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Matematický časopis 18 (1968). No. 4 

A NOTE ON ABSOLUTELY MEASURABLE SETS 

ZDENA RIECANOVl, Bratislava 

On a non-empty set X there are given two systems C and U of subsets of X 
fulfilling a certain system of axioms. Let us take all outer measures y defined 
on the smallest hereditary cr-ring H(C) over C such t h a t all sets of C are y-
measurable. The sets of H(C) that are y-measurable for all such outer measures 
y are called absolutely measurable. We show (Theorem 2, Theorem 4 and 
Theorem 5) athat every absolutely measurable set E can be approximated 
(according to any examined outer measure) by sets of C from within and by 
sets of U from outside, under the assumption that either y is finite on C, or 

00 

there exist UneU such that ( J Un =-> E, y(Un) < oo, n = 1, 2, . . . 
n = \ 

From this result we can get particularly the regularity of absolutely measur­
able sets according to all Caratheodory outer measures in a metric space 
([2], Theorem 12, p. 11) and the regularity of absolutely measurable sets 
according to all Caratheodory outer measures in a locally compact Hausdorff 
topological space ([3], p. 203). 

If X is a non-empty set of elements and A is an arbitrary system of subsets 
of X, then we denote by R(A) the smallest ring, by S(A) the smallest or-ring, 
by H(A) the smallest hereditary o*-ring containing the system A. We shall 
use according to [1] the notions ring, ff-ring, hereditary o--ring, as well as 
measure and outer measure. If X is a topological space and A <= X, then by A 
we denote the smallest closed set containing the set A. 

Let X be any non-empty set of elements. Let C and U be any systems of 
subsets of X fulfilling the following conditions: 

Vi. 0 e C , 0eU. 

V 2 . If Ut e U for i = 1, 2, ..., then ( J Ut e U. 

V 3 . If Cu 02e C, then d u G2 e C. 
V4. For any two sets U and G such that U e U, C e C we have U — G e U, 

C - UeC. 
V5. For any set G e C there exist sets U e U, G± e C such that C <= U <= G±. 
V 6 . U c S(C). 
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V7. For any set C E C there exist sets U% e U (i = 1, 2, ...) such that C = 
CO 

i=l 

By y we shall denote in the present paper an outer measure defined on 
H(C). In agreement with [1] we shall call a set E e H(C) y-measurable if 
y(A) = y(A n E) + y(A - E) for any A e H(C). 

Definition 1. Put stf\ = {y: all sets of C are y-measurable}, j / 2 = {y. all sets 
of C are y-measurable and y is finite on C}. 

N o t e 1. The following assertions can be easily proved: 

1. H(C) = H(U), S(C) = S(U). 
2. y e <stf\ if and only if each set U e U is y-measurable. 
3. y ES&\ if and only if y.(A,U.B) = y(A) + y(B) for any pair of sets A, 

B e H(C) for which there exists C E C such taht B <= C and A n C = 0. 
4. y E s#\ if and only if y(A U B) = y(A) -f- y(B) for any pair of sets A, 

B E H(C) for which there exists U EU such that B a U and A n U = 0. 
E x a m p l e 1. If X is a metric space, C the system of all closed subsets of X 

and U the system of all open subsets of X, then stf\ is the set of all Caratheodory 
outer measures in X. 

We easily find out that the systems C and U fulfil the conditions Vi — V7 
and the system H(C) coincides with the system of all subsets of X. An outer 
measure in X is Caratheodory (i. e. y(A U B) = y(A) + y(B) for any A,B ^ X 
such that Q(A, B) > 0) if and only if every closed subset of X is y-emasurable. 
The proof of this assertion see e. g. in [6]. 

E x a m p l e 2. If X is a locally compact HausdorfT topological space, C the 
system of all compact Gd subsets of X and U the system of all open sets be­
longing to S(C), then s/\ is the set of all Caratheodory outer measures defined 
on the smallest hereditary oaring over the system of all compact subsets of X. 

We easily find out that the systems C and U fulfil the conditions Vi — V7. 
If C\ is the system of all compact subsets of X, then H(C\) = H(C). An outer 
measure on H(C\) is Caratheodory (i. e. y(A U B) = y(A) -f y(B) for any 
A, B E H(C\) such that there exist open U, V such that A <= U, B <= V, 
U n V = 0) if and only if each set of C is y-measurable. 

The proof of the assertion that each set of C is measurable according to any 
Caratheodory outer measure see in [4]. On the contrary we shall show that 
if y is an outer measure on H(C\) such that each set of C is y-measurable, then 
y is a Caratheodory outer measure on H(C\). 

Let A, B E H(C\) be such sets, that there are open sets U, V for which 
A <-= U, B c: V, U n V = 0. The set A is evidently ©--bounded, i. e. there 

00 

exist compact sets Kn (n = 1, 2, ...) such that A <= \J Kn. We have A n 
.1 
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n Kn c= A c= U for any w. Because X is a locally compact HausdorfF topolo­
gical space, there are open sets Un e S(C) such tha t A n Kn c: Un c £/, 

00 

Put O = [ J Uw. Clearly O G S ( C ) i. e. O is y-measurable and hence 

y(A KJB) = y[(A uB)nO] + y[(A U B) - 0] = y(A) + y(B). 

Definition 2. Let y be an outer measure on H(C), a set E e H(C) is called: 
a. outer regular according to y, if y(E) = inf {y(U): E <= U e U}; 
b. inner regular according to y, if y(E) = sup {y(C): E => C e C}; 
c. regular according to y, if it is at the same time outer regular and inner regular 

according to y. 

Definition 3. Put 
Bi = {E: E G H(C), E is y-measurable according to each y e s/i}, 
B2 = {E: E e H(C), E is y-measurable according to each y e s/%}. 

Theorem 1. Bi = B2 . 
Proof . Clearly 8 i c B2 . Let E £ Bi. Then there exists y G s/\ such tha t E 

is not y-measurable. I t means tha t there is a set A e H(C) such tha t y(A) < 
< y(A n E) + y(A - E). Pu t y*(.B) = y(B n .4) for any £ e H(C). Clearly 
y* G s/2. We have 

y * ^ ) = y{E r\A)< y(A) - y(A - E) = y*(A) - y*(A - E), 

hence 

y*(A) < y*(E) + y*(A - E) = y*(E n A) + y*(A - E). 

I t means that the set E is not y*measurable, i. e. E $ B2. Therefore B± = B 2 . 

Definition 4. .4 set E e H(C) is called absolutely measurable, if E G BI = B2 . 

Theorem 2. Every absolutely measurable set is regular according to each outer 
measure y e stf2. 

First we shall prove a few lemmas. 

Lemma 1. If U\, U2e U and there is a, seVC G C such that U2 <= C, then 
Ui n U2 G U. 

Proof . Ui n U2 = U2 — (C — Ui). According to V4 we have C — Ui G C 
and U2,U2- (Q- Ui) G U. Hence Ux n I72.c= U. 

Lemma 2. If E e H(C), then there are sets Cn e C (n = 1, 2, ...) such that 

Ecz(jCn. 
n-l 

Proof . Let B = L4 : A c Q (?,, o„ e C, % = 1, 2, . . . } . B is evidently 
n - l 
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a hereditary system, closed under countable unions, hence B is a hereditary 
o--ring. Further C c B. Hence H(C) c B. 

Lemma 3. If y e s/2, then all sets of C are outer regular according to y. 
Proof . Let yes/2 and CeC. According to V5 there exist sets UeU, 

D e C such that C <-= U <=• D. According to V7 there are sets Un e U(n = 1, 
00 00 

2, ...) such that C = C\Un. Hence C = n (Un C\U). According to Lemma 1 
n=l n=l 

we have Un n U e U for n = 1, 2, . . . Further y(Un n U) ^ y(Z>) < 00 
n 

(n = 1, 2, . . . ) . Put Vn =UnnU, Wn = n Vn. Then TT„ eU,Wn=> Wn+1, 
k=l 

00 

y(fVrc) < 00, n = 1, 2, . . . and C = n TV%. 
n=l 

Because the restriction of the function y on S(C) is a measure on S(C) and 
by V6 we have U c= S(C), then 

lim y(Wn) = y(n Wn) = y(C) < 00. 
n->oo n=l 

Choose an arbitrary e > 0. Then there is a positive integer wo such that 
y(Wno) < y(C) + e. Thus we showed that y(C) = in%(U) : O c UeU}. 

Lemma 4. If y e s/2, then all sets of S(C) are regular according to y. 
Proof . Let y e s$2- Let y be the function defined for A e S(C) by the equali­

ty y(A) = y(A). Clearly y is a measure on S(C), y(C) < 00 for C e C and ac­
cording to Lemma 3, all sets of C are outer regular according to y. By theorem 
8, [5] all sets of S(C) are regular according to y and hence according to y. 

Lemma 5. Let y e s#2> For any A e H(C) put 

yo(A) = inf {y(U) : A a U c U}. 

Then yo e s/2 • 
Proof . Let y e s/2 • Then the function y defined for A e S(C) by the equality 

f(A) = y(A) is a measure on S(C). Let y* be the outer measure induced by y 
on H(S(C)) = H(C). For E e H(C) we have 

y*(E) = inf {y(F): E c= F e S(C)}. 

Let us show that yo(E) = y*(E) for any E e H(C). U <=. S(C) by V6 and hence 
yo(E) ^ y*(E). By the help of the regulartiy (with respect to y) of the sets 
of S(C) of a finite measure, we easily prove that y*(E) = yo(E). 

We showed that yo is the outer measure induced by a measure on S(C). 
Hence all sets of S(C) are yo-mcasurable, therefore yoes/i- If C e C, then 
yo(C) = y*(C) = y(C) < 00, i. e. yoes/2. 
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Lemma 6. Let y e stfz. Let for A e H(C) 

yo(A) = in£{y(U): A c UeU}. 

Then, if E is yo-measurable and yo(E) < oo, E is outer regular according to y. 
Proof . According to Lemma 5, 70 e s/2. Let E be 70-measurable and yo(E) < 

< co. Choose an arbitrary s > 0. Then from the definition of 70 it follows 
tha t there is U e U such that U => E and 

yo(E) + s>y(U)= yo(U) = y0(U n E) + y0(U - E) £ y0(-S) + 
+ 7 ( U - F ; ) , 

i. e. £ > 7(L7 —F/) and the assertion is evident. 
P r o o f of T h e o r e m 2. Let 7GJ3/2 and let E e H(C) be any absolutely 

measurable set. First we show that E is outer regular according to 7. 
According to Lemma 2, there are sets Cn e C (n = 1, 2, ...) such that 

00 

E cz ( J <7». Put En = E nCn (n = 1, 2, ...). Then i?n are absolutely measur-
w = i 00 

able sets for w- = 1, 2, . . . and we have E = [J En. 
n=\ 

Let 70 be the outer measure on H(C) defined for A G H(C) by the equality 
7o(-4) = inf {y(U)\ A c= [7 e U}. According to Lemma 5 we have 706*2/2 
and hence En is 70-measurable. Futher we have yo(En) ^ 7o(Cw) < 00 for 
n = 1, 2. . . . According to Lemma 6 the set 2.7W is outer regular according to 

00 

7 and hence E = ( J En is outer regular according to 7. 
w=l 

Let us show now that E is also inner regular according to y, If there i s C e C 
such tha t E cz C, then C — E is absolutely measurable set and according to 
the first part of proof, C — E is outer regular according to 7. Choose an arbi­
trary s > 0. Then there is UeU, U => C — E such tha t y(C — E) + e > 
> y(U). Thus 7(U) — y(G — E) < e. Further we have C — U <= E and ac­
cording to V4 we have C — U e C. We get 

7(F/) - 7(O - U) = y[E - (C - U)] ^ 7[U - (C - E)] = 
= y(U) -y(C -E) <s. 

Now let E be any absolutely measurable set. According to Lemma 2 and 
00 

V3 there are sets Cn e C, Cn c. Cn+i (n = 1, 2, ...) such that i£ c= u Cn. 
n=l 

Hence we have y(E) = lim 7(F/ n Ow). If c < 7(F/), then there is no such tha t 

c < y(_E n Cno) and by the previous the set E n (7%0 is inner regular. Hence 
there exists a set C e C such C <= F/ n C7Wo <= F/ and c < y(G). Hence E is 
inner regular according to 7. 

N o t e 2. As a corollary we get from Theorem 2 the theorem on regularity 
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of absolutely measurable sets according to any Caratheodory outer measure 
in a locally compact Huasdorff topological space ([3], p . 203). 

Theorem 3. Every absolutely measurable set in a metric space X is regular 
according to any Caratheodory outer measure in X that is finite on the system of 
all bounded closed sets. 

Proof . Let X be a metric space. Let C be the system of all closed bounded 
subsets of X. Let U be the system of all open subsets of X. The systems C 
and U clearly fulfil the conditions Vi — V5, V7. If A is any closed set, then 

GO 

A = ( J (A n Cn
x), where Cn

x = {y : Q(X, y) ^ n}, and x is an arbitrary but 
n - l 

fixed element of X. Hence A eS(C) and also every open set belongs to S(C). 
Hence V6 is proved. The assertion of Theorem 3 follows from Theorem 2. 

Theorem 4. Every absolutely measurable set Eo is inner regular according to 
each y e s/i for which y(Eo) < 00. 

Proof . Pu t y*(E) = y(E n E0) for E e H(C). Then clearly y* e s/2, hence 
Eo is regular according to y*. Further 

y(E0) = y*(E0) = sup {y*(C): E0 -=> G e C} = sup {y(C): E0 => C e C} 

i. e. Eo is regular according to y. 
N o t e 3. From Theorem 4 the theorem on the inner regularity of absolutely 

measurable sets in metric space follows ([2], theorem 12, p . 11). That is why 
we choose only in Theorem 4 a metric space for K, the system of all closed 
subsets of X for C and the system of all open subsets of X for U. See also 
Example 1. 

N o t e 4. The assertion does not hold that every absolutely measurable set 
Eo is outer regular according to each y e J / I such that y(Eo) < 00. 

Let X = (— 00, 00) be the metric space with usual topology. For E <= X 
we define y(E) as the number of elements of the set E if E is finite and y(E) = 
= 00 if E is infinite. Let C be the system of all closed subsets of X, U be the 
system of all open subsets of X. Then evidently C and U fulfill the conditions 
Vi—V7. I t is easy to show that y e J / I . Clearly no finite subset is outer re­
gular according to y. 

Theorem 5. Every absolutely measurable set E is outer regular with respect 
to each y e s/i such that there is U e U, U => E and y(U) < 00. 

Proof . Let E e Bi. Let y e s/x be such that there is U e U, U => E, y(U) < 
< 00. For A e H(C) define 

yo(A) = y(A n U). 

Clearly yo e ^ 2 • According to Theorem 2 the set E is regular according to 
yo and hence also according to y. 
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Theorem 6. Every absolutely measurable set is regular according to any outer 

measure y e stf\ such that for any G e C there is a sequence of sets Un e U, y( Un) < 
00 

< oo (n = 1, 2, ...) and C c u Un. 
n=l 

Proof . Let yes/± have the mentioned property. Let EeB\. Then there 

is an ascedent sequence of sets Une U such t h a t y(Un) < oo (n = 1, 2, ...) 
oo 

and . B e \J Un. According to Theorem 4 and Theorem 5 the sets E n Un 

n=\ 
oo 

are regular according to y for n = 1, 2, . . . Clearly E = \j (E C\ Un) and 

y(2r7) = lim y(E n c7w). The regularity of the set -27 follows immediately from 
n-*co 

this fact. 
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