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THE REGULAR IDEAL IN A SEMIGROUP* 

HARBANS LAL 

1. Introduction and definitions: We define here in this note the regular 
ideal, M(S), of a semigroup S with zero, as N. H. McCoy defined it for an 
associative ring [5] and prove some radical-like properties of M(S) similar 
to those of the Schwarz (nilpotent) radical, the Clifford radical, the Sevrin 
radical and the McCoy radical [1, 7, 8]. We also prove that the mapping 
which takes an ideal A of a semigroup S to M(A), is a lattice endomorphism 
in the lattice of all ideals of S (Theorem 2.6) and find a necessary and sufficient 
condition for a semigroup to be bound to its Schwarz radical (Theorem 3.9). 

An element 6 of a semigroup 8 is called (von Neumann) regular if there 
exists an element b' in 8 such tha t b = bVb. A zero in a semigroup with a zero 
is clearly regular. We assume throughout this note that S is a semigroup 
with a zero. An ideal (two sided) A of 8 is called regular if every element 
of A is regular. A regular ideal of 8 is itself a regular semigroup (actually 
a regular subsemigroup of 8). A regular ideal B of S is called a maximal regular 
ideal of 8 if there is no regular ideal of S containing B properly. Clearly the 
family of regular ideals of 8 is non-empty. The union of all regular ideals 
of S is the unique maximal regular ideal of 8 and it is equal to {a e 8 : J(a) 
is regular}, where J(a) = a U 8a U aS U SaS, is the principal ideal of 8, 
generated by a. We denote this unique maximal regular ideal of 8 by M(S) 
and call it t h e r e g u l a r i d e a l of/S. I t may be noted that any right (left 
or two sided) ideal of M(8) is itself a right (left or two sided) ideal of 8. 

2. Radical-like properties of M(S) 

Lemma 2.1. Let A and B be any two ideals of 8 such that A C B. Then 
M(A) c: M(B), where M(A) or M(B), respectively is the regular ideal of the 
semigroup A (or B respectively). 

Proof . For an x in M(A), J(X)A is a regular ideal in the semigroup A, 
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where J(X)A denotes the principal ideal generated by x, in A. For any y e J(X)B > 
we have y = b±xb2, with b% e B or b\ is an empty word. As J(X)A is regular, 
there exists x' in J(X)A such that x = x x' x and y = (b\x)x'(xb2) e J(X)A . 
This means y is regular in A and hence in B, and thus J(X)B is regular in B, 
whence x e M(B). 

Corollary 2.2. M(M(S)) = M(S). 

Lemma 2.3. For any two ideals A and B of S, 

M(A nB) = M(A)nM(B). 

Proof . By applying Lemma 2.1, we get 31 (A n B) c 31(A) n 31(B). 
Now let x e M(A) n M(B). This means J(x)A and J(X)B are regular in semi­
groups A and B, respectively. For any y eJ(x)AnB, there exists yieA, 
y2e B such that y = y yi y and y = y y2y. On setting y' = y\ y y2, we have 
V = yy' V a ^ d y' e A n B. Thus J(x)AnB is regular in A n B, placing x 
in M(A n B). Thus M(A n B) = M(A) n M(B). 

Lemma 2.4. 31 (A u B) = M(A) u M(B) for any two ideals A and B of S. 
Proof . M(A) U M(B) C M(A U B) follows from Lemma 2.1 and an x 

in 3I(A u B) implies J(X)AKJB is regular in A U B. Suppose x e A; for any 
y e J(x)A there exists y\ in A u B such that y = yyiy = y yf y, where 
y = yi y yi e -4. Therefore, J(^)^ is regular in A, whence x e 31(A). Similarly 
x e B => x e M(B). Hence M(A U / 3 ) c M(A) U M(B). This completes the 
proof. 

Lemma 2.5. Let I be a regular ideal of an ideal A of S. Then I is a regular 
ideal of S. 

The proof is immediate. 
From the foregoing lemmas, we have 

Theorem 2.6. The mapping which assigns to each ideal A of a semigroup S 
the regular ideal M(A) is a lattice-endomorphism of the lattice of all the ideals of S. 

Theorem 2.7. For any ideal A of S, M(A) = An M(S). 
Proof . M(A) c= A n M(S) is immediate in view of Lemma 2.5. Further, 

for a regular element b of S we can find a b\ with b = bb^b and b\ = b\bb\, 
whence A n M(S) c M(A). 

Theorem 2.8. M(S) = {o}, where S = SJM(S) is the Bees factor semigroup [2] 
of S modulo the regular ideal M(S). 

Proo f : Let, if possible, 1 be a non-zero regular ideal of S. Then A = 
= M(S) U B, where B = 1 — {o} is a regular ideal of S, containing 31(S) 
properly, which contradicts the maximality of M(S). Therefore, / = {o} 
and M(S) = {o}. 
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Proposition 2.9. Let S be a semigroup with a restricted right cancellation 
(that is, ab = cb and b -7-= o implies a = c, where a, b, c are in S). Then M(S) = 
= {0} or M(S) = S. 

Proo f : Suppose M(S) =£ {0} and choose a nonzerob in it. Thenb = bb' b for 
some b' in 3I(S). For any x in S, we have xb = (xbb')b; by applying a restricted 
right cancellation, we get x = xbb', which is in M(S). Thus M(S) = S. 

R e m a r k 2.10. In the above proposition, the restricted right cancellation 
is an essential part of the hypothesis; for instance, if we take the semigroup 
S = {o, x, y} with x2 = xy = yx = o and y2 = y. Here the restricted right 
cancellation does not hold and as a result of that M(S) = {o, y}, which is 
obviously neither zero nor the whole of S. 

3. The Schwarz (nilpotent) radical 

Definition 3.1. Let S be a semigroup with a zero. The union of all nilpotent 
ideals of S is called the Schwarz (nilpotent) radical of S and it is denoted by 
R{8) [6]. 

Definition 3.2. Let A be any ideal of S. Then by its annihilator A*, we mean 
the set consisting of those elements x of S for which xA = Ax = {o}. Clearly A* 
is also an ideal of S. 

Lemma 3.3. Let A be any ideal of S. Then R(A) = A n R(S), where R(A) 
is the union of all the nilpotent ideals of the semigroup A. 

This is Theorem 4.1 of L u h [4]. 

Theorem 3.4. / / M(S) is the regular ideal and R(S) is the nilpotent radical 
of a semigroup S with zero, then M(S) n R(S) = {o}, R(S) c M(S)*, M(S) ^ 
<= R(S)*, M(S) n M(S)* = {o}, M(S) = M(R(S)*) and R(S) = R(M(S)*). 

Proof . As the nilpotent radical R(S) is nil, it has no nonzero idempotents. 
For an x in M(S) n R(S), we have x' in S such tha t x = x x' x, but then xxr 

is idempotent and is in R(S), therefore it must be zero; whence M(S) n R(S) = 
= {o}. This, in turn, gives M(S) . R(S) = {0}, which yields M(S) ^ R(S)* 
and R(S)^M(S)*. That M(S) n M(S)* = {0} is immediate; and from 
M(S) c R(S)*, we get M(S) <= M(R(S)*) by applying Lemma 2.1 and Co­
rollary 2.2. The reverse inclusion also holds by Lemma 2.5. Again R(S) c 
c M(S)* gives R(S) c R(M(S)*) and the opposite inclusion follows from 
Lemma 3.3. 

Corollary 3.5. Let S be a principal ideal semigroup (that is a semigroup each 
of whose ideal is a principal ideal). Then either M(S) = {0} or R(S) = {o}. 

Proof . First we show that the ideals of S are totally ordered, and for this, 
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it suffices to show that for any a and b in S, either J (a) c= J(b) or J(b) c; J(a) . 
By hypothesis, there exists some c in S such that J(a) U / (b) = J(c), whence 
the assertion. By Theorem 3.4, we have M(S) n R(S) = {o}, from which 
the corollary follows. 

R e m a r k 3.6. One cannot omit from the hypothesis of the above corollary 
that S is a principal ideal semigroup. For instance, the semigroup in Re­
mark 2.10 is not a principal ideal semigroup and consequently M(S) = {o, y}, 
R(S) = {o, x} and none is contained in the other. 

Proposition 3.7. In a semigroup S any one-sided annihilator of M = M(S) 
is two-sided. 

Proof . Let Mx = {o} for some x in S. We will show tha t xM = {o}. Clearly 
(xM)2 = {o}, so that xM is a nilpotent right ideal of S and hence xM ^ R(S); 
but R(S) c M(S)* = M* by Theorem 3.4; therefore xM c M* whence 
xM2 = {o}, but M2 = M, so xM = {o}. Similarly yM = {o} => My = {o}. 

Definition 3.8. A semigroup S is said to be bound to its Schwarz (nilpotent) 
radical R(S) if R(S)* c R(S). 

This concept is defined by H a l l [3] for a ring and its Jacobson radical. 
We now prove a result similar to Theorem 6 of [5]. 

Theorem 3.9. Let S be a semigroup such that S = S/R(S) is regular. Then S 
is bound to R(S) if and only if M(S) = {o}. 

Proof . Let S be bound to R(S). By definition R(S)* c R(S). Also Theorem 
3.4 gives M(S) c (R(S)* and M(8) n R(S) = {o}. These coupled together 
yield M(S) = {o}. In this part we do not make use of the regularity of S, 
at all. On the other hand, let M(S) = {o} and S = S/R(S) be regular. Now 
x e R(S) n (R(S)*)2 => x = ab for some a, be R(S)*. If a e R(S), then x = 
= ab = o; if a $ R(S), then, since S is regular, we have a = aa'a for some 
a ' i n #. Thus a; = ab = aa'x e R(S)*. R(S) = {o}. Therefore, R(S) n (R(S)*)2 = 
= {o}. We prove now that (R(S)*)2 = {o}; as for any nonzero y in (R(S)*)2, 
y $ R(S), whence y is regular in S and hence in S, so tha t (R(S)*)2 is a regular 
ideal of S and hence it must be contained in M(S), which is equal to {o}. Thus 
(R(S)*)2 = {o}; that is R(S)* is a nilpotent ideal of S and therefore, R(S)* c 
c= R(S), which means that S is bound to R(S). This completes the proof 
of the Theorem. 

R e m a r k 3.10. For the second part in Theorem 3.10 the regularity of S 
is an essential requirement. For instance, if we consider the multiplicative 
semigroup S of non-negative integers, we have M(S) = {o} = R(S), S is not 
regular and as a result, S is not bound to R(S), as R(S)* = S $ R(S). 
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