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Mat. Čas. 25, 1975, No. 2, 111—127 

ON SOME RELATIONS IN BOOLEAN ALGEBRAS 

MILOS FRANEK 

1. Introduction and definitions 

We shall consider the formulas constructed in the "permitted way" (Defi­
nition 2) from the Boolean variables and constants, from the symbols = , ^ , 
U> f\ ~~? ~~1> V, A, ->, = and parentheses, also the relations which are their 
realizations. We call them BP-formulas, BP-relations, respectively. 

Section 2 contains some remarks and auxiliary results which concern the* 
formulas without the propositional operators. I n section 3 the question is 
solved, under what conditions a given BP-formula is a "BP-tautology" 
(Theorem 1). In section 4 the equivalence of the BP-formulas is studied and 
a simple system of representants of classes of the equivalence is presented. 
Every class is uniquely characterized by a set system (Theorem 2). In section 5 
the BP-relations, their properties (Theorems 4, 6, 7, 8) and their number 
in connection with the number of elements of the corresponding Boolean 
algebra (Theorem 5) are studied. 

Notations: 
B always denotes a non-degenerate Boolean algebra containing at least 

two elements; 0, 1, ^ denote the smallest element, the largest element and 
the partial ordering in B, respectively; D = {0, 1}; xt (i = 1, 2, ...) are meta-
symbols for the denotation of the free individual variables from a fixed well-
-ordered set X and x denotes the w-tuple (x±, ..., xn) of pair wise different 
variables. (V B,b) means "for every non-degenerate Boolean algebra B and 
for every w-tuple b = (&i, . . . , bn) e Bn" (the exponent at a symbol of a set 
or an algebraic structure always means the cartesian power). The terms (except 
the variables) and the formulas will be denoted by bold "basic letters", their 
realizations (in a given B) by the same ordinary letters (only 0 and 1 are 
considered as terms and, at the same time, as elements in a certain B). The 
sign = expresses the equality of terms or the equality of formulas as words. 
F(x), RM(X) etc. will be formulas in which no other variables occur than 
xi, ...,xn. If F(x) = G(y), x = (xx, ...,xn), y = (xx, ...,xn, ...,xM), then the-
relation F is w-ary and G is m-ary. The quantifiers and the symbols =>, o 
are used only outside the studied formulas. 
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Definition 1. a) Th°, symbols 0, 1 and the variables from X are B-terms. 
b) If A\, A2 are B-terms, then A\, (A\ U A2), (A\ n A2) (or A\A2 in the 

abbreviated form) are B-terms. 

Definition 2. a) If A\, A2 are B-terms, then (A\ = A2), (A\ ^ A2) are both 
B-formulas and BP-formulas. 

b) If F\, F2 are BP-formulas, then ~] F^, (F\\J F2), (F\/\ F2), (F\ -> F2), 
(F\ = F2) are BP-formulas. 

In dealing with B-terms, B- and BP-formulas we shall omit the *'outer 
parentheses" and also the parentheses ''superfluous because of the associative 
law". Therefore we admit also the notations with the symbols V ' A ' U ' f l 
for disjunctions, conjunctions, joins and meets (of a finite number of formulas 
or terms), respectively. For the sake of uniqueness we assume that the terms 
in these expressions are lexicographically ordered. If A<x, At are B-terms, 
we put 

(1) \jAa=\JAi = 0, f]Aa= f\Ai = l 
<xe0 1=1 <xe0 i 1 

and, similarly, for the "empty" join and meet of the elements of B (in this 
case we wrrite = instead of = ) . The "empty" conjunction (or disjunction) 
of propositions, of propositional formulas, of BP-formulas means a fixed true 
proposition, a fixed tautology, the BP-formula 1 = 1 (likewise a false pro­
position, a propositional contradiction, the BP-formula ~~| ( 1= 1)), respec­
tively. 

If F(x) is a BP-formula and A, A(x) are B-terms, then we put 

(2) F°(x) = ~] F(x), Fl(x) = F(x), 

(3) A° = ~A, A°(x) = A(x), A1 = A, Al(x) = A(x) . 

and similarly for A(b) and F(b) (b e Bn). 

Definition 3. By a B-relation (BP-relation) we call the realization F of a B-
formula (BP-formula) F(x) in a Boolean algebra B. 

R e m a r k . From the definition of BP-formulas it follows that the system 8 
of all the BP-relations in a given B is closed with respect to the set union, 
the set intersection and the complementation, so that 8, considered with the 
mentioned operations, forms a Boolean algebra (a subalgebra of the Boolean 
algebra of all the %-ary relations in B). In the case of the B-relations the 
situation is changed: neither the complement nor the union of two B-relations 
need to be necessarily B-relations. I t is easy to find out that in the two-element 
B there are no other BP-relations besides the B-relations; later we shall see 
that in every B containing more than two elements there exist much more 
BP-relations than B-relations. 
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Definition 4. We say that the BP-formulas Fi(x), F2(x) are equivalent and 
we write Fi(x) ~ F2(x), if 

(VB,b)(Fi(b) o F2(b)). 

If Fi(x) ~ F2(x), then Ki, F2 are equal as w-ary BP-relations in any B. 
(For a "sufficiently large" B also the contrary holds: if F = G in B, then 
F(x) ~ G(x) — see the assertion b2) of Theorem 4.) 

Two arbitrary BP-formulas can be considered as formulas with the same 
free individual variables (see the agreement before Definition 1), and thus, 
Definition 4 introduces an equivalence relation on the set of all the BP-
formulas. I t is evident that the relation ~ from Definition 4 is a congruence 
with respect to the propositional operations (used for formulas). 

2. Characteristic sets of B-formulas and of n-tuples 

For arbitrary B-terms Ai, A2, 

<4) (Ai ^ A2) ~ (Ai\J A2 = l), 

(5) (Ax = A2) ~ ( ( A u A2) n (Ai u A2) = 1) 

holds. Further it is known that to every B-term A(x) there exists a B-term 
n 

(6) TM(x) = \J {\ xrj (MCD\r = (ru...,rn)) 
reM j-1 

(the analogy of the complete disjunctive normal form of a Boolean function — 
see [2], Theorem 5.4, p . 215) such that (V B, b)(A(b) = TM(b)). Hence, to 
every B-formula F(x), there exists a B-formula RM(X) = (TM(X) = 1) (where 
M C Dn) equivalent to F(x). I t is easy to show that , given a B-formula 
F(x), the set M C Dn is determined uniquely. 

Definition 5. The B-formula RM(X) = (TM(X) = 1), where M C Dn and 
TM(X) is defined by (6), equivalent to a B-formula F(x) is called the normal form 
of the formula F(x) and the set M is called the characteristic set of the formula 
F(x) (both with respect to the variables xi, ...,xn in this order). M will also 
be called the characteristic set of the B-relation F or RM in an arbitrary B. 

If we denote a B-formula by a notation of type F(x) (see the text before 
Definition 1), it implicitly means tha t its normal form and its characteristic 
set are considered with respect to the variables Xi, ..., xn in this order. 

The vector of the values of the characteristic function %M '. Dn -> D (%M(r) == 
= 1 o r e M) of the characteristic set M( C Dn) of a B-formula F(x) can 
easily be obtained by a 0-1-method if we consider F(x) as the notation of the 
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Boolean function of the variables x\, ...., xn, where we replace U, n , ", ^ , = 
by the symbols of disjunction, conjunction, negation, implication and equi­
valence, respectively. 

Lemma 1. For the normal forms of B-formulas RM(x), RN{X), RMI(X) (i = 
= 1, . . . , m), where M, N, Mt C Dn, there holds 

(7) (VB,b)(RM(b) => RN(b)), ifMCN, 

(8) RM(X)ARN(X) ~ RMnN(x), 

m m 

(9) A RMt(x) ~ RM(x), ifM=f) Mi. 
i=l i=l 

0 

(9) holds also for m = 0, if we put P | Mi = Dn (= 1 in the Boolean algebra 

(2Dn, u , n , -) - cf. (1)). 

Proof . The assertion (7) is evident. Let us suppose that RM(b),RN(b) hold 
for some b e Bn. Then, for r = (n, . . . , rn), s = (si, ..., sn), r, s e Dn, 

n n 

Er = n&?, ES= r\bf, 
j=i i= i 

there holds Er n Es = 0 if r ^ s, and Er C\ES = Er\i r = s. Therefore 
n 

U C\b?= U Er=\JErn\JEs = lr\l = l. 
reMnN j= l reMnN reM seN 

Thus RMnN{°) -s valid. The converse implication in the proof of (8) follows 
from (7). Einally, (9) can be verified by induction. 

Now we introduce an auxiliary notion and we prove some lemmas. In a 
fixed B we choose some b e Bn and we consider the system of all the sets 
Mi C Dn (i = 1, . . . , m) for which RMi(b) holds. According to (9), also RM(b) 

m 

holds, where M = (~| Mi. Hence we can formulate the following definition 
^=i 

(the set Mb introduced in the definition always exists). 

Definition 6. If b e Bn, then the smallest (in the sense of the set inclusion) 
set M C Dn for which RM^) holds is called the characteristic set of the n-tuple b 
(in the given B) and is denoted by M^. 

R e m a r k . In any B, every set Mb is evidently non-empty. 
Using relation (7) we get the following 

Lemma 2. a) Let M C Dn and Mb be the characteristic set of b e Bn. Then 

(a) M = Mb iff RM(b)A (V* e M) ~\ RM_{t)(b), 

(b) RM(b)ijfMb CM. 
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Lemma 3. Let Mb be the characteristic set ofbe Bn, M = {s eDn\ ~]BDn_{s)(b)} 
n 

Mi = {seDn\f]bli ^0, s = (sx, ...,sn)}. Then Mb = M = Mi. 

Proof . Note that BDn(b) holds for any b e Bn. Since 

(VseM)~]BM_{s}(b) 

is valid, then, using (7), we get 

(V«e.tf)-|-V{.#). 
From BBn_{s}(b) which, according to the definition of the set M, holds for 
every s e Dn — M, from the equality 

M= n (-0*-w) 
seDn-M 

and according to (9), we obtain also BM(b). Therefore, according to (a) from 
Lemma 2, Mb = M holds. The equality M = Mi follows from 

a ^ 1 oa 7^ 0 (for every a e B). 

Definition 7. A set K C Dn is called solvable (unsolvable) in B if there exists 
(if there does not exist) an n-tuple b e Bn such that Mb = K. 

R e m a r k . According to the remark following Definition 6 the solvable sets 
are non-empty. 

We describe another way for the determination of the characteristic set 
of the w-tuple b = (bi, . . . , bn) of the elements of the 2k element B (k is a posi­
tive integer). Every such B is isomorphic to the Boolean algebra (Dk, U, D,~) 
with the operations "componentwise" defined, where 0 U 0 = 0, O u l = 
= l U 0 = l U l = l and similarly the meet and the complement. Further 
(cf. (3)): 0° = 0 = l 1 = 1, 1° = 1 = 01 = 0, i. e. for u,veDn,u = (m,..., un)9 

v = (vi, ...,vn) there holds 

n 

(io) n K =i <> u = v. 
i=l 

Let cp: B -> Dk be a fixed isomorphism which we extend to the w-tuples 
by the equality bcp = (bicp, . . . , bncp), where we put btcp = (bn, . . . , boc) (e Dk), 
for i = 1, . . . , n. Let Ab<p be a matrix of the type n X k with the row vectors*". 
bicp (i = 1, . . . , n) and the column vectors sn = (bift, . . . , bnn) (h = 1, ..., k).x 

Schematically: 

* Here and in the following we use the description row vector or column vector. :o<n'ly 
for placing them in a particular matrix. We do not distinguish them otherwise* . < 
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Aђę — 

Si . . . Sk 

/bii • • . &i*\ <- fa<p 

\bnl • • • bnk] <- bn<p 

Let us denote Nbv = {si • • • • > ^} (sn evidently need not be pair wise different 
for h — 1, . . . , k). 

Lemma 4. Under the notation just introduced the following holds in every 2k 

element algebra B (k ^ 1): 
a) M\) = Nbq, that is M& is the set of all the column vectors of the matrix A by. 
b) A set K C Dn is solvable in B if and only if K ^ 0 and card K ^ k. 
Proof . Since q> is an isomorphism, then Mi, = Mb<p. Thus, it is sufficient 

to show that Mbq, = N&<p. Let s e ^ , i. e. s = sn = (bin, . . . , bnh) for some 
h ^ k. Then 

n n 

n ( M 6 a = (•••, n &«r. •••) = (•••> i. •••) *o, 

i. e., according to Lemma 3, s e M^. If t = (h, ..., tn) $ N^, then t ^ sn 

(h = 1, . . . , k) and 

n&& = o(A = i,...,*), n ( V ) h = -». 
t - 1 £-1 

Hence, according to Lemma 3, t $ Mb<p. 
b) The assertion follows from a) if we recall the following: For every K con­

sisting of m column vectors there exists a k column matrix A^ which contains 
all of them (and contains no others) if and only if m ^ k. 

R e m a r k . The solutions of the equation JM& = K in a 2k element B, where 
K = {si, . . . , sr} C Dn is given (r <; k), are thus exactly those w-tuples b for 
which the matrix A^ contains all the column vectors s±, ..., sr and no others. 

Lemma 5. In a Boolean algebra B with at least 22* elements every non-empty 
set N C Dn is solvable. 

Proof . For a finite B with 2k elements, where k ^ 2n, the assertion follows 
from b) of the last lemma. In the case of B being infinite, it is sufficient to recall 
that, for every positive integer p, B contains a finite sub algebra having at 
least p elements. 

3. BP-tautologies 

Definition 8. A BP-formula F(x) is said to be a BP-tautology if (Vi?, b)F(b). 
Our next aim is to determine a necessary and sufficient condition for a BP-

formula to be a BP-tautology. 
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Let pi,p2, ... be propositional variables, p — (ply ...,pm) and ^ be an 
equivalence between propositional formulas defined by A ^ B if and only 
if (A == B) is a propositional tautology. To every propositional formula A(p) 
(containing no other variables than pi, ..., pm) there exists an equivalent 
formula of the form 

m 

A VP*> where M CDnt> * = (*»,.•., «*) 

(the analogy of the complete conjunctive normal form of a Boolean function — 
see [2], p . 215). I t is clear from Definition 2 that every BP-formula arises 
from some propositional formula by substituting the propositional variables 
by B-formulas. The equivalence ^ of propositional formulas yields the 
equivalence ~ (Definition 4) of BP-formulas obtained after the substitution 
(see [1], 2.1, p. 283). Hence (see also Definition 5 and the text preceding it), 
every BP-formula F(x) is equivalent to a BP-formula of the form 

m 

(ii) • AV^,W. 
seM i=l 

where M C Dm, s = (si, ..., sm), Mt C Dn (i = 1, . . . , m). 

Theorem 1. Let (11) be a formula equivalent to the BP-formula F(x). Then 
F(x) is a BP-tautology if and only if, for arbitrary s = (si,..., sm) e M, there holds 

a) si = ... = sm = 1 => (3j ^ m) (Mj = Dn); 
m 

b) *i = . . . - = « „ . = => f\Mi = fl; 

c) if there are i , j i m such that S{ = 0, S) = 1, then 

(12) (3 j ^ m) (s} = 1, r\Mi C Mj). 
8i = 0 

Proof . According to definitions 4, 8, F(x) is a BP-tautology if and only 
if also formula (11) is a BP-tautology, i. e. iff 

m 

(13) (V* e I f ) (V£, 6) V--£, (&). 

i=l 

where b = (bt, . . . , bn) e Bn. 

Let us suppose that (13) holds and choose s = (si, ..., sm) e M. 
a) Let si = ... = sm = 1, i. e. we can omit the exponents in (13). In virtue 

of Lemma 5, in an algebra B of 22n elements there exists an n-tuple b of its 
elements such tha t Mb = Dn. Following (13), there is a j <; m such that 
I?Mj(b) holds, i. e. Mb C Mj, according to Lemma 2. Hence Dn = Mb CM) 
( C D»), Mj = ZK 
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b) Let si = ... = sm = 0. Let us denote N = Q Mi ( C Dn) and suppose 
i=l 

tha t N =£ 0. Consider again the mentioned B and an ?i-tuple b e Bn such that 
Mb = N. Then Mb C M{, BMi(b) (i = 1, . . . , m). Thus, we get 

m m m 

A RM$) , n V ~\RUl(b), n V *&,(&) 
i=l i=l '̂=l 

which is a contradiction to the assumption (13). 
c) If there are i, j ^ m such that ŝ  = 0, Sj = 1, let us suppose that , for 

p = n -̂ «. 
Si=0 

(14) Sj = I => P — Mj ^ 0 (1 ^ j ^ m). 

To the set N = [ J (P — M"^) -^ 0, again according to Lemma 5, there exists 
8J-1 

an w-tuple b e Bn such that Mb = N. Following (14), for every j ^ m, where 
sj = 1, there is an element bj eP — Mj CN = Mb, tha t is bj e Mb, bj e M). 
Therefore, according to Lemma 2, ~~| BMj(b) for 5/ = 1. Moreover, for s$ = 0, 
we have Mb = N CP CMt, BMi(b), ~~ Bs

Mi(b). This is a contradiction 
to (13). 

Let us suppose that our criterion holds. The disjunctions in (11), where 
si = ... = sm = 1 or Si = ... = sm = 0, are evidently BP-tautologies (in the 
second case we use (9)). For an m-tuple s e M with different components 
and for b e Bn, according to c), either (3i <; m) (si = 0, ~~| BMi(b)) (i. e. (13) 
holds) or, for every i ^ m, where Si = 0, there holds BMi(b) (i. e. Mb C Mi). 
Then Mb C f ) Mt CMj, BMj(b) for some j , where Sj = 1. Therefore (13) 

Si=0 

holds. 
R e m a r k s . 1. Since, according to definitions 4 and 8, the BP-formulas 

Fi(x), F%(x) are equivalent if and only if the formula Fi(x) = Fz(x) is a BP-tau-
tology, it is possible to verify the equivalence of the given BP-formulas with 
help of Theorem 1. 

2. Theorem 1 can be used also for the generalization of the form (11), where 
m, n, x = (xi, ..., xn) depend on s (but not on i) and Mi also depends on s: 

(is) A V *»<.•)(*(*))» 
seM i=l 

where M C D1 U D2 U . . . , Mt(s) C Dn&) (I ^ i ^ m(s)), 
s = (si ...,sm{s)), x(s) = (xi(s), ...,xnis)(s)), 
x?i(s) e {xi, . . . , xn) for s e M, 1 ^ i ^ w(s), 
x'i(s) ^zXj(s) for i =£j, SGM. 

The form (15) is more complicated than (11) but in the case of a particular 
given BP-formula it is usually shorter than (11) and the conditions a), b), c) 
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from Theorem 1 can be verified easier than from (11). (In order to save the 
unity of notation it is necessary to put Mi(s), Mj(s), m(s), n(s) instead of 
Mi, Mj, m, n, respectively.) 

3. We shall describe the 0—1-method for testing of the criterion from 
Theorem 1. First we find out (by the method described previous to Lemma 1) 
the characteristic sets of B-formulas from F(x) (with respect to the variables 
xi,...,xn). Then we substitute for the B-formulas propositional variables 
(instead of formulas with the same characteristic set we substitute the same 
variable). The obtained propositional formula can be performed, e. g., to 
the minimal conjunctive normal form. The disjunctions of the formula can 
be ordered in such a way that the negations precede the other terms. Finally, 
we obtain the form (15) if, instead of propositional variables, we substitute 
the normal forms of the corresponding B-formulas with respect to the minimal 
number of Boolean variables but in such a way that in the same disjunction 
there are only normal forms with respect to the same variables in the same 
order. 

For every s = (s±, ...,sm) e M we write 5 as an "exponents column" and 
in the corresponding rows the vectors of the values of the characteristic 
functions %Mi of the characteristic sets Mi of the B-formulas. We obtain 
a "B-formulas matrix" Bs of the type m X 2n (where every column corresponds 
to a certain w-tuple r eDn). In the exponents column zeros (if they exist 
there) precede the units. Thus, Bs can be devided into a submatrix with 
O-exponents" Bs0 and a ,,submatrix with 1-exponents" Bsi. Theorem 1 implies 
that a BP-formula is a BP-tautology if and only if, for any s e M, there holds: 

a) If the exponents column contains only units, then Bs contains a row 
with only units. 

b) If the exponents column contains only zeros, then Bs contains no column 
with units only. 

c) If s contains both components, then Bs\ contains a row with a unit in 
any column whose part in Bs0 consists of units only. 

4. Equivalence of the BP-formulas 

In the entire section 4 we put m = 22n and the domain of the variable M 
will be 2Dn. Further we shall choose a fixed (e. g. lexicographical) order 
J / i , . . . , Mm of all the sets M C Dn. 

If, for s = (sMl,..., sMm) e D™, we put 

(16) Es(x) = V « i W 
M£Dn 
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(we omit the indices of M), then every BP-formuIa F(x) is equivalent to some 
formula of the type 

(17) AE*(X) (N CDm) 
SEN 

(which is a particular case of (11) for m = 22"). First we find out which of the 
formulas Es(x) are not BP-tautologies. 

Let K C IX We put sM(K) = 0 for K C M; sM(K) = 1 for K £ M and 
s(K) = (sMl(K),...,sMm(K)). We note that for Ki =£ K2 also s(Kx) ^s(K2). 
Thus, for EK(X) =-= ES(K)(x) there holds 

(18) EK(X) = V RSMK\X)>
 w h e r e

 *M(K) = 0 o K CM. 
MCDn 

Lemma 6. In the notation just introduced there holds: Es(x) is not a BP-tautology 
if and only if there exists a non-empty K C Dn such that s = s(K), i. e. Es(x) = 
= EK(x). 

Proof . Let s = s(K), 0 ^K CDn. Then (0, . . . , 0) ^ s ^ (1, . . . , 1) and, 
according to c) from Theorem 1, Es(x) is not a BP-tautology because there 
is no Mjj K = P) {M \ K C M} = f] {M \ sM(K) = 0} such that sMj(K) = 1. 

Conversely, assume that Es(x) is not a BP-tautology. Since M = Dn for 
some M and P|2I) '1 = 0, according to Theorem 1, neither si = ... = sm = 1 
nor si = ... = sm = 0 can be valid. Thus, only the case c) remains. We put 

K= f){M\sM = 0} (CDn). 

Then K C M for sM = 0, but for no M such that sM = 1, K C M is valid, 
because, according to Theorem 1, EH(x) would be a BP-tautology (thus, K = 0 
is also impossible because then K C M would hold for every M). Therefore,, 
in all cases sM = 0 o K C M so that (V M)(sM = sM(K)), s = s(K). 

In the following lemma we find to the formula EK(X) (0 ^ K C Dn) an 
equivalent but shorter formula. 

Lemma 7. Let 

QK(X) = n RK(X)W V (f)x? = °) (0 ^ K c Dn) • 
seK j-=l 

Then QK(x) ~ EK(x). 
Proof . According to (18) we have 

(19) EK(x) ~ V ~1RM(X)V V RM{X). 
MOK K<tM 

According to de Morgan's rule, following (9) and using the equality K = 
= f\{M\M CK}, we have \ / ~]RM(x) ~ ~] RK(x). Thus, it is sufficient 

M^K 

to show that 
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(20) V RM(b) o V ( f l bj3 = 0) 
K<tM seK j=l 

for every n-tuple b e Bn. 
Let Y RM(b). Then there exists a set M C 2)» and an w-tuple s = (si, ...,sn) e 

K*M 

eK — M such that RM(b), RMAs](b) hold (because M = M — {5}). Thus,. 
« 

i?j)«-M(i!>)(by (7))> |~1 b? = °> which gives the right-hand side of (20) (because 

5 G K). Conversely, let the right-hand side be valid. Then for some s e K, 
M = Dn — {s} (+ K) we have RM(b), which gives the left-hand side of the 
equivalence (20). 

Lemma 8. Let EK(x) (where K C D") be defined by (18), IV = 2Dn - {0} 
and Sl9S2 C IV. Then 

a) (VB,b)((\/EK(b) o A EK(b)) o A ^(b)); 
KeSi KeS* KeSi + Si 

b) f\EK(x) ~ A "«(*) i f f & = ^2-
KeSi Ke.T, 

Proof. We put _ = D™ - {s(K) \ K e W}, Tt = {«(") | ~ e si}, T5. = 
= {«(-) I K e IF - s*} (» = 1, 2). Then 

(i) TKjTiuTi = D«', TriTi = TnTi = TtnTi = 0 (i = 1,2). 

For every ~ e W, K e s* iff s(K) e Ti (i = 1, 2) and, it is easy to see, K e si --
— s2 iff s(K) BT\ — TI. Thus, we have to show that, for any B and b eBn

f 

(ii) l\Es(b) o /\Es(b) 
seTx seTz 

holds iff A Es(b). Instead of ~~| /\Es(b), according to Lemma 6, we can 
seTi-T2 seTi 

write ~~| A Es(b) and this, according to (i), holds iff A Es(b) (i = 1, 2). There-
S6TUT1 

fore (ii) is equivalent to 
seTi 

(iii) ( A Es(b)\/ A ".(&) ) A ( A W V A .5.(6)) • 

Using the distributive law and the fact that E8i(b)\/ ESi(b) holds for si ^ s2 

we see that (iii) holds iff 

A_ Es(b)A A Es(b), 
seTiOTa seTinTa 

that is A -̂ *(&). 
seT i -Ta 

The assertion b) follows from a), according to Lemma 6, if we recall tha t 
Sl-S2 = Q o S± = S2. 
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Theorem 2. For every BP-formula F(x) there exists exactly one system SF C 
C S(n) = 2Dn — {0} such that 

F(x) ~ A EK(x), 
KGSF 

where EK(X) is defined by (18). Moreover 

(i) F(x) ~ G(x) o SF = SG 

holds. Finally, F(x) is a BP-tautology if and only if SF = 0. 
Proof . F(x) is equivalent to a formula of the type (17). If we omit all the 

factors from the conjunction f\Es(x) which are BP-tautologies, we obtain 
SEN 

an equivalent formula A Es(x) which, according to Lemma 6, can be written 
\seNi 

in the form A EK(X), where SF C S(n) (according to the agreement made 
KESF 

after relations (1), there can also Ni = SF = 0 hold). The uniqueness of SF 
and the equivalence (i) follow now from b) in Lemma 8; the assertion giving 
a condition for F(x) to be a BP-tautology follows from Lemma 6. 

R e m a r k s . The formulas /\EK(X) form a "natural" system of representa-
K 

tives of the classes of equivalence of the BP-formulas — they arise from the 
complete conjunctive normal forms (see [2], p. 215) with the propositional 
variables p±, ...,pm (m = 2~n) if we replace pi by the normal form RMi(x) 
{i -= l, . . . . m). Due to Lemma 7, EK(X) can be replaced by QK(X). The formulas 
A QK(X) form some reduced system of representatives — they are substan-
K 

tially shorter: QK(X) is approximately twofold but EK(X) 22" — fold longer 
than RK(X). 

For a one element set K C Dn instead of QK(X) it is possible to use an 
equivalent but shorter formula ~~| RK(X). Moreover 

n n 

QK(x) ~ -](u n x ? = ON v ( n ^ = °)> 
s$K i = l seK i - 1 

where, for card K < 2~~~1, the formula on the right-hand side is shorter than 
QK(X) (if we consider Xj as one symbol). 

Definition 9 . The system SF from Theorem 2 is called the characteristic system 
of the BP-formula F(x) (with respect to the variables x\, ...,xn in this order). 

For the variables for which we determine SF a similar remark as the one 
following Definition 5 holds. SF depends on the order x\, ..., xn but, according 
to b) from Lemma 8, it does not depend on the order M\, ..., Mm of the sets 
M C Dn (because another order changes EK(X) from (18) only in the order 
of its terms). 
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Lemma 9. The characteristic system Sp of a BP-formula F(x) equivalent 
to the formula 

k 

(21) V *»,(*) ( ^ CDn;j=l,...,k) 
i - i 

contains a non-empty set K C Dn if and only if 

(22) K CNj o sj = 0 (j=l,...,k). 

Proof . I t is sufficient to consider pairwise different Nj. Hence, if 

(23) Ni = Nj => st = sj (i,j= 1, . . . , fc) , 

then we can omit the terms of the disjunction (21) corresponding to the 
"repeated" Nj and in (22) leave out the corresponding i, j ; if (23) is false, 
then F(x) is a BP-tautology, SF = 0 and (22) holds for no K. Thus we suppose 
further that Nj are pairwise different and that Nj = M{j (j = I, ..., k), where 
Mi, ..., Mm (k ^ m = 22n) is the order mentioned in the introduction to 
section 4. We put 

m 

Et{x) = V R%P), H{x) = A Et{x), 
i=l t 

where t runs over the ra-tuples (h, ..., tm) e Dm such that (V j S &)(^ = Sj). 
Using the well-known theorems of the propositional calculus we have H(x) ~ 
~ F(x). If we omit the terms ofH(x), which are BP-tautologies (see Lemma 6), 

then, with respect to the uniqueness of the characteristic system, it is sufficient 
to prove that from the disjunctions EK(X) (see (18)), where 0 ^ K CD71, 
there belong to the terms of H(x) exactly those which satisfy (22). But, 
according to (18), this follows from the fact that (22) is equivalent to the 
condition (Vj ^ k)(sNj(K) = Sj). 

Theorem 3. a) Let F(x) be the BP-formula from Lemma 9 and S(n) = 2Dn — 
— {0}. Then 

SF = ( n 2 ^ - W) n (S(n) - (J 2*') (l^j^k). 
«j=0 Sj=l 

b) If St is the characteristic system of the BP-formula Fi(x) (i = 1, . . . , k), 
k k 

then the characteristic system of the formula /\Fi(x) is S = [J Si. 

Proof, a) is a consequence of Lemma 9 and b) follows from Theorem 2. 
R e m a r k . Since every; BP-formula F(x) is equivalent .to a conjunction of 

BP-formulas of the type (21) (cf. (11)), Theorem 3 gives an effective method 
for the determination of the system SF to a given F(x), (The determination 
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of SF by the method from the proof of Theorem 2 is, for particular formulas, 
very slow: conjunctions (17) of disjunctions (16) with 22* terms are used.) 

5. BP-relations in a given Boolean algebra 

In this section we present some theorems concerning the BP relations. 

Lemma 10. Let 0 ^K CDn. Then (V B,b)(QK(b) o Mb ^ K). 
Proof . Choose B,beBn and K CDn. According to (18) and Lemma 7, 

(24) QK(b) o V BM(b)V V ~l RM(b), 
K<tM MZ>K 

where the index M runs over 2°n. Further, according to Lemma 2, 

(25) V RM(b) o ( 3 M CDn)(K $ M,Mb CM), 
K<tM 

(26) V ~MiM(b) o -] /\RM(b) o -]RK(b) o Mb $ K, 
M^K MZ>K 

where the second equivalence in (26) follows from (9) and from the equality 
P| {M I K C M C Dn) = K. 

Now suppose QK(b). If Mb £ K, then Mb ^ K. If Mb C K, then, according 
to (24)-(26), K £ M, Mb CM for some M C 2 > . Thus, Mb ^ K. 

Let Mb ^K. If Mb 4=K, then, according to (26), (24), QK(b) holds. If 
Mb CK, then, for M =lMb, there is Mb CM, M CK and K £ M (in the 
other case K = M = Mb ^ K). By (25), (24), K £ M, Mb CM imply QK(b). 

R e m a r k . According to Lemma 9 and the remark following Lemma 4, it 
is possible, for small n, to find all the n-tuples b e Bn (if card B = 2k) for 
which "~1 QK(b) (i. e. Mb = K), where the set K = {s\, ..., sr} C Dn is given 
(r ^ k). I t is sufficient to choose <p : B-> Dk preceding Lemma 4 and then 
gradually construct from the column vectors s±, ..., sr all the matrices Ab(p, 
and with it the /^-tuples bcp and also b. If we know the characteristic system 
of the BP-formula F(x), according to Theorem 3 the above construction gives 
a constructive method for the determination of all the w-tuples b belonging 
to the BP-relation F in a finite B. 

According to Lemmas 10 and 4, we get the following 

Lemma 11. Let QK be the realization of a BP-formula QK(%) (see Lemma 7) 
in a 2k element B. Then QK — Bn if and only if card K > k. 

Theorem 4. Let k be a positive integer and Sk(n) (or S(n)) the system of all 
the non-empty and at most k element (or of all the non-empty) subsets of the set 
Dn. Let F(x), G(x) be BP-formulas with characteristic systems SF, SG and let 
F, G( C Bn) be the realizations of these formulas in a given B. Then there holds: 
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If B has exactly 2k elements, then 
ai) F = Bn if and only if SF n Sk(n) = 0; 

a2) F = G if and only if SF n Sjc(n) = SG n Sjc(n); 
^3) (to a given F) there exists a system S = SJCF C Sjc(n) such that 

F= f]QK. 
KeS 

The system SJCF is determined uniquely, that is 

F = G O SjcF = SjcG-

If B has at least 22n elements (thus, it can also be infinite), then 
bi) F = Bn if and only if SF = 0, i. e. iff F(x) is a BP-tautology, 
b2) F = G if and only if SF = SG, i. e. iff F(x) ~ G(x). 
Proof . Let card 5 = 2k. 
a\) According to Lemma 11, 

(27) F=f]QK= 0 QK, 
KeSF KeSFnSkin) 

i. e. F = Bn iff SF n Sk(n) = 0(f]QK = Bn = 1 in (Bn, U, n , - ) - cf. (1)). 
Ke0 

a2) Let us denote Si = SF n Sjc(n), S2 = SGC\ Sjc(n). In virtue of (27) 
and an analogous equality for G,F = G if and only if, for every b e Bn, 
/\QK(b) o /\ QK(b). According to Lemma 8, the last condition is equivalent 

KeSi KeS2 

to (V b e Bn) / \ QK(b), i. e. ( V l e S i ^ - S2)(QK = Bn). This holds iff Si -
KeSi-S* 

-=- S2 = 0 (see (Lemma 11), i. e. iff Si = S2. 
a3) According to (27), S = SF n ASA;(̂ ). The uniqueness of the system S 

can be obtained in the same way as Si = S2 in a2). 
Let card B ^ 2 2 \ 
bi), b2). If k ^ 2W, card 5 = 2*, then both assertions are special cases 

of ai), a2) (because SF n /S,t(^) = SF and similarly SG). If B is infinite, it 
contains a 2k element Boolean subalgebra B0, where k ^ 2n. Then F'o = 
= F n Bl is the realization of F(x) in J50. Thus, the condition F = Bn implies 
F0 = Bn, SF = 0. Similarly, if F = G, then, for F0 = F n B%, G0 = G n B%, 
we have F0 = G0, SF = SG. The converse implications in bi), b2) are trivial. 

As a consequence of Theorem 4 we have 

Theorem 5. The number of all the n-ary BP-relations in a 2k element B is 
2tkin) where 

tk(n) 
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The number of all the n-ary BP-relations in an at least 22n element B is 222"-1 

(i. e. the non-equivalent BP-formulas have different realizations). 

Theorem 6. Let S(n), Sk(n) be the systems from Theorem 4 and let SF be the 
characteristic system of the BP-formula F(x) with the realization F in an at 
least 22n element (or an exactly 2k element) B. Then F is a B-relation if and only 
if the eqality SF = S(n) — 2™ (or SF n Sk(n) = Sk(n) — 2M) holds for some 
M CDn. (If the condition holds, then F = RM.) 

Proof . According to Theorem 3, S(n) — 2M is the characteristic system 
of the B-formula RM(X) (M C Dn). Now we use b2) and a2) from Theorem 4. 

R e m a r k . In B = (D, U, n , -) there holds BM = M for every M C Dn. 
Thus, every w-ary relation (i. e. also every n-ary BP-relation) in a 2 element B 
is a H-relation. 

The last two theorems concern the inclusions between two BP-relations. 

Theorem 7. Let SF, SG be the characteristic systems of the BP-formidas F(x), 
G(x) with the realizations FB, GB in a given 2k element B, respectively, and let 
Sk(n) has the same meaning as in Theorem 4. Then FB C GB holds if and only 
if SF n Sk(n) D SG n Sk(n). 

Proof . The realization of the BP-formula F(x)/\ G(x) with the characteristic 
system. SFAG = SF u SG (see Theorem 3) in B is FB n GB. Thus, FB C GB 

(i, e. FB n GB = FB) holds iff (SF U SG) n Sk(n) = SF n Sk(n) (see a2) from 
Theorem 4), i .e . iff SF n Sk(n) j SGnSk{n). 

Theorem 8. In the notation from Theorem 7 the following assertions are equi­
valent 

(a) FB C GB for every B; 

(b) FB C GB for some at least 22" element B; 

(c) SFDSG. 
Proof, (a) => (b) is trivial. Suppose (b). Then, according to Theorem 7, 

SF n S(n) D SGC\ S(n) (because Sk(n) = S(n) for k = 2n), i, e. (c) holds. 
Finally, (c) => (a) follows directly from the definitions. 

Finally we shall apply the last theory to the case n = 2. According to 
Theorems 2, 4 (we keep the notation), we shall determine all the binary BP-
relations in an arbitrary B. (Instead of (0, 1) we shall write only 01 etc.) 
There holds 
S(2) = 2D* - {0} = {{00}, {01}, {10}, {11}, {00, 01}, {00, 10}, {00, 11}, {0V 10}, 
{0V 11}, {10, 11}, {00, 0V 10}, {00, 01, 11}, {00, 10, 11}, {01, 10, 11}, L>2}. 
(The first four elements form the system #i(2), the first 10 form £2(2); $3(2) 
is composed of the first 14 elements and, ultimately, Sk(2) = S(2) for h ^ 4.) 
Now for the fifteen K e S(2) in the given order we can determine the formulas 
QK(X) and, according to the remarks following Theorem 2, also the equivalent 
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shorter formulas Fi(x), ..., Fi5(x), where x = (xi, x2) (instead of """"](••• = . •.) 
we write only (... =7-= ...) and we omit the sign of meet): 

Q{00}(X) ~ R(X) — (^1^2 ^ 1), ..., Q{00t01}(X) ~ F$(X) — ((X1X2 U XlX2 =£ 1) V 

V (xix2 = 0)V (W*2 = 0)), . - . , Q{oi,io,ii}(^) ~ FMX) = ( ( ^ 2 7^ 0) V 
V ( ^ 2 = 0) \ / (arî 2 = 0)V (xix2 = 0)), QD2(X) - Fu>(x) = ((xix2 = 0) V 
V (XlX2 = 0)V (̂ 1^2 = 0)V (XlXi = 0)). 
All the binary BP-relations in a 2, 4, 8, at least 16 element B are given by all 
the conjuctions which can be constructed of the first four, ten, fourteen, all 
the formulas Fi(x), ..., Fi$(x), respectively. The obtained relations are pairwise 
different. 
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