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Mat. Čas. 25, 1975, No. 2, 99-103 

MAXIMAL GRAPHS WITH GIVEN CONNECTIVITY 
AND EDGE-CONNECTIVITY 

F E R D I N A N D GLIVIAK 

The graphs considered in this paper are undirected, finite, without loops 
and multiple edges. 

We shall describe constructively maximal graphs with given vertex-connec­
tivity or edge-connectivity, respectively. In addition, we prove some estima­
tion of the number of edges, the maximal degrees and minimal degrees of 
graphs with a given vertex-(edge)-connectivity, respectively. 

Let G, Q be graphs. Then we denote by V(G) the vertex set of G, by E(G) 
the edge set of G, by K(G) the (vertex-) connectivity of G, by X(G) the edge-
connectivity of G, by <5(6r) the minimum degree of a vertex of G, by A(G) 
the maximum degree of a vertex of G, by G the complement of G, by \M\ 
the cardinal number of a set M, by Kv the complete graph with p vertices, 
by G -f- Q the join of graphs G and Q and by G U Q the union of graphs G 
and Q. In addition, we denote by G + h, where heE(G), the graph that 
arose from G by adding the edge h; by G — A, where A c E(G), the graph 
arisen from G by deleting the set A of edges; by G —- B, where B <-= V(G), 
the graph arisen from G by deleting every vertex v e B and all edges t h a t 
are incident with it. If A = {x}, B = {u}, then we write G — A = G — x 
and G — B = G — u, respectively. The symbol G ~ Q denotes that the 
graphs G, Q are isomorphic. Definitions of notions not included here can 
be found in [3]. 

Minimal and maximal graphs with a given property P have been studied 
by many authors. For example in [1], [2], [4] the so-called ^-critical graphs, 
are studied (i.e. such graphs G that K(G) > K(G — v), for every v e V(G))y 

^-edge-critical graphs (i.e. such graphs G tha t K(G) > K(G — x), for every 
edge x of G); ^-critical graphs and ^.-edge-critical graphs. We shall study 
a dual question to this one. 

Definition 1. Let Gbea not complete graph and n a nonnegative integer. Then G 
is called Kn-maximal, if K(G) = n and K(G -f- x) > K(G) holds for every edge 

99 



xeE(G). Analogically G is called Xn-maximal, if X(G) = n and A(6? + x) > 
> X(G) holds for every edge xeE(G). 

Theorem 1. Let G be a graph and n, r, s be natural numbers. Then G is 
a) KQ-maximal if and only if G ~ Kr U Ks; 
b) Kn-maximal if and only if G ~ Kn + (Kr U Ks). 
Proof . One can easily verify that part a) holds. 
b) Let G ~ Kn + (Kr U Ks). Let us denote V(G) = A U B U C, where 

A, B, C are mutually disjoint and A = V(Kn), B = V(Kr), C = V(KS). 
The graph G — A is not connected, hence K(G) ^ n. I t can be easily seen 
from the construction of G that between every two different vertices u, v 
there exist at least n vertex-disjoint paths. Especially, if u e B, v e C, then 
there exist exactly n vertex-disjoint paths. Thus according to Whitney's 
theorem (see [3], p. 48) we have K(G) ^ n and hence K(G) = n. Every edge 
not belonging to E(G) joins some vertex from B with one from C. One can 
verify that in the graph G + x, where x e E(G) between any two different 
vertices u, v, there exist at least n + 1 vertex-disjoint paths. Hence K(G + x) ^ 
^ n + 1 > K(G). Thus the graph G is ^ -maximal . 

Let G be .^-maximal. Then there exists a set A of vertices of G such that 
\A\ = n and the graph G — A consists of exactly two components that are 
complete graphs. Let them be Kr, Ks. From the ^-maximality of G it follows 
that G ~ Kn + (Kr U Ks). Thus the theorem holds. 

R e m a r k 1. For every graph G we have K(G) < X(G) ^ (5(6?), see, e.g. [3], 
P . K(G) 

p. 43. Thus if we denote p = \ V(G)\, q = \E(G)\, then we have q ^ 
Zi 

P • H@) 
q ^ and the e |ualities hold in every regular graph G of degree 

Zi 

Jc = K(G). NOW we shall prove some estimates for q, d(G), A(G). 

Theorem 2. Let G be a graph with p vertices, q edges. Let K(G) = n. Then ^ve 
have: 

p + n 
a) (5(6?) ^ — I, if the graph G is not complete. 

Zi 

b) A(G) < p - 1. 

(P ~ 1)(P - 2) 
c) q ^ -f- n. 

z 
Proof . If G ~ Kp, then one can easily verify these assertions. If G is 

not a complete graph, then it can be completed to a .^-maximal graph Q 
by adding some edges from F7(6?). I t is clear that (5(6?) ^ d(Q), q(G) ^ q(Q) 
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holds. According to Theorem 1 either n = 0 and Q ~ Kr U Ks or n > 0 
and Q ~ Kn + (Kr U Ks), where r, s are natural. Hence p = \V(Q)\ = n + 
+ r + «§. Directly from the construction of the graph Q it follows that d(Q) = 
= min (n + r — 1, n + 5 — 1). If #, n are given, then the maximum of 

p — n p -\- n 
these minima is obtained for r = s. Then r = and d(Q) ^ — 1. 

2 2 
This estimation is reached for the graphs Kn + (Kr U Kr), where r is a na­
tural number . 

n(n — ]) r(r — 1) 5(5 — 1) 
One can verify that q(Q) = + 1 + rn + 

- J _W _W 

+ sri — r2 + nr — rp + = f(r), where 1 ^ r ^ p — n — 1 and 

the number 5 was substituted by p — n — r. The maximum of the function 
(p - l)(p - 2) 

f(r), l ^ r ^ p — n— 1 is equal to + n. Hence q(G) ^ 
Zt 

(p — l)(p - 2) 
< l(Q) < + n- I* i s clear that A(0) ^ p — 1. These two 

estimations are reached in graphs Kn + (Ki U Kp-n-i). Hence the theorem 
holds. 

Let the symbol stf(m, r, s), where m + 2 ^ r + s, denote the class of 
graphs that arose from the graph Kr U Ks by adding m new edges. 

Theorem 3. Let m, r, s be natural numbers. Then a graph G is: 
a) Xo-maximal if and only if G ^ Kr U Ks; 
b) km-maximal if and only if it can be obtained from the graph Kr U Ks by 

adding m edges, whereby either r = 1, s ^ m + 1, or r ^ m + 2, s > m -f 2. 

P roof . I t is clear tha t part a) holds. 
b) I t can be verified that if either G e s/(m, 1., m + s) or G e s/(m, m + 

+ 1 + r, m + 1 + s), then G is Aw-maximal. 
Let G be Am-maximal. Then m = A(6?) ^ 6(G) holds, see [3]. Then G contains 

at most two vertices of the degree m, because it is a Am-maximal graph. If 
the degree of the vertex u, deg (u) = m, then every edge of the graph G 
is incident with vertex u, because in the reverse case the graph G would 
not be Am-maximal. 

If deg (a) = deg (b) = m, for a, b e V(G), a 4= b, then the graph G con­
tains the only edge (a, b). Hence G is isomorphic to the graph Km+2 — x, 
where x is any edge and then G e s/(m, 1, m + ]). If deg (a) = m and deg (u) > 
> m for every u e V(G) — {a}, then the graph G contains only edges (a, x) 
for some vertices x. Thus we can write G e sf(m, 1, m + 1 + s), where s 
is a natural number. 
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In the graph G there exists a set of edges O of the cardinality m, such 
that the graph G — O is not connected. The graph G — O consists of two 
complete components, because G is maximal. If deg (u) > m, for every u e 
e V(G), then each component of the graph G — O has at least m + 2 vertices. 
Hence G e stf(m, m + 1 + r, m + 1 + r), where r, s are natural. Q.E.D. 

By using this theorem we prove the following inequalities. 

Theorem 4. Let G be a graph with p vertices, q edges and let X(G) = m. Then 
we have: 

a) Ô(G) < 
m, if m + 1 < p < 2m + 3, m 4= 0; 

[pj2] — 1, if either m = 0, or m 4= 0, p ^ 2m + 4; 

b)A(G)^p-l; 

( p - l ) ( p - 2 ) 
c) g ^ + rø. 

a) If A(<?) = m, then # > m + 1. If m = 0, then d(G) < — 1. Let 

P r o o f . I t is clear that part b) holds and if G e s/(m, 1, m + 1 + r), then 
A(G)=p- 1. 

V 
2 

m ^ 1. If G = Kp, then d(G) = m = p — 1. If 6? is not complete, it can 
be completed to a Am-maximal graph Q by adding some new edges, whereby 
d(G) < d(Q). 

If m + 2 ^ p ^ 2m + 3, then according to Theorem 3 Ge stf(m, 1, p — 1) 
so that <5(Q) = m. If ^ ^ 2m + 4, then by Theorem 3 either Q e srf(m, \,p — \) 
and then d(Q) = m, or Q e s/(m, m + l + r, m + l + s ) for r ^ 1, s ^ 1, 
^ )=r2m + 2 + r + s. Then it can be seen that d(Q) = min (m + r,m + s) ^ 

-Pi 
— — 1. Hence the part a) holds. 
2\ 

c) If X(G) = m, then after removing certain m edges, a graph with at least 
two components will arise. Let r be the number of vertices of some of them. 

r(r — 1) (p — r)(p — r — 1) 
Then 1 < r ^ p — 1 and moreover q(G) < h 

:< 

2 2 
392 _ - p ( 2 ) _ l ) ( : p _ 2 ) 

+ m = r2 — rp + + m ^ + m. This estimation is 
z z 

obtained in the graphs from s/(m, 1, m + s), where s is natural. Q.E.D. 

Corollary 1. Let r, s be natural and n a non-negative integer. Then a graph 
G is xn-maximal and Xn-maximal if and only if 
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a) 0 ~KrU Ks, for n = 0 
b) 0 ~ Kn + (K! U Krlfor n>0 
The proof follows immediately from the structure of xn-9 (Xn-) maximal 

graphs, given in Theorem 1 (or Theorem 3, respectively). 
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