We have:

(a) prgfe  fplx if and only if i j (mod 3).

(b) The elements px, afr, ppda, appde are mutually different.

(¢) pedx  ofix, fox  afiqix, el fa.

(d) The elements fzx, pox, fox, Bede, ..., pplla are mutually diffcront.

Proof. (a) follows from Lemma 1.

(b) From the definition of « it follows that fu + apr, and fede + g
If o pedx, then there exists a circuit [x, ga, ¢2r, ¢, :, @] in Gk of length
< 2k — 3, which is in contradiction to the definition of a tied graph. If p¢3x

afz, we have a circuit |x, gx, ¢2x, ¢3x, :, ] of length 2k 1, a contradic
tion again. If px  apedr, then efx — o28¢3x  fedr, and we have the case
treated above. If apr  ofigx, then o2px  o2fpde, 1. e. fr fedr, which is
also impossible.

(¢) According to (b) the elements fx, affx, fe3z, afig3r are mutually different
But {rom Lemma 1 it follows that iz — f1pede  frapr frafpede  pipgba
Thercfore fgbr € {fx, pedr, ofr, afpdr}. If febx  pr, then a cireuit |1, ¢,
e, @3, ptr, ¢dx, ¢dx, :, o] of length < 2k would exist in G, which is a con
tradiction. If Bgbx  pedr, for y  ¢3z we should have g3y  py, which
contradicts (b). If Bgéx  ofpdr, then analogously we have g3y afly, again
in contradiction to (b). Therefore figbx — afr. Using this relation we obtain
Bydr  Beb(gdr)  Beby  apy  ofigdx. Further, ppl2a  feb(gbr)  ap(gbr) -

apr pa.

(d) Let Bgix  Beir, i, je{0, 1,2, ..., 11}, ¢ j. Evidently, figla phigie;
according to (a), wehaved  j(mod3),i.c. wecanwritej ¢ 3t te {1,2,3}.
Put y  ¢lx. We have: . Bz peix pet 3t pe3ty. But from (b)
and (c¢) it follows that Sy + pe3ty, which is impossible.

Lemma 3. The length of every w-circuit of Gy is a multiple of 12.
Proof follows from (¢) and (d) of Lemma 2.
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Lemma 4. Lct M be a set of w-vertices of Gy, k > 5. If M has more than 2+-5
lements and for every y1, y2 € M we have fy1 Bys, then there exist x1, a2 € M,
1 e such that ry(z1, x2) < 4.

Proof. Form the set N {px ox}, ;. The set N cvidently cannot have
mote than 24 5 elements; therefore for some ay, a2 € M, x1 % 22 we have
241 ﬁk °Xp. 1. C. 7',0(.’1,'1, x‘g) < 4.

Lemma 5. Lct 2 and y be w-vertices of Gy.. If fx Py, thenry(a, ) < 2k 6
If o apy, then ry(e,y) 26 4.

Proof. The path [z, :, y| has evidently the length < 2L 6 in the first
-«asc¢ and the length 2k 4 in the second case.

Lemma 6. /f x + y are such w-vertices of Gy that fx Py and pgx  Pgy,
thar ry(x, y) > 6.

Proof. If the assertion of the lemma were not true, then r.(x, y) < 4
By Lemma 5 we have ry(px, py) < 2k — 6. But then |x, qu, :, ¢y, vy, :, 2]
would be a circuit of length < 2k, which is impossible.

Lemma 7. Lcl x bc « w-vertex of Gr, k = 4. Then we have.

1) Py 20x  afigu,
(2) po lox  afiglr,
(3) Py afly 2,
4) oo afip Tx.

Proof. First we prove (3). As fax  far, consequently fix  frax, and
Uso prgr prgar. According to (d) of Lemma 2 the elements f(gax), fg3(gar)
P3¢ (g o), Pg?(@ar) are mutually different. By (a) of Lemma 2 we have fi(g 7x)

mpd(gar)  Prgb(ear)  prg?(pox). Since pi(pax)  pi(gx). the element
p(g o) equals one of the elements f(px), fg3(px)  pobde 2x, feS(qa), Pe(gx)

pel2e e, hence with respect to (¢) of Lemma 2 plgax) is equal to
~some of the elements fox, afip 2x, afigx, ig 2r.

I 3gaa pga, then the circuit |z, 2, :, o, pax, :, ¢gx| has the length < 24

2. because ry (@, o) 2 and according to Lemma 5 ry(gox, gr) < 2k 0.
It pgpax afiga. the circuit [px, a, @, ox, @oax, @, ¢x| has the length 2k, for
Lemma 5 vields ry(gox, ga) 2k 4. If ppaa pp 2r, the circuit [¢ 2w,
g la,x, 0, o, gar, o, @ 22| has the length < 2k I, because Lemma 5 implies
1 (¢ 2x, qax) < 2k 6. Therefore only the last possibility, i. e. (3), can be
vadid.

The proof of (2) is ,,dual® to that of (3) it is sufficient to replace ¢2, ¢, ¢ !
md ¢ 2 by ¢ 2, ¢ 1, ¢ and ¢2, reepectively.

If'in (3) we replace « by o, we obtain

pyole  apq 2ax,
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whence, as o2 is an identical mapping, it follows that

o 2ox = o2fp2ax = afpolr = afigx,
that is, the relation (1).
The proof of (4) is ,,dual* to that of (1).

Lemma 8. Let x be a w-vertex of Gy, where k > 4. Then we have:

pgtoax = foa,
pyoax = Po*x,
pebaxr = afix,
fytoax = fo 2,

fydax = fo lz,
pollax = afpx,
pellox = afipx,
ppleax = fx,
felaxr = afip 2.

The proof follows from (c) of Lemma 2 and Lemma 7, for instance:
Betax = fgS(p 2ox) — af(p %ax) = «(fp 2ax) o(afpr) fez,
Bptox  fei(p tor) = af(p lax) — alfp lax)  fex,
peb(ax) — off(ax) — afz, ete.

§ 3. MAIN RESULTS

Lemma 9. There is no Moore graph of type (3, 3). (2)

Proof. Let G3 be a Moore graph of type (3, 3). Then for any w-vertex x of G
we have fz x. (c) of Lemma 2 yieldsox — afix peSx  ¢fz, agpx  off(px)

Peb(px) — ¢?x. Therefore Gz contains a hexagon [z, ¢w, :, ¢z, ¢bz, :, x|
which contradicts the definition of a Moore graph.

Lemma 10. There s no Moore graph of type (3, 4).

Proof. Let G4 be a Moore graph of type (3, 4). Let x be a w-vertex in (4
LEvidently G4 has just 24 w-vertices, so that, according to Lemma 6, in (7,
there is either one single w-circuit with 24 vertices or two w-circuits, each
with 12 vertices. In the first case (/4 contains a hexagon [z, ¢z, :, g3z, ¢'2x, 1, x].

and we have a contradiction. In the second case from (c) of Lemma 2 and
Lemma 7 it follows that

(2) This result follows also from [2].
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petr = pob(92x) — afp®x = fo~lax,
Be’x — PeS(px) — afpr = o 2ax

therefore (4 contains a hexagon [¢"x, ¢, :, ¢ lax, p~2ax, :, ¢7z], thus we have
arrived at a contradiction again.

Lemma 11. The length of any w-circuit in Gy (k > 5) is at most 3.2% 5.

Proof. Let C be a w-circuit in Gy of the length 12s (see Lemma 3). Pick
a vertex v of C. Denote fg2v  d, fobv — e. Let Z be the set of all vertices
of (' of the form g@!2ny, where n =0, 1, 2, ..., s 1. Let z€Z. From (c¢) of
Lemma 2 it easily follows that f¢2z — d, ofz = e.

Define the functions 81, d2, d3, 44 thus (z runs through the set of all w-ver-
tices):

) =

) =
03(x) = apix,
da(x) = @0agpdap?e.

Let us prove that 86;(z) = d, fpdi(z) = e for i = 1, 2, 3 and 4. By systematic
using of (¢) of Lemma 2 and of Lemmas 7 and 8 we obtain:

pou(z)  Pedoz  fe* —d,
pox(z)  Plpagaz)  peu(paz) = afy 2paz) = a(fplaz) = a(afg) =
fy*z =d,
poa(z)  Palg®2) = ez =d,
pos(z)  Pg'%x(giag®2) = afp(pPagz) — a(feba(g?2)) = a(«f(¢?2)) =
o2z — d,
fpor(z) = pgbaz — afiz = e,
Bpda(z)  fePalpaz) — afp~(gaz) = afi(az) = afiz = ¢,
Ppds(z) — Poalg®z)  ofp~(¢) = ofiz — e,
Ppoaz)  folla(piupz) = aﬂ¢2(¢5a¢22) afgia(g®z) = «fe(¢%2) —
afiz — e.

Evidently, for every z € Z and i € {1, 2, 3, 4} the edge [0i(z), pdi(2)] is a w-edge
of Gr. We shall prove that all such edges are mutually different. Suppose
that [6;,(21), @0, (21)]  [0,(2), @9;(22)], where 41, ©2€{1, 2, 3, 4} :21, 22 € Z.
There are two possibilities:

I.0;(z1) ¢0,(22). But then we have g2 =d = f0,(21) Bed,(z2)

e Py, which contradicts (d) of Lemma 2.

IL. §;(z1)  0;(22). We first prove that i, = is. By using (¢) of Lemma 2,
L.emma 7 and Lemma 8 we obtain for any w-vertex x

Po 1o1(x)  Polox  Pox,



) Py = frax = ofi(p ) petle %) Pete,
) By e afgte pelor,
x)  pgtex fg 2 g0,
) Pyragir — afiqr fylv,
) BePalpragrr) - fetalgie)  PeAet)  fete. e
According to (d) of Lemma 2 the elements f¢x, pete, pop'x, fplor are mutually
different. From the equality 0, (z1) d;(22) it follows that pgg 10 (1)
B 10;(z2) and Bg20; (21) P20, (z2). Bdt this is possible only if i1 42 o1 it
{t1, 22} {2, 4}. First analyse the second possibility. Let, e. g., iy — 2,4 4
i.e., 02(z1) — da(z2). Puty  agazi. Wehave: By poagazr  pgozt  afp 22
Btz — poto, By Berlpagezr)  Pe202(z1) — Be20a(z2) Ptz — Prte
Thus we obtain that Sy f¢3y, which contradicts (d) of Lemma 2. Thereforc
only the possibility 71 42 remains. Put ¢ ¢ - ¢ so that §;(z1) 0 (=
o and @ are one-to-one functions. Consequently also every d; is a one to o1
function and from the equality 6;(z1)  d:(z2) it follows that +;

Thus we proved that all edges of a form [d;i(z), @di(2)], where ¢ € {1, 2, 3, 4}
ze{v, p'2v, ¢y, ..., P26 D v} are mutually different. Hence we have 4s < 1ch
edges, and always £0;(z)  d, ppdi(z) e. According to Lemma 6 any two ot
the vertices 6;(z) have their distance r,, at least 6. But from Lemma 4 it follows

that we can have at most 2% 5 such vertices. Thercfore 4s < 24 5 i. e. the
length of Cis 12s < 3.2F 5,

Theorem. T'here is no More graph of type (3, k), where 3 < k < 8.

Proof. Let G be a Moore graph of type (3, k), 3 < k£ < 8. Lemmas 9 and 10
imply that £ > 5. From Lemma 3 we know that the length of any w-circuit
in G} is a multiple of 12. According to Lemma 11 this is possible only if & 7
But () contains no circuits of length < 14, especially no 12-gons. From
Lemma 11 it follows that & — 8 and all w-circuits in Gy are 24-gons. Choosc
a w-circuit C, a vertex » of C and construct by the method from the proot of
Lemma 11 (for s 2) 8 w-edges of a form (d;(z), ¢di(z)), where po;i(z) d
Ppoi(z)  e. Consider the 9th edge (¢ lagbv, agbv). By Lemma 2, (c), Lemma 7
and Lemma 8 it is easy to prove that ¢ lagbv — d, fagbv e, pp 2ag‘r
Pov, Ppagby  pgtf. T'rom the proof of Lemma 11 it follows that it this
edge equals one of the former 8 edges, we necessarily haves  1,i.c.¢ logbr
01(z). As C'is a 24-gon, either z — v orz  ¢120. In the first case in Gy therc
cxists a path [v, ¢v, ¢2v, ¢3v, plv, ¢dv, ¢80, 1, agbv  @Saw, ¢lov, @law, giur,
@20, Qav, av, :, v]; in the second case there is in Gy a path [¢8v, ¢7v, @8v, ¢%,
710, glly, ¢l2, :, agl2, pogl2e, pagl?y, Elugly, plogl®, Edaq 12y, gbaglir
agbv, :, ¢bv]. Both these paths contain a circuit of length < 16, which 15
in G& impossible. Therefore in (8 there exist 9 edges of type (8, €), where 36 d

75



fe ¢, ¢ ¢qo. According to Lemma 4 at least two of the vertices of type o

say 0" and ¢'' have the distance 7,()’, ") < 4. But this contradicts Lemma 6.
The theorem follows.

§ 4. A SURVEY OF TIED GRAPHS

Results of 1], [2] and our Theorem make it possible to summarize the

Lknown results on the existence and uniqueness of tied graphs of type (d, 1)
mto Table 1.

Table 1

tied graphs of type (d, k) iameter
k0 k 1 ko2 kA3 4<k<8 Lk 9

d 0 Ky R, / /
d 1 ‘ K. B /
d 2 ¢y Ry |C3 Ks Cy C; Cap 1 (a8
d 3 / K, P ;] '

degree  d > 4, even Ry, Kq 1 / ? ’
d  3,0dd, 7.57 Kq . | ? B
d 17 \ K s / ? '
d 57 i Ky ? | 9 ’
N, \_ Ra ‘ Ka E 1'[ E E i

Here the symbol ¢ means that neither the existence nor the uniqueness
of a tied graph of type (d, k) has been proved. 'The symbol / means that there
is no tied graph of the corresponding type, the symbol £ denotes that so far
only the existence (but not the uniqueness) for a given type has been proved.
In the remaining cases there exists (up to isomorphism) exactly one tied
graph as indicated in the table, where A, is the complete graph with » veitices,
(, is the circuit with n vertices, R, is the graph consisting of one vcitex
‘nd n loops, P is the Petersen graph and HS denotes the Moore graph of
type (7, 2) with 50 vertices constructed by Hoffman and Singleton in |2]
The ,.non trivial part of the table is strongly framed
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