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LEIBNIZ RULE
RUDOLF FIBY, Bratislava
Preface

The classical rule for high order derivations of a product of functions has
a certain analogue in the more general case of normed modules. The general
Leibniz rule can be expressed as some morphism of functors (the rule
in [1] is not valid). These functors map the category of bounded polylinear
mappings into the category of polylinear mappings. The first functor is
a functor of multiplication. The second functor is the composition of a certain
extending functor from the category of bounded polylinear mappings into
itself with the first functor. Basic algebraic properties of the extending functor
are described in [3].

The terminology is taken from [2] and [4]. Differential calculus is used in
a more general form than in [2].

Notations

R is a normed commutative associative ring with unit which contains the
field of real numbers as a subring;
P, g are non-negative integers.
The other notations in this paper are the same as in [3], but we shall consider
normed right R-modules and bounded E-polylinear mappings.
9 s the additive category of right R-modules and R-linear mappings;
Upolimap, is the additive category which is in [3] denoted by Polimap,;
U is a non-empty open set of 4;
I'%, is the additive functor from .7 into % defined as follows:
1. F'7.(#) is the right R-module of all continuously differentiable mappings
up to the order p from U into £ (see [2]),
2. EFY (p) = & @ for every o/-morphism ¢ and & € FY(E);
M?%, is the additive functor from Polimap, into Upolimap, defined as follows:
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1. for every Polimapy-object X :E1 @® ... @ E,—>E and for each
(61, ..., &) EF%E) ® ... ® Fy(H,), we U, we have u((é1,

o E)ME(X)) = (w1, ..., uEp)X (MY(X) is an R-polylinear map-
ping from FU(E:) @ ... ® I}, (H,) into FY,(E)),
2. for every Polimap,-morphism (g1, ..., gn, @), MY(@1, ..., P, ¢) =

= (Fp(@), - - - Folpn), Fle));
D7 is the symbol of the p-th derivation;

0% is the morphism from F4? into F4, o Pl defined by the relation

w(EOVUR)) = (uDOE, ..., uD?rg) for every /-object E, §& e FYH(E)
and v e U.

The morphisms A7?

1. Theorem. Let X :E1 @ ... ® B, — E be a Polimapy-object. Then
(OVUEY), ..., OB(E,), OVUE)) is a Upolimapu-morphism from MY 4(X)inlo
M (Leay(X).

Proof. If p = 0, the proposition holds. Let it hold for p. For each
&1, ..., &) eFEIYNE) @ ... @ FE"YE,) and u € U, we have

(W(((EL, - - ., EMGHX)OFUE)) = uDr (&1, - - -, E)MGTH(X)) =
(u(((S].; e En)ﬂ’lll} ( ))@ﬁJrq )) r

y =
= (u((&L0F(H), . . . E.OF" (En)) M (Lexy (X)) =
(w(E10(Er)), - - ., w(EnOF () Leay (X)) =

I

]I

I

I

(uDO&, ..., uDP&), ..., (uDO,, ..., uDpE,)) Lex (X)) =

I

(
((
(D%, ..., uDPHIEL), ..., (WD%,, ..., uDPH1E,)) Lealit (X)) =
= (&0 U(EY)), . . ., w(EOF(BE))) Leal (X)) =

= (u((&G (B, - . ., EfOF ! (En)) MY (Leai (X)),

where r = 0, .

I

.., p. For every A-object B, £ e F2'*"\(E), ue U and a€ 4,

we have

a(uD'EOYE)) = (a(uDIE), . .., a(uDrHE));
this follows from [2] 8.1.5. For every Polimapy-object X : B, ® ... ® En—E,
(61, .., E) e FYYE) @ ... ® F4'Y(B,), wue U and a € 4, we have

aDU(E, ..., E)MYNX)) = > (uér, . . ., a(uDEs), . .., uka)X

i=1
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this follows from [2] 8.1.4, 8.2.1. Therefore
au(((, - . -, &) METH(X)OFHUE))P 1 —
= a{uD?(6, .., &)MEHHX)) —

= (a(uD'(((¢1, .. ., &) MG TUX))OLT (B))P =
= (a(uD((51.0% (B, . . ., £40%(Bn)) MY (Leax’ (X)) =
i (w(E10% ™ (BL)), . . ., a(uDYEOBTYE))), . . .,
=1

W(EnOY T (En))) Leay(X))P =

I

(w0, . uDes), . (aluD'E), ..,

-
I
-

a(uD?tEy)), .. ., (WDY%,, ..., uD?&,))Lex? (X))p —
— a((uD%:, ..., uDPHE), .. ., (uD%,, ..., uDvp1g,)) Loa?t (X))p+l —
— a((WEOYE)), . . ., wWEn@5 M (B))) Leak (X))ot =
= a(u(E05 U By), . . ., ExOF Y Bn) MY(Leaty (X)) 41
for each a € 4.

2. Definition. The Upolimapn-morphism (0%4H,), ..., O (E,), OY(E))
will be denoted by A} X).

3. Theorem. A% is a morphism from M% into M4 o Lex?, .
The proof is clear.
4, Note. Theorem 3 expresses the general Leibniz rule.
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