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Matematický časopis 20 (1970), No. 1 

CUBIC MOORE GRAPHS 

JURAJ BOSAK, Bratislava 

By a tied graph of type (d, k) we understand — in accordance with [1] 
a regular graph with a (finite or infinite) degree d and with a finite diameter k, 
not containing any circuit of length ^ 2k. Finite tied graphs (i. e., tied graphs 
of finite degree — so-called Moore graphs) were studied in [1], [2], [3]. In the 
present paper except in the last § 4 — we shall consider only tied graphs 
of type (3, k), t h a t is cubic Moore graphs. Obviously, there is no Moore graph 
of type (3, 0) and there exists up to isomorphism exactly one Moore graph 
of type (3, 1) (tetrahedron). I t is known [2] that there exists up to iso 
morphism just one Moore graph of type (3, 2) (the Petersen graph) and 
no Moore graph of type (3, 3). I n this paper we prove the non-existence of 
Moore graphs of type (3, k), where 3 ^ k ^ 8. (x) For k > 9 the question 
of the existence of Moore graphs of type (3, k) remains open. In § 4 we give 
a survey of known results on the existence and the uniqueness of tied graphs 
of a given type. 

§ 1. BASIC P R O P E R T I E S OF CUBIC MOORE GRAPHS 

Let Gjc be a Moore graph of type (3, k) where k ^ 3. Pick a vertex w of (4 
As Gjc is a cubic graph, w is adjacent to three vertices a, b and c of Gjc (Fig. 1) 
The distance of vertices x and y in Gu will be denoted by r(x, y). Vertices x 
such that r(x, w) k, will be called w-vertices of Gjc, edges joining such ver 
tices — w-edges of Gjc. As r(x, w) — k, the vertex x is adjacent to a vertex y 
such that r(y, w) k 1. Considering the fact that Gjc does not contain any 
circuit of length ^ 2k, the remaining two vertices, adjacent to x, are w-vertices 
Therefore the w-vertices and the H>-edges form a quadratic subgraph of 6\, 
the circuits of which it consists are called w-circuits of Gjc. Evidently, Gjc con 
tains exactly 3.2fc 1 tv-vertices and the same number of w-edges. Further, Gjc has 

(L) This lesult was presented at the Colloquium on Graph Theory in Manebach (G.D R.) 
in May 1967. 
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I- 1 

vertices and 

] _|_ ^ 3.2«' — 3.2* — 2 

(3.2* — 2) 3(3.2* i 1) 

edges. If we omit all w-edges from Gk, the graph T(w) obtained in this way 
will be also connected (from every vertex there is a path to w in T(w)). As T(w) 
lias 3.2* 2 vertices and 3(3.2* 1 1) 3.2* 1 -3 .2*— 3 edges, T(w) is 
a tree, namely a spanning tree of Gjc. The symbol rw(x, y) denotes the distance 
of vertices x and y in T(to) and the symbol x, :, y denotes the unique path 
connecting x and y in T(w). Obviously, rw(x, y) ^ r(x, y) and r(iv, x) ru (tv, x). 

Kig. 1 

Suppose r(x, lo) ^ 2. Evidently, there exists a unique vertex // such that 
r(x, w) r(y, w) and rw(x, y) — 2. This vertex will be denoted by y ax 
Obviously, OL2X X. 

Let i e {0, ] , 2, . . . , h} and r(iv, x) ^ i. Then there is exactly one vertex y 
for \\ hich r(w, y) i, r(w, y) -f- r(y, x) r(w, x). I t will be denoted by y (J,X 
Instead of fa we shall write briefly /?. Evidently, if k ^ 4 and x is a w-vertex 
of G/c, then /?oc.r /fa;. 6?̂  is a tied graph, therefore it contains no multiple 
edges. Thus we may denote the edge joining vertices x and y by (x, y) and 
the path with vertices x\, x2, ..., xn by [x\, x2, ..., xn\. 

Lemma 1. Let (x, y\) and (x, y2), where y\ 4= y2, are w-edges of Gjc. Then th( 
folloiving equality of sets holds: 

{fi\x, / % i , fhy2} {a, b, c} . 

Proof . Evidently, each of the elements fi\x, fiiyi, fi\y2 belongs to the set 
{a, b, c}. If the assertion of Lemma 1 were false, two of elements fi\x, fi\y\, 
fi\y2 would coincide. If (J\X $\yi (i G {1, 2}), there exists in G/c a circuit 
\x, :, yt, x\ of lengtli ^ 2k ] , which is in contradiction to the definition 
of a tied graph . If fi\y\ ft\y2, there exists in Gjc a circuit [y\, :, y2, x, y\\ of 
length < 2k, a contradiction again. The lemma follows. 
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N o w we can assign t o every iv-vertex x of Gjc a 20-vertex y qx ad jacent 

t o x so t h a t 

if fax — a, t h e n fay b, 

if fax = b, t h e n fay = c, 

if/?i*r c, t h e n /?i?/ a. 

L e m m a J gua ran tees t he existence a n d uniqueness of qx. 

§ 2. AUXILIARY RESULTS 

Hencefor th we shall use no ta t ion in t roduced in § I. 

Lemma 2. Let x be a w-vertex of Gk. We have: 

(a) faqlx faqix if and only if i j (mod 3). 

(b) The elements fix, yfix, ficp3x, yfiq3x are mutually different. 

(c) fiq6x yfix, fiq9x yfiq3x, fiql2x fix. 

(d) The elements fix, fiqx, pq2x, fiq3x, ..., fiqux are mutucdly different. 

P r o o f , (a) follows from L e m m a J. 

(b) F r o m t h e definition of a it follows t h a t fix 4= afar, a n d fiq3x 4- yfaf3* 

I f jix {3q3x, t h e n the re exists a circuit [x, qx, q2x, q3x, :, x] in Gk of length 

< 2k — 3, which is in cont radic t ion to t h e definition of a t i ed g raph . If fiq3x 

yfix, we h a v e a circuit \x, qx, q2x, q3x, :, x] of length 2k J, a contradic­

t ion aga in . I f (Jx ypq3x, t h en y.fix — y2fiq3x fiq3x, a n d we h a v e t h e case 

t r e a t e d above . I f yfix y.jiq3x, t h e n a2fax y2fiq3x, i. e. far fiq3x, which is 

also impossib le . 

(c) According to (b) t h e e lements fix, yfix, fiq3x, yfiq3x are m u t u a l l y different 

But from L e m m a 1 it follows t h a t fafix — fafiq3x fay fix fayj-iq3x /n/ty6-* 

Therefore fiq6x e {fix, fiq3x, y.fix, yfiq3x}. I f fiqQx fix, t h e n a circuit [.*, qx, 

cp2x, q3x, q4x, qbx, q6x, :, x] of l ength ^ 2k would exist in Gk, Avhich is a con 

t rad ic t ion . Jf fiqGx [iq3x, for y q3x we should have fiq3y fa), A\hich 

cont rad ic t s (b). Jf fiq6x y.fiq3x, t h e n analogously we have fiq3y yfiy, again 

in cont radic t ion to (b). Therefore fiq^x — yfix. Using th i s re la t ion we ob ta in 

fiq9x fiqQ(q3x) fiq6y yfaj yjiq3x. Fur the r , pq12x fiq6(q6x) a/% f \r) -

y2far fix. 

(d) Let /fy'.r fiqix, i, j e {0, 1, 2, . . . , 1 L}, i j . Ev iden t ly , faq'x faqjx; 

according to (a), we have i j (mod 3), i. e. we can wri te j i 3t, t e (1 , 2 , 3}. 

Put // qlx. We have : faj fiqlx fiqix fiq1 3tx fiq'My. B u t from (b) 
and (c) i t follows t h a t fa) 4= P<pujh which is impossible. 

Lemma 3. The length of every w-circuit of Gk is a multiple of 12. 
P r o o f follows from (c) and (d) of L e m m a 2. 



Lemma 4. Let M be a set of w-vertices of Gk, h ^ 5. If M has more than 2l~c> 

l( merits and for every y\, y2 e M we have fiy\ fty2, then there exist x\, x2 e 31, 

M x2 such that ru,(x\, x2) ^ 4. 

P r o o f . F o r m t h e set N {fik 2X}XGM. T h e set N ev iden t ly cannot h a v e 

moie t h a n 2k 5 e l ements ; therefore for some x\, x?e3I, x\ =j= 0*2 we h a v e 

>n 2-n fik 2^2. i. e. rw(x\, x2) ^ 4. 

Lemma 5. Let x and y be w-vertices of Gk. If fix fly, then rH (x, y) ^ 2k 0 

/ / fix yfiy, thai ru(x, y) 2h 4. 

P roo f . The p a t h [x, :, y] has ev iden t ly t h e length ^ 2k 0 in t h e first 

MSC a n d t h e length 2k 4 in t h e second case. 

Lemma 6. / / x 4= y are such w-vertices of Gk that fix fiy and fiqx fiqy7 

tin / rw(x, y) > 6. 

P i oof. If t h e assert ion of t h e l e m m a were n o t t r ue , t h e n rw(x, y) < 4 

B> L e m m a 5 we have rw(cpx, cpy) ^ 2k — G. B u t t h e n \x, qx, :, qy, y, :, x\ 

would be a circuit of l ength ^ 2k, which is impossible. 

Lemma 7. Let x be a w-vertex of Gk, h ^ 4. Then we have. 

1) ficp 2y.x yfiqx, 

(2) ficp xy.x yfiq2x, 

(3) ficpyx yfiq 2x, 

(4) fi(p2y.x y.fiqj 1 .r. 

P roof . F i rs t we prove (3). As fix fiyx, consequent ly fi\x fi\yx, a n d 

ilso fi\cpx fi\qy.x. According to (d) of L e m m a 2 t h e e lements fi(qyx), ficpz((py.x) 

fiq u(qy.x), fiq%((pyx) are m u t u a l l y different. B y (a) of L e m m a 2 we have fi\(qyx) 

fii(p3(qyx) fi\qG((pyx) fi\(p9(qjy.x). Since fi\(cpy.x) fi\(qx). t h e c l ement 

fi(qyx) equals one of t h e e lements fi((px), fiq3((px) fiq^cp 2x, fi>qG(qx), fiq9(cpx) 

fi(p]2q 2x, hence wi th respect t o (c) of L e m m a 2 fi(qy.x) is equal t o 

some of t he e lements fi(px, yfiq? 2x, yfiqx, fiq 2x. 

If fiqoLJt fiqx, t h e n t h e circuit [(px, x, :, y.x, qjyx, :, qx\ has t h e length ^ 2k 

2. because rn(x, yx) 2 a n d according to L e m m a 5 rw(qy.x, qx) ^ 2k (>. 

If jxpyx yfiqx, t h e circuit [(px, x, :, y.x, (pyx, :, qx] has t h e length 2k, for 

Lemma 5 yields rw(qyx, cpx) 2k 4. If ficpyx ficp 2x, t h e circuit [cp 2x, 

q ]J, x, :, y.x, qyx, :, cp 2x\ has t h e length ^ 2k V because L e m m a 5 implies 

j (q 2x, qy.x) < 2k (>. Therefore only t h e last possibil i ty, i. e. (3), can be 

valid. 

The proof of (2) is , , dua l " to t h a t of (3) it is sufficient to replace q2, (p, q l 

m d q 2 by (p 2, q 1 , q a n d q2, respect ively. 

If in (3) we replace x by yx, we ob ta in 

fiq y2x yfiq 2yx, 
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whence, as a2 is an identical mapping, it follows that 

fiq 2y.x = y2fiq~2y.x = yfiqy2x = yfiqx, 

that is, the relation (1). 

The proof of (4) is „dual" to that of (1). 

Lemma 8. Let x be a w-vertex of G/c, where k ^ 4. Then toe have: 

fiq^yx = fiqx, 
fiq5y.x = fiq2x, 
flq^yx = yfix, 
fiq7yx = fiq 2X, 
fjqSyX = fiq XX, 

ftq10yx = yfiqx, 
f)qnax = yfiq2x, 
fiq12yx = fix, 
fiquy.x = yfiq 2x. 

The proof follows from (c) of Lemma 2 and Lemma 7, for instance: 

fiqAy.x = fiq6(q 2ax) — yfi(q 2y.x) = a(/fy 2ax) y(yfiqx) fiqx , 

fiq^yx fi<p6(<p XOLX) = yfi(q xyx) — y(fiq -a#) /?oj% , 

(iq6(yx) — a/5(ax) — a/to, etc. 

§ 3. MAIN RESULTS 

Lemma 9. There is no Moore graph of type (3, 3). (2) 

Proof. Let G3 be a Moore graph of type (3, 3). Then for any w-vertex x of G3 
we have fix x. (c) of Lemma 2 yields yx — yfix pq6x qQx, yqx yji(qx) 

fiqQ(qx) — q1x. Therefore G3 contains a hexagon [x, (px, :, q1x, q6x, :, x\ 
which contradicts the definition of a Moore graph. 

Lemma 10. There is no Moore graph of type (3, 4). 

Proof. Let G4 be a Moore graph of type (3, 4). Let x be a w-vertex in O4 
Evidently G4 has just 24 w-vertices, so that , according to Lemma G, in G\ 
there is either one single ^v-circuit with 24 vertices or two ^v-circuits, each 
with 12 vertices. In the first case 6/4 contains a hexagon [x, qx, :, q13x, q12x, :, x], 
and we have a contradiction. In the second case from (c) of Lemma 2 and 
Lemma 7 it follows that 

(2) This result follows also from [2]. 
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fiqfix = fiqQ(q2x) — o.fiq2x = fiq^o.x , 

PqPx — PqQ(qx) — o.j3qx = fiq 2OLX , 

therefore G\ contains a hexagon [q7x, q8x, :, q 1OLX, q>~2o.x, :, q7x], thus we have 
arrived at a contradiction again. 

Lemma 11. The length of any w-circuit in Gk (k > 5) is at most 3.2k 5. 

Proof . Let C be a ^-circuit in Gk of the length 12s (see Lemma 3). Pick 
a vertex v of C. Denote pq2v d, fiqQv — e. Let Z be the set of all vertices 
of C of the form q12nv, where n = 0, 1, 2, . . . , s 1. Let z ~Z. From (c) of 
Lemma 2 it easily follows tha t ftq2z — d, OL^Z = e. 

Define the functions <5i, d2, O3, O4 thus (# runs through the set of all w-ver­
tices): 

di_(x) = q5o.x, 

d2(x) = qo.qo.x, 

d%(x) = o.q2x, 

d$(x) = q^°o.q5o.q2X. 

Let us prove that /%(z) = d, fiqdi(z) = e for i = 1, 2, 3 and 4. By systematic 
using of (c) of Lemma 2 and of Lemmas 7 and 8 we obtain: 

0di(z) pq*o.z ftq2z — d, 

Pd2(z) p(qo.qo.z) fiqo.(qo.z) = o.Pq 2(qo.z) = o.(fiq~1OLz) = o.(o.Pq2z) = 
/,.oj2z __ ^ 

/%(z) /5a(oJ2z) = pq2z = rf, 

j8<54(z) pq10o.(q*o.q2z) = o.j$q(q*o.q2z) — o.(pq«o.(q2z)) = a(ar% 2 z)) = 

/fy>2z — rf, 

pqdi(z) = /fy6az — a/?z = e, 

pqd2(z) Pq2o.(qo.z) — o.f$q~1(qo.z) = a/?(az) = a/?z = e, 
pqds(z) — fiqo.(q2z) o.pq~2(q2z) = o.fiz — e, 
pqd$(z) fiq11o.(qr°o.q2z) = o.Pq2(q5o.q2z) o.Pq7o.(q2z) = o.Pq~2(q2z) — 

a/?z — e. 

Evidently, for every z e Z and i e {1, 2, 3, 4} the edge [dt(z), qdi(z)] is a w-edge 
of G*. We shall prove that all such edges are mutually different. Suppose 
that [<5;i(zi), qdtfa)] [dit(2)9 <pdit(z2)], where ix, i2e{\, 2, 3, 4} : z i , z2eZ. 
There are two possibilities: 

I . dii(z1) qdl2(z2). B u t t h e n we h a v e ftq2v = d = /?O^(zi) P<pdiSz*) 

e /fy96v, which contradicts (d) of Lemma 2. 
I I . (5/x(zi) <5,-2(z2). We first prove that h = 2*2. By using (c) of Lemma 2, 

Lemma 7 and Lemma 8 we obtain for any w-vertex x 

fiq 1d1(x) /3q4OLX fiqx, 
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jiq> ld2(x) faq y.x — fiqoLX ~ y.jl(q 2x) fa"(q 2-*') fa4x, 

fa xd's(x) fa 1y.q2x yfa^x faU)x, 

(lq2di(x) fa1** fa 2* fa10*, 
fa2dz(x) fa2yq2x — y.[\qx fa7x, 

fa2b\(x) fa12y.(qr°y.q2x) faby.(q2x) jlq2(q2x) fiq^x. 

According t o (d) of L e m m a 2 t h e e lements fax, fa^x, fa7x, fa10x are m u t u a l h 

different. F r o m t h e equa l i ty O^(zi) (\2(z-z) i t follows t h a t fa 1(5-i(~i) 

fa 1dii(z2) a n d fa2b{i(zi) fa2bi2(z2). B d t th is is possible only if ii i2 oi if 

{ii, i-i} {%, 4}. F i r s t analyse t h e second possibil i ty. Le t , e. g., 2*1 — 2, i2 4 

i. e., d2(zi) — 04(22). B u t y OLqoLZi. W e have : fly (lo.qy.Zi (Iqy.zi y.fa 2~i 

fa*zi— faH, fa3y fa2(qyqy.zi) fa2d2(zi) — fa2d±(z2) faH2 — fa*v 

T h u s we ob t a in t h a t fly fazy, which cont rad ic t s (d) of L e m m a 2. Theiefoic 

only t h e possibil i ty ii i2 r emains . P u t i i\ - i2 so t h a t di(zi) d (z> 

OL a n d q a re one-to-one functions. Consequent ly also every O,- is a one to o u 

function a n d from t h e equal i ty di(zi) di(z2) it follows t h a t zi z2. 

T h u s we p roved t h a t all edges of a form [di(z), qdi(z)], where i e {I, 2, 3, 4) 

z e {v, q12v, qMv, ..., q12^s ^ v) a re m u t u a l l y different. Hence we h a v e 4s s icli 

edges , a n d a lways /%(z) d, flqbi(z) e. According to L e m m a 6 a n y two if 

t h e vert ices dt(z) have thei r d is tance rw a t least 6. B u t from L e m m a 4 it follows 

t h a t we can h a v e a t mos t 2k 5 such vert ices . Therefore As ^ 2h 5 i. e. tlu 

l eng th of C is 12s < 3.2* 5. 

Theorem. There is no Miore graph of type (3, k), where 3 ^ k ^ 8. 

P r o o f . L e t Gjc be a Moore g raph of t y p e (3, k), 3 ^ k ^ 8. L e m m a s 9 a n d 10 

imp ly t h a t k ^ 5. F r o m L e m m a 3 we know t h a t t h e l eng th of a n y w-circuit 

in Gjc is a mul t ip le of 12. According to L e m m a 11 th i s is possible only if k 7 

B u t Gjc conta ins no circuits of l ength ^ 14, especially no 12-gons. F r o m 

L e m m a 11 i t follows t h a t k — 8 a n d all ^ -c i rcu i t s in Gjc a re 24-gons. Choose 

a w-circuit C, a ve r t ex v of C a n d cons t ruc t b y t h e m e t h o d from t h e proof of 

L e m m a 11 (for s 2) 8 tv-edges of a form (di(z), qdi(z)), where f>di(z) d 

fabi(z) e. Consider t h e 9 t h edge (q 1o.q6v, aq6v). B y L e m m a 2, (c), L e m m a 7 

a n d L e m m a 8 i t is easy to prove t h a t fa 1y.q6v — d, faq^v e, fa 2a(/ (v 

fav, fay.qQv fa10v. F r o m t h e proof of L e m m a 11 it follows t h a t if this 

edge equals one of t h e former 8 edges, we necessarily have i Vi.e.99 1yq6r 

di(z). As C is a 24-gon, e i ther z — v or z q12v. I n t h e first case in Gjc there 

exis ts a p a t h [v, qv, q2v, q3v, qAv, q5v, qQv, :, y.qQv qQy.v, q^y.v, q^y.v, qsy.v, 

q2y.v, qy.v, OLV, :, v\\ in t h e second case the re is in Gk a p a t h [qQv, q7v, q8v, q9i\ 

q10V, qxlV, q12v, :, yq12v, qy.q12v, q2yq12v, q3y.q12v, q^yq12v, q5yq12v, qQyq12v 

yq6v, :, q6v]. B o t h these p a t h s conta in a circuit of l eng th ^ 16, wh ich is 

in 6r8 impossible. Therefore in Gs t he re exist 9 edges of t y p e (d, e), where fid d 
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/te (, r yd. According to Lemma 4 at least two of the vertices of type O 
say (V and <V' have the distance rw((Y, O") ^ 4. But this contradicts Lemma (5. 
The theorem follows. 

§ 4. A SURVEY OF T I E D GRAPHS 

Results of [J], [2] and our Theorem make it possible to summarize tht 

known results on the existence and uniqueness of tied graphs of type (d, I) 

into Table 1. 

Т а Ы е 1 

tied gľaphs of t\ pe (d, k) 
k 0 k 

d 0 Ivi Яo 

d l , 

1 d 2 (\ Ri C73 

d 3 

degree d > 4, even 

d 5, odd, 

d 7 

ř/ 57 

d * o 

/ 

(iiamcUч-

k 2 A' 

/ 

3 4 < t < 8 k 

Ks 

I 

I 

c, C^Һ 

lìd 

1-1 P 1 > 

Ktг 1 1 9 <» 

Kd i 1 ? 

F8 IIS 1 í !> 

IV58 f ? (* 

Ä Л 
E E 

i 
E / 

Here the symbol i means that neither the existence nor the uniqueness 
of a tied graph of type (d, k) has been proved. The symbol / means that there 
is no tied graph of the corresponding type, the symbol E denotes that so far 
only the existence (but not the uniqueness) for a given type has been pioved. 
In the remaining cases there exists (up to isomorphism) exactly OIK* tied 
<i;raph as indicated in the table, where Kn is the complete graph with n vertices, 
( n is the circuit with n vertices, Bn is the graph consisting of one vertex 
- nd n loops, P is the Petersen graph and HS denotes the Moore gr-iph of 
t\pe (7, 2) with 50 vertices constructed by H o f f m a n and S i n g l e t o n in \2\ 
The ,.non trivial" part of the table is strongly framed 

79 



REFERENCES 

[1] B o s á k J., K o t z i g A., Z n á m Š., Strongly geodetic graphs, J. Combin. Theory 5 
(1968), 170 176. 

[2] H o f f m a n A. J., S i n g l o t o n R. R., On Moore graphs with diameters 2 and 3, IBM 
J. Res. аnd Developm. 4 (1960), 497 504. 

[3] S i n g l e t o n R., There is no irregular Moore graph, Amer. Mаth. Mоnthly 75 (1968), 
4 2 - 4 3 . 
Rеcеivоd July 4, 1968 

Matematický ústav 
Slovenskej akadémie vied 

Bratislava 

8 0 


		webmaster@dml.cz
	2012-07-31T17:26:54+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




