Matematicky casopis

Tibor Katrinak; Tibor Neubrunn
On Certain Generalized Probability Domains

Matematicky ¢asopis, Vol. 23 (1973), No. 3, 209--215

Persistent URL: http://dml.cz/dmlcz/126888

Terms of use:

© Mathematical Institute of the Slovak Academy of Sciences, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
O with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz


http://dml.cz/dmlcz/126888
http://project.dml.cz

Matematicky &asopis 23 (1973), No. 3

ON CERTAIN GENERALIZED PROBABILITY DOMAINS

T. KATRINAK and T. NEUBRUNN, Bratislava

The o-field which is used as the domain of a probability measure is in some
considerations concerning quantum mechanics substituted by a system of
sets which is supposed to be closed under complementation and under forming
countable disjoint unions. Such a collection with a probability measure for
which the above mentioned system is a domain is called quantum probability
space. The notion of the quantum probability space was introduced in [1]
and discussed in [2], [3]. It was also studied in [4] and many other papers
from the point of view of partially ordered sets. The present paper in its first
part adds some remarks to the above mentioned space. Some different proofs
of the results of [2], using a result of [3] are given and a certain extension of
them is obtained. On the other hand in the second part of the paper the relation
between the formulation in the form of systems of sets, and that in the form
of partially oredered sets, is discussed.

1. A quantum probability space is a triple (2, €, m), where Q is a non-empty
set, € is a collection of its subsets closed under complementation and under
forming countable disjoint unions, m is a probability measure defined on C.
The collection (' is called a o-class (see [2]).

The result stated in Lemma 1 is simple and its proof will be omitted. Lemma
2 wag proved in [2].

Lemma 1. Let C be a o-class of subsets of 2. Then the following holds: If a,b € C,
then a U b € C if and only if anb e C.

Lemma 2. If 4 is a collection of sets and C the o-class generated by A, then
cither of the following conditions is necessary and sufficient for € to be a o-field.
(The notion of the o-field coincides with that of the o-algebra as defined in [5])

(i) Ifa,bed, thena — be(,
@) Ifa,bed, thenanbeC.

Note that the condition that € is closed under countable unions of pairwise
dijsoint sets may be substituted by the condition that €' is closed under finite
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unions of pairwise disjoint sets. So we shall introduce the notion of the s-class
as follows.
O will be called an s-class if

(s1) For any @ € €' the set 2 — a € O,

(s2) @ U b € C for any two a, b € C such that a 0 b = 0.

There is no difficulty, without changing the conception of the proof in [3],
to prove the corresponding analogy of Lemma 2 for s-classes. One can get the
formulation of such an assertion by substituing the notion of the o-class by
that of the s-class and that of the o-field by one of the field.

An important question in the theory of quantum probability spaces is the
question. whether for a given collection {S;}, (! € T') of sub-o-fields of a given
o-class there exists a sub-o-field S such that |J S; = § < C. Itis well known

teT
that it is not true in general. A necessary and sufficient condition for the case
of two sub-o-fields was given in [2] where also a sufficient condition for the
general case was given. In what follows we shall give a necessary and sufficient
condition for the general case. S; will be a more general collection than sub-
-o-fields.

The notion of compatibility and that of the C-class will be used as in [2].
Thus if € is a o-class, then a, b € C are said to be compatible in Cifa N b e C.
If A < C, then 4 is said to be compatible in C if @ N b € € for any two a,
b € A. A is called internally compatibleifa N b € A foranya,b e 4. If 4; < C,
Ay = C, then 4, A, are called mutually compatible if a1 N a2 € C for any
ay € Ay, az € As. The o-class € is said to be a c¢-class if for any «, b, ¢ € C
which are mutually compatible, @ N (b U ¢) € C holds. Evidently the above
notions may be defined also if €' is an s-class.

It seems to be useful to introduce the notion of the n-compatibility, where
n = 1 is a positive integer. If 4 < €, then 4 will be called n-compatible if
arNasN ...a, €C forany sequencea; €4, (¢ = 1,2, ...,n).

The set 4 < ¢ will said to be conditionally n-compatible in C if for any

sequence {#;} (1 =1, 2, ..., n) of elements belonging to 4 and such that
a; (=1, 2, ..., n) are mutually compatible in C, ainan ... Na, el
holds.

Theorem 1. Let ' be a o-class.
(i) C is a c-class if and only if it is conditionally 3-compatible.
(i) If € is a c-class and A < C is compatible in C, then A is n-compatible

in C for any positive inleger n.
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Proof. (i) Let €' be a c-class. Let a, b, ¢ be mutually compatible in €. Then
anBuceCandanbel,anceC. Hence anb)nanc)=anbn
N ¢ e C, according to Lemma 1. On the other hand let €' be conditionally
3-compatible and @, b, ¢ be mutually compatiblein ¢. ThenanbeC,an ce
andanbne=(anb)n (@anc)e. Again by Lemma 1 an (b U ¢) e (.

(ii) Let us proceed by induction. For n = 1, 2 the theorem holds. Let
n = 2. Suppose the theorem to be true for n. Leta; € Afore = 1,2, ...,n | 1.
Put a=a10) ... Va1, b= ... Na, 1N ayi1, ¢ —an. By the
assumption e € ¢, beC, c e C and a, b ¢ are mutually (ompatlble By (i)
anbnNnc=arnNnan ... Na,1el.

Theorem 2. Let €' be a o-class. Let {S;} (t €T) be any collection of sets such
that Sy = C for t € T. A necessary and sufficient condition for the existence of
a sub-o-field S of C such that US; =« 8 < C is the n-compatibility of U S,

= et
in C for any positive integer n.

Proof. The necessity is obvious. Tet E — U S; be n-compatible in ' for

el
any positive integer n. Then the set /' of all a1 ... Na,, where a; e/
(t = 1,2, ...,n)and nis any positive integer is evidently internally compatible.

Lot S bc the o-class generated by F. Then § < C. By a simple corollary of (ii)
of Lemma 2, § is a field.

Note that a suitable modified result for s-classes and fields may be also
obtained.

Corollary 1. (Theorem 3.1 in [2].) Let C be a o-class. Then to any set A
compatible in C there exists @ o-field S such that A < S < O if and only if € is
conditionally 3-compatible.

Proof. Necessity. Let @, b, ¢ be mutually compatible. Then put 4 = {a b, c}
Under the asumption there exists a o-field § such that 4 < § < €. Hence
anbneesS < C.

Sufficiency. Suppose € to be conditionally 3-compatible. Let 4 be any
compatible set in C. Then it is n-compatible for any positive integer n, ac-
cording to (i) and (ii) of Theorem 1. Thus the result follows from Theorem 2.

Corollary 2. Let C be a o-class and S; (¢ € T') a collection of mutually compatible
subsets of C each of which is internally compatible. Then there exists a o-field
S < C such that U 8; < S.

tel
Proof. B =[] S is compatible in C, hence the result follows from Corollary 1
el
and from (i) of Theorem 1.



Corollary 3. (Theorem 2.5 in [2].) Let C be a o-class. Let Sy, Sz be sub-o-fields
of C. 4 necessary and suf ficient condition for the existence of a o-field S such that
S1U 82 « 8 < C s the mutual compatibility in C of Sy and Ss.

Proof. The necessity is trivial. Evidently S; U S; is n-compatible for any
positive integer n. Thus the result follows from Theorem 2.

2. Many times instead of the o-class € a partially ordered set 7' with the
first and last elements 0 and 1 respectively is considered. A reasonable general
case (see e.g. [6]) is given by the axioms (i)— (iv) which follow. In what follows
@' denotes the uniquely determined complement which is supposed to exist
for any @ € T. The symbols zV y, ® A y stand for sup{x, y}, inf{x, y} respecti-

vely, if the mentioned elements exist, while Z a; stand for the sup{a:, a2, ...},
where a; (£ = 1, 2, ...) are supposed to be disjoint. Note that « is said to be
digjoint with b if ¢ < b,

(i) (@'

(ii)a = b 1mphes o' =
)
)

v

I

(1ii — lforallac?

aV
(iv Z i € T for any sequence {a;} of mutually disjoint elements a; € 7'.

Note that usually some further axioms are added to obtain physically
important results (see [6]). We shall restrict our attention to (i)—(iv), noting
that (i)— (iii) might be something which could correspond to an s-class while
(i)—(iv) resembles a o-class.

There are results holding for s-classes which have their analogy in the partially
ordered sets fulfilling (i)— (iii). But to transfer all the results without any
detailed study would be possible only in the case if 7' were isomorphic to an
s-class. This is not true in general. We shall give a necessary and sufficient
condition for 7' satysfiing (i)— (iii) to be isomoprhic to an s-class of sets. In
the case when (i)—(iv) are satisfied also a kind of isomorphy with certain
systems will be established.

A partially ordered set 7' with the first and last elements 0 and 1, respectively,
is said to be pseudocomplemented provided that to any a €7 there exists
an element a* e T' with the property

(1) apx exists in 7', @ A @ = 0 is equivalent to the assertion x £ a*.

The property (1) implies that the pseudocomplement a* is uniquely deter-
mined for any @ €7'. The following conditions are satisfied in any partially
ordered pseudocomplemented set.
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(2) * = y implies 2* < y*
(3) x = a**
(4) a* = a***,

A bounded partially ordered set T' is said to be uniquely complemented if
to any a € 7' there exists a uniquely determined elementa’ € 7' such that a Ao’
and @V a' exist in 7 and a Ae’ = 0, aV o’ = 1 hold. Evidently in a pseudo-
complemented and uniquely complemented partially ordered set 7', a* = a’
holds.

In what follows the MacNeill — Dedekind cut completion of a partially
ordered set 7' will be used. Let us introduce the basic notions. I® denotes the
set of all upper bounds of I, ie. I® = {x €T, x = y for every y € I}. Analo-
gically JV = {x € T; & < y for every y € J}. It is known that the system L(7')
of all closed sets, i.e. of all sets with the property I = I*V,is a complete lattice
with respect to the set inclusion. L(T') is a completion of the partially ordered
set 7' (see [8]). It can be easily found that if I3, I, € L(T), then Iy N Iy € L(T).
Hence the lattice-theoretical meet coincides with the intersection of sets, i. e.
]1A12:?Ilm12,

Lemma 3. Let T be a uniguely complemented and pseudocomplemented partially
ordered set. Then MacNeill — Dedekind cut completion L(T) is a Boolean algebra.

Proof. As we know L(T') is a complete lattice with the first element {0}
and the last element 7'. First we shall prove that it is a pseudocomplemented
lattice. Let for I, K e L(T'), I n K = {0} hold. Thenforz e Kandanyy = I
there exists ¢ Ay in 7' and z Ay = 0 hold. The last gives x < y' for any y € 1.
Denote I' = {x € T; x = y’ and y € I}. We have K < I'V. It is easy to verify
that I'V € L(T). On the other hand if K < I'Y for some K € L(T),thenx e I A K
implies < z and @ < 2/, hence x = 0. Thus I N K = {0} and I'V is a pseudo-
complement to I in L(T). L(T) is a pseudocomplemented lattice.

Let us prove that I = I'V’V holds for any I € L(T). According what was
proved we know that L(T') is a pseudocomplemented lattice, I N I'V = {0}
and (I'7)'Y is a pseudocomplement to I'V. Hence I < I'V'V. Since z < ¥
implies ' > 4’ for any y € I (see (2)), we have 2’ € I'Y for any x € I®. Thus
12 c J'Y Thelastoives I — -  I'> Therelation ] — 1°Y > J'V N ean
be veriffied immediately. Hence I = I'V'V.

It was proved by now that L(7) is a pseudocomplemented lattice and x = x**
for any x € L(T), i.e. any element is “closed*. In view of a known Glivenko’s
theorem (see [9]) the partially ordered set of closed elements is a Boolean
algebra. Thus L(T) is a Boolean algebra.

Lemma 4. (M. H. Stone) To any distributive lattice L there exists a set M
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and a system L of subsets of M such that L under the operation of the union and
intersection of sets is a lattice isomorphic with L.

Using the Lemmas 3 and 4 and taking in to account the fact that the condi-
tion (1) is satisfied in any s-class, we have the following. "

Theorem 3. A necessary and sufficient condition for a partially ordered set T
satisfying the axioms (i)— (iii) given af the beginning of section 2 to be isomorphic
with an s-class of sets is that T be pseudocomplemented.

A natural question is whether a partially ordered set satisfying (i)—(iv)
and pseudocomplemented is isomorphic to a o-class of sets. This need not be
true since the Stone theorem (Lemma 4) need not be valid even for so called
og-complete Boolean algebras. It means that for a given o-complete Boolean
algebra B there need not exist a o-field of sets which is isomoprhic with B
in the sense that to the supgx, where x, € B (n = 1, 2, . ..) there corresponds
the union of the corresponding images of the elements x,. But a theorem on
isomorphy with certain special o-classes may be obtained.

Let a o-field M of subsets of a given set be given. Let I be a o-ideal in J/,
iie. I <« M, I is closed under countable unions and for any €I, y < z,
y € M the assertion y € I holds.

Denote by M|I the collection containing as elements those sets 4 < M
for which x € 4, y € A implies (x — y) U (y — ) € I. It is known that M/I
is a Boolean g-algebra under the natural definition of sums, intersections and
complements. This algebra M/ is called a o-quotient algebra.

If ¢ < M|I and C is closed under forming disjoint countable unions and
under complementations in M/, then C will be called a o-quotient class.

Sikorski [7] proved the following theorem.

Lemma 5. Every o-complete Boolean algebra is isomorphic to a o-quotient
algebra.

Using Lemma 3, Lemma 5 and remembering that (1) is true for any o-quotient
class, we have.

Theorem 5. A necessary and sufficient condition for a partially ordered set T
satisfying (1)—(iv) to be isomorphic to a o-quotient class is that T be pseudo-
complemented.

REFERENCES

[1] SUPPES, P.: The probabilistic argument for a non-classical logic of quantum mecha-
nics. Philos. Sci. 33, 1966, 14—21.

[2] GUDDER, 8. P.: Quantum probability spaces. Proc. Amer. Math. Soc. 21, 1969,
296 —302.

[3] NEUBRUNN, T.: A note on quantum probability spaces. Proc. Amer. Math. Soc. 23,
1970, 672—675.

214



- . Pure Appl. Math 5,189 17 P rrectlon, 1oc ot 18, 1965
(8] HALMOS P. B Measure theery ~ ;
~ [6] GUDDE.

Umvérzwy Komehského
Bmtwlqw ‘

‘ Prftmdouedeckej fwkalty ;
- Unwarzuy Komm&kého -



		webmaster@dml.cz
	2012-07-31T19:03:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




