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THE CONVERGENCE OF SUCCESSIVE
APPROXIMATIONS FOR BOUNDARY VALUE PROBLEMS
OF HYPERBOLIC EQUATIONS IN THE BANACH SPACE

VLADIMIR DURIKOVIC, Bratislava

I. INTRODUCTION

Some results concerning the uniqueness of solution of boundary value
problems defined for the equations

S H ) b=kt k

Y . =JX1, ..., T, U), = K1 C

oxkt ... oakn " "
and the convergence of successive approximations are studied in paper [4].
Those results were obtained under the conditions of the uniqueness of the
Krasnosielski-Krein type by classical methods.

The purpose of the present paper is to show that more general conditions

than the above-mentioned conditions guarantee both the existence and
uniqueness of boundary value problems given for the equations
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otu
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k1
oxy ... 0y,

Y1 Ym
oxt .. ak
and the convergence of successive approximations. Instead of the usual
method of proving convergence of successive approximations we shall apply
certain general theorems concerning mapping defined on some appropriate
function space in our considerations. These theorems are published in papers

by M. Ede]stein [2] and by W. A. Luxemburg [3].

I1I. TWO FIXED-POINT THEOREMS

An abstract, non-void set A on which a distance function d(x, y) is defined

such that for z,y,z¢e 4:
a) d(z,y) is a non-negative real valued function (0 <d(z,y) < 4 co0),

defined on the Cartesian product 4 x A4,

33



=3

x,y) = 0 if and only if x =y,

d(y, x),

d(x, 2) 4 d(z, ),

e) Every d-Cauchy sequence {z;}y_,; converges to a limit in A, i. e.
lim d(xg,x;) = 0 implies the existence of an element xe 4 such that
k1>

lim d(zg,x) =0

k>

is called a generalized complete metric space. It differs from the concept of
a complete metric space by the fact that not every pair of elements necessarily
has a finite distance.

Now we formulate the following theorems:

H

[=7 )

) d(x, )
) d(z, y)
) d(z, y) <
)

Theorem 1. (Luxemburg [3]). Let 4 be a generalized complete metric space
and T a mapping defined on A into itself satisfying the following conditions:
1°. There exists a constant 2, 0 < A < 1, such that

d(Tx, Ty) < Ad(x, y)

for all x,y e 4 with d(z,y) < + oo.

2°. For every sequence of successive approximations xx = Ta,_;, k= 1,2, ...
where xy is an arbitrary element of A, there exists an index N(xo) such that
d@y, en+) < + oo for all 1 =1,2,....

3°. If x and y are two fixed points of T, i.e. Tx = x and Ty = y, then
d(z, y) < + oo.

Then the equation Tx = x has one and only one solution in 4 and every sequence
of successive approximations {x;}y_, converges in the distance d(x,y) to this
unique solution.

Theorem 2. (Edelstein [2]). Let A be a complete metric space andT a mapping
defined on A into itself satisfying the following conditions:

1°. For all x,y € A, x +# y we have

d(Tx, Ty) < d(x, y).

2°. For every sequence of successive approximations xx = Tax—1,k — 1,2...,
where xg is an arbitrary element of A, there exists a subsequence which converges
to a point x e 4.

Then the equation Tx = x has one and only one solution in A and every
sequence of successive approximations {x.}y—, converges in the distance d(x, y)
to this unique solution.

III. THE FORMULATION OF THE BOUNDARY VALUE PROBLEM

In this section we want to introduce some notations and notions used
throughout the present paper.
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1. Denote the set of points X(x1,...,2am), m > 2 with the coordinates
<oy <ay,0 <z <aj,a;>0"forj=1,...,m by R° R respectively and
the set of points Xi(z1, ..., z1-1, 0, 2141, ..., Tm),

Xes(x1, -ovy X1, 0, Xry1, -on, Zs-1, 0, X541, ..., Tm) with the coordinates
0 <az;<ajforjs#1,j+#r,sby R, B respectively (1 <[, r,s <m;r < s).

2. Moreover we shall employ the symbol 2(«, &) to denote simplex in the
a-dimensional Euclidean space £~ with the « + 1 linearly independent vertices
Zo(0, ..., 0), Z1(&,0,...,0), ..., Zeal&, ..., 5 0), Zu(&, ..., &), &> 0. Conse-
quently, X(«, &) is the set of points P € E* such that

P=15 4+ ...4+t%Ex, 100+ ... +t174=1,7,>0,0=0,1,..., «x.
If & 0, then we set X(«, 0) = 5.
3. Let ki, ..., kn be fixed natural numbers (m > 2). Denote n = %k;.
Then we may define the sets of indices Ai(y), Ai(y) and Ai(y) as ]i:cillowsz

a) Ai(v) for ¢ — 0,1,...,n — 1 is the set of elements (y; ...yn) with the
integer components yi, ..., ym for which:

m
0<y;<kj,j=1,...,m and > y;=1.
j=1
b) Analogically, Ai(y)fori = 0, 1, ..., n — mis the set of elements (y1 ... ym)
with the integer components yi, ..., ym for which:

m
0<y<k—1,j=1,...,m and > y;=1.
Pt
c) If iy >2forj=1,...,m then Ai(y) for i = 0, 1,...,n — 2m is the set
of elements (y1...ym) with the integer components yi, ..., ym for which:

m
0<y;<ki—2j=1,...,m and > y;j=1.
j-1
Thus for p — 0,1,2 and 7 = 0, 1, ..., » — »(0), where »(p) is an arbitrary
real-valued function with »(0) = 0, »(1) = m and »(2) = 2m (for instance
v(0) — I'(o + 1)n32-e-321 where I'(x) is the Gamma function) we can define
the above-mentioned sets 4}(y) as follows:

m
Ay) —{yr.oym): 0 <y <ly—o, D ys=1, where &y >1I(0+ 1) and
1
y; are integers for j = 1, ..., m}.
The union of the sets Az(y) fori = 0,1, ..., n — v(p) with the fixedp = 0,1,2
n-v(g)

will be denoted by Ao(y), i. e. do(y) = U 4i(y).

\ e
10
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Next we shall write briefly » instead of »(g).

Remark 1. We shall denote the set of elements (y, ... y1,), in which
Y15 ---» ¥1, are all non-vanishing components of an arbitrary element (y; ... ym)
of the set 4}(y) by Z]i(y) fori=1,...,n —vand p = 0,1, 2. Also we put

={0}. »

The sets 4;(y) and A,(y) are mutually equivalent. There exists a one-to-one
mapping ¢ of the set 4:(y) onto the set A% such that

o1 ym) = (g -ooy) M 14+ ym >0
e(y1...ym) =0 if »i+...+ym=0.

Two corresponding elements of the mapping ¢ will be considered equal, i. e.

iocoym)=(@y...n) if i+ ...+ ym <O
(ylym):O if y1+...+7m:0-

1. Next, B = R° x {B x ... X B} and B, = R X {B X ... X B}, where
B denotes the Banach space w1th the norm || ||. The number p of the factors
in the Cartesian product {B X ... X B} is given by the cardinal number

n-v

of the set Ao(y), i. e. p = Card [4,(y)] =n§ Card [4i(y)] = > Card [45(»)]-
=0 1=0

5. Any vector (..., uy,...y_, ...) With the components uy,...5, € B for all
(y1...ym) € AZ;( ) w111 be denoted by U* fori = 0,1, ...,n — ». The number
of components wu,,. ., of the vector Ui is Card [A ‘(y)] = Card [Ai(y)]-
By means of Remark 1 we can write in u,,_...,, instead of the index y1...Ym
the index Y1,...y1,, Tesp. 0.

Furthermore, the symbol || Ui || for any real number & means the vector
(--> | %p,...y. |I?, ...) and the symbol (U, V) means the scalar product of the
vectors U and V.

661+...+6m

If we denote the differential operator for any non-negative

ol ... oLl
integers &, j = 1,..., m by D, , = D2 ... Dir, then D} defines a vector
whose components are formed by all differential operators D, . of the
same order ¢ = 0,1,...,n —y,i.e. D} = (..., D, ,...), where (y1 ... ym)
runs through all elements of the set AX(y) for any ¢ = 0,1, ..., — ».

Also we set D} = D,, ; for any ¢ = 0, 1, 2. From Remark 1 it follows
that D% = Dou = u.

6. Let v(X) be a continuous mapping defined on R into the Banach space B
and the derivatives D, ., #(X) for (y1 ... ym) € do(y) be continuous mappings
of R into B, too.
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The set of abstract functions »(X) satisfying the above-mentioned properties
will be denoted by MM o(R).

Further, let the derivatives Dj ;5 4. , w(X,;) be continuous mappings
defined on R, into the Banach space B for 0 < &; < kj, j,r = 1,...,m,j # r.
The set of all such abstract functions w(X,) will be denoted by N(R,).

Now, we may formulate the three following boundary value problems
(0 0,1,2):

(1o) Dju(X) = f[X, u(X), D;u(X), ..., Dy"u(X)] for X e R°
(2) [Diw(X)],0= o(X,) for X, e Ry iy, =0,1, ...k, — 1, r=1,...,m
[D;08(X gm0 = [D5,09HX )40 for Xrs€ Rys
r#£8, 4,=01,...k—1,5,=01,...k—1; r,s=1,...,m,

where ¢{(X,) € N(R,) and f(X, U, U}, ..., U’") is a continuous mapping
defined on £, into B.

Under the solution of the problem (1,), (2) we understand any element
u(X) € Mo(R) satisfying the conditions (1,) and (2).

Hence it follows that the problem (1,), (2) is equivalent to the following
integro-differential equation:

(3) uw(X) = G(X) +
+ | dm... [ fIE wE), Du(E), ..., D;"u(E)] dpumn
Z(k1,71) ):(km Tm)
in R, where the point = has the coordinates (&1, ..., ém) and yjforj =1, ..., m

denotes the Lebesgue measure defined in the Euclidean space E¥. The function
G(X) is given as follows:

lJ
X z z z 1:[ e 2‘1u(X)]x“=0mz"=0,

where ¢ <} <k, —1,...,0<; <k, —1; (i, ..., ) is an arbitrary com-

bination of j numbers from the m natural numbers (1, ...,m), i1 < ... < %.
By the direct derivation of (3) we get
(4) 'Ddl...dm u(X) = Dﬁx...(’m G(X) +
+ [ dm... [ fIE w&),Du(&), ..., Diu(&)] du,
S(k1 b1,21) E(km"6m, Tm)

for X € R and (01 ... 0m) € 4,(5), where we take
J. F(E)dl’tf ZF(EI, ey Ef—]:xf: 51+1’ ) Em)-

(0,25)
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In view of (3) we define the sequence {u,(X)};, of successive approxima-
tions of Picard as follows:

() ur(X) = Go(X) +

+ [ du... [ fIE, wa(&), Dy (&), -5 DY "y (5)] dptm
Z(k1,21) Z(km,m)

for k =1, 2, ... and arbitrary abstract functions uo(X) € M,(R), Go(X) € Mo(R)
such that Go(X) satisfies the conditions (2) and moreover D, , Go(X) 0

in R°. Hence we have ui(X) satisfying the conditions (2) and belonging to
DMo(R).

IV. THE CONVERGENCE OF SUCCESSIVE APPROXIMATIONS
Theorem 3. Suppose for p = 0, 1, 2:

i) The transformation f(X, U], U;, ..., U'™) of m + Card [d,(y)] variables
maps the set E, into B and is continuous in all variables. Further,
fIX, Uy, UL, ..., Ur7) is bounded on E, in the following sense:

(61) | fIX, Ug, U;, LU <K
if o = 0,1, 2. In the case of p = 1, 2 we may use a weaker assumption :
(62) IfX, U2, U, ..., U7 | < o(X),

where

dup ... f oEYdum < Ks.
X(o,a1) X(o,am)

ii) In the domain EY

7 |fX, U0, UL, L U — G, VS, VL, Ve ) <

e’ "o

n-v
< Ljak . ok S (P UE— Vi), L >0,
1=0

mn .
where Pi = (..., p,, . [ &[0 for (y1... ym) € Ay(y) and
j-1

1 =20,1,...,n —v (the number of the components of the vector Pz equals
Card [Af,(y)]). The factors p,, . are positive constants and the function h(x)
18 defined as

1 ¢f =0

h(x)z{o if x+# 0.
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iii) In E°
(9) IfX, U, U}, ..., Ur) — f(X, VoV, L) <

e’ e’

n-v .
< x{klﬁl L x;nkmﬁm zo (QZ’ ” U; . V; H u) ,
=

where @ — (..., q,, . [@"...a%]% ...) for (y1..-ym) € Ai(y) denotes the vector
with the Card [4i(y)] components for i =0, 1, ...,n—» and 0 < o < 1,
B <a for j=1,...,m. The coefficients q,, ., @re non-negative constants one
of which at least 1s non-vanishing.

iiii) The constants L, p,, .., «, f; satisfy the following relations:

) VL — o) <t — ) — U — 1)1 — )
(10) (3 P L= ) <11 — 1) = (b — 1)1 — 2)
o(V
for j 1,...,m. Then there exists one and only one solution w(X) from the

class Mo(R) of the boundary value problem (1), (2) and furthermore the Picard
sequence of successive approximations {ur(X)}z., defined by (5) for any function
uo(X) € Mo(R) converges uniformly in R in the norm of B to this unique solution,
t.e. lim || ug(X) — w(X) || = 0 uniformly in R.

ko0

Proof. To prove this statement we shall use Theorem 1 on the contractive
mapping. For this purpose we have to construct an appropriate generalized
complete metric space A and a mapping 7' from A4 into itself, and to show
that the conditions 1°, 2°, 3° of Theorem 1 are really satisfied.

In view of the definition of the solution of the problem (1,), (2) and of (7)
a natural choice for A4 is the space 4, with the support Mo(R) and with the
distance function defined on A, X 4,:

n-y

2. (Pg, | Dyu(X) — Dyo(X ))
(11) do(u, v) = sup &0

R°

m m
T+ky- /Tt
xggVL-{—Ll 1 x%l Ltkm-1

forp 0,1, 2, consequently 4, = [Mo(R), do]. The number ¢, is taken such

that go > 1, g, VL > 1 and

S Doy < o < [1/VL]{k;[ 1 — )1 — a)] — (k — 1)}

do(y)

for j 1,...,m, which is possible since we always have (9) and (10). Clearly
this function d,(u, v) satisfies the requirements a), b), ¢), d) for a metric give
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in section I1. We have to show that the condition e) is also satisfied for dg(u, ¢ ),
i. e. that the space 4, is complete. To this end we apply the following obvious
inequality:

(12) max S (S}, | Diu(X) — Din(X) [[) < do(u, ),
R =0

where Si = (...,s, ,.,...) for (y1...ym)€4iy) is a vector with the
constant coordinates s, . ~depending on g, L,ay, ks, p,, ,, for j —
=1,...,m. From (12) it follows that d,-convergence of the sequence
{wr(X)}r, of elements ux(X) from MM,(R) implies the convergence of the
sequence of derivatives {D, . ux(X)};, for all y1...ym e do(y) and ¢
= 0,1, 2 in the metric

(13) d(u, v) = max | w(X) — v(X) |
and i
(14) d(u, v) = sup | w(X) — o(X) [ .
Let the above-mentioned sequence {ux(X)}y ; be a d,-Cauchy sequence, i. e.
(15) ’}1lm do(ug, w) = 0.

Hence, with respect to (12), to every ¢ > 0 and (y1 ... ym) € do(y) there exists
a number Ni(¢, y1, ..., ym) such that

(16) 1Dy puitir(X) — D, kis(X) | < ¢

Y1.Ym
fork> Nyands=1,2,...in R.
Since D, ., ux(X) is from B for each X e R there exists a function

W, ,m(X) with the range of definition R and with the range of the function
from B such that lim || D,, . ux(X)— W, . (X)]| = 0 in the every point

k>

X e R. Using (16) we get

PloVm

” Dy1...ymuk(X) - Wyl...'yn.(X) “ - “ Dyl,,,ymukhs(X) — IV‘Vl---Vm(X) | < €.
Then, if s tends to infinity || D, ,, ux(X) — W,, , (X) || <& for k > N, and
X e R. There exists a function u(X)e Mo(R) such that lim d(D,, , wu,

k>

D,,..sn¥) = 0 for any (y1 ... ym) € 4o(y)-
Analogically, the equality (15) ensures the existence of a continuous

function Z,, , (X) on R° with the range of the function from B and such
[e2)
L
that the sequence m}’yx...,,,. ! P D, .. ux(X) tendsto Z,, .
ale VIt 1 afe VL +kn 1 ’
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by the metric (14) for (y1 ... ym) € 4o(y). Hence we may claim that

m m
ale Vi+r-1 2% VTt km-1

- Zyl...’Ym(X) <

D, . ux(X) —

VleVm
14 Ym
pw...ym xl e xm

m m
ge VI +11-1 ge VI +kn-1 % ?
< eaf ...al "Dy i

in the domain R° for all k > Noa(e, 1, ---, ym). If we denote No(e, 1, ...» Ym) =
max (N;, N2), then by the inequality

m m |

B e A e
‘D)’l...ymu(X) - ” Vm Zy1...ym(X) <
pyl...ym xl b xm
m m
ale VL +k-1 e VT +km-1
e Xy .
< D'm...ymuk(X) - n Vm Zyl...ym(‘\) +
pyl...'ym xl e xm
+ H D'Vx..-ymuk(X) - Dyx...ymu(X) ”

for L > Ny, we conclude that

ZponX) = P [ 477 Ve-tip . w(X)
J

for y1...y0€ do(y) and X € R°, proving e/.
The natural choice for the mapping 7' is the following operator:

(17) Tov(X) = Go(X) +
+ | dm... [ [fIE,DPE), Dw(&), ..., D} "(=Z)] dum
Z(k1,21) Z(km,Tm)

for o — 0, 1, 2, which is easily seen to be a mapping of 4, into itself. Further-
more, for Go(X) = G(X) the solution of the boundary value problem (lo), (2)
in its equivalent form (3) corresponds to the fixed point of T, on the set
JM,o(R) and conversely.

In this case, the sequence of Picard approximations {ux(X)};, and the
sequence of iterations {T%uo(X)}y , = {Tour-1(X)}5, for any we(X) € Mo(R)
are mutually equivalent.

Proof of condition 1°. Let u(X), »(X) be two arbitrary elements of A,
with do(u, v) < 4+00. Then by (17) and by the hypothesis (7) we obtain:

” Dﬁl...émTQu(X) - D(sl...(’ngv(X) “ S
< [ dm.. [ A{IfIE DWE), Dju(E), ..., D u(E)] —

(k1 61,21) Z(km=-0m,Tm)

11



— fIE), D2(E), D(E), ..., DL"o(EN |1} dptm <

e

n-yv
2 Pi,| Dju(Z) — Din(E) )
<L [ du... — dum <
Z(k1-61,21) Z(km-0m,m) & &
m . m .
< do(u, v)L f dug ... f 51“1 o §‘,’;l L1 Qup —
Z(ky-01,21) Z(km-Om, @)

m

= dlu, v Ln {ageV Tt 1 g1l 5y,

‘where

k-8 1
11_[ (9o VL+@ if & <lk—1
B(kj, 65) = { =0

1 if & =14
for j =1, ..., m. Hence we conclude easily that

do(Tou, Tov) < Adp(u, v)
with 2 = ( > Ps, _s,)/0e, which ends the proof of 1°.

40(9)

The proof of condition 2° will be divided into two parts. Iirst of all we
prove the condition 2° in the case (6;). Let ux(X) = Toup1(X), £ — 1,2, ...,
where u#o(X) is an arbitrary element from 4,,0 = 0, 1, 2. From (6;) we find
out that

(18) 2y ... &yt || Dy, o, u2(X) — Dy, s,(X) | < 2Kpaft ... 2y
for (01 ... dm) € 4o(6) and X € R. Next, it follows by (18) and (8) that
att ... 2 || Dy, o,u3(X) — Dy, o, u2(X) || <aft ... afy X

n-v
X di... [ > (@, || Diuy(E) — Diuy(Z) | )€ £, Qum <
Z(k1-01,71) Z(km=0m,xm) =0
2K1)a Z Qoo kn[(u B+l xf;:[(a-ﬁm)ﬂl .
4e(9)

By induction with respect to & we get:

aft ... 2 || Dy, g uars(X) — Dy, g ups2(X) ]| <

< (2Ky) z"“( Z s, 6,,. 1+ac+ ok I‘[ xkﬂ(«z B +a+...+ak)+1]
A,(0) Jj=1
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for all (01 ...0m) € do(8), k =0,1,...1n the domain R°. Thus

n v

(19) Z (Pé,, H Dzuk+3(X) — Dzulm-z( ) [l) (2K adm( Z o,..0 1+z+,__+ak v

70 40(9)

m m
% Z {pol...é,,. H [Lh(k:—éj)]—l/m} 1—! x;f:[(a—ﬂ;)(1+az+...+a")+1] .
4(9) d=1 i=

m
The fact that g, /L + ks — 1 < k(1 — /(1 — «) for j = 1, ..., m ensures
the existence of the number N(g,) such that the inequality
Bl — B)(1 + & 4 oo+ o) 4 1] = KL — B(L + o 4 ...+ o) + oH1]

k{[(1 — ok 1) (1 — B)(1 — a)] + o+ 1} > gp L+ & — 1

holds for all k> N(g,). This shows in particular that do(ug+1, ur) < + ©
for &£ > N(g,) + 2.

Finally, condition 2° follows from the property d) of the metric (11).

Now let us investigate the validity of 2° in the case (63), 0 — 1, 2. From
the assumption (62) and by

daa ... | 0@dum < [ du... [ oE)dpn < Ko

Z(o,x1) Z(e,%m) Z(0,a1) Z(Q,am)
we have
20m -
(20) xf- m | Ds,. s LX) — Dy, 5 0(X) <
< 2% ... a2l duy ... (&) dpm <
Z(k1 "01,71) Z(km-0m,Tm)

< 2Koate .. akre(ky — 61 — o) .. (bm — Om — o) < 2K2xllcx—y ... akm-e
for any w(X),v(X) € 4o, (01 ... dm) € A,(3) and X € R. By means of (8) and (20)
237 || Dy, 0,u3(X) = Dy, o us(X) | < @E2)3[ S G, .5,] X
4,(8)

0 Om Voo By I —0)a— 3
xf I d/ﬂ ces f [E(lkl Q)z-frks e Esrlim o) ﬂm’”"]d// m S

m
Z(k1~61,21) Z(km-0m,m)

2K )a[A%)%l.._a,,.] 1;] ki — By) + o(1 — )]t x;_c;(a:—ﬁl)-l-k;-ez}

as (ks — o)x — Pik; = kj(x — fBy) — ox > —1 for j =1, ..., m. Subsequently
we can show that

@ at' ...y | Dy, ax23(X) — Doy ptts(X) || <

2[{ ¢k+l{ Z qal 6mn [kj a . ﬁj) + 0(1 . “ _1}1+a+ ok %

4(9)
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1
% x;c,(a:-ﬁ;)(l+a+...+uk)+kj—qaz"+l

n
j-1

in R° since kj(x — B5)(1 + o + ... + a*) — okl > ky(x — p;) — e > —1 for
j=1,...,mand k= 0,1, .... The fact that

B0 = )L+ @+ o ) 1] — oo ¥1 = By{(1 — ak+1)(1 — f)/(1 — )] +
+ (s — o)att

finishes the proof of condition 2° under the assumption (62), too.

Proof of 3°. Assume that both «(X),v(X)e 4, are fixed points of T,,
i.e. u = Tou and v = T,v. Using the procedure just presented in the proof
of condition 2° we obtain the estimates (18), (19) or (20), (21) respectively for
the difference ' ... 2% || Dy, s w(X) — D,, s v(X) | and from that we obtain
easily do(u, v) < + 0.

After these verifications of conditions 1°, 2° and 3° of Theorem 1 the con-
clusion of Theorem 3 follows immediately from Theorem 1.

Before formulating the following Theorem 4 let us define a new metric
space.

Let T, be the operator defined by (17) for p = 0, 1, 2 and T, My(R) be the
image of M,(R) under the mapping Ty, i. e. Ty Mo(R) = {u(X) = Tov(X): v(X) €
€ My(R)}. In general, the metric space [T, M o(R), d;"] with the distance function
defined on T, My(R) X ToM(R) by:

(22) dy(u, v) = max ZO (g, || Dgu(X) — Dg(X) 1) ,

where ’Z = (1,...,1) is a unit vector with the Card [Az(y)] coordinates for
t=20,1,...,n — » need not be a complete metric space. Then, there exists
its completion in the sense of the metric d;, which will be denoted by
[} (R), d)].

From the above definition of [M(R), d;] we get the following statements.

Remark 1. If the sequence {ux(X)}5, of functions wux(X)e M, (R) con-
verges in the distance (22) to w(X), then {D,, . u(X)}7, converges in (13)
to the function D, , u(X) for (y1...ym)€ do(y) and thus u(X)e I ,(R)

Remark 2. From Remark 1 we have ]l[:(R) S My(R).

Remark 3. If v(X) is from M} (R) for all k = 1, 2, ... and the sequence
{D,, . vx(X)}z 1 converges by the metric (13) to a continuouy function
for all (y1...ym) € do(y) such that lim d(ve,v) = 0, then limd}(vk,v) O

k- k>
and o(X) e M (R).

Theorem 4. Assume for o = 0, 1.:

4

i) The continuous operator f(X, Uy, U}, ..., U™) maps Eo into B and
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(23) [f(X, U2, UL, - U || < Aahioer | qfmtem 4~
in Eo, where we take
(231) Joi >0 for o=0,1
or
(232) 1< ko1 <0 for p=1
Jorj 1,...,m.
ii) In E:,’
(24) I f(X, ug,u;,...,ug-”)—f(X, 1200 2 e N

n-v
< b A zo (Fogs 1Ug — Vo[, ¢>1,
2=

S GO N R4 o) (1e..ym)eAl is a wvector with the

Card [4(y)] components. The factors f,, .. are positive constants.
iii) The real numbers A, Joi;"i s forom and q are connected by the following

relations:

where F

Goj + 1) —11=Yess j=1,...,m

and
A CDE D frn <1,
do(¥)

where

min (kiges +1) of ges >0, j=1,...,m

j1,..,m

11 (kiges +1) of —1 <kjgey <0, j=1,...,m.

j=1

Then there exists one and only one solution u(X) from the class M, (R) of the
boundary value problem (1,), (2) and moreover the Picard sequence of successive
approximations {ux(X)}y., defined by (5) for any function wug(X) € My(R)
converges uniformly in R by the norm defined in B to this unique solution, 1. e.
lim | ux(X) — w(X) || = 0 uniformly in R.

k>

Proof. The proof of this result will be carried out in the same way as that
of Theorem 3. Here we choose the space A} = [/, J(R), do] for A, where the
distance function dy(u, v) is defined by:

3 (Fia, I Diu(X) — DY(X) |)

25 do(u, v) = su
(25) o(t, ) Rp gt | plngentl)



on A¥ x AY. It is easy to see that (25) fulfils the requirements a), b), ¢) and d)
for a metric considered in the section II. In view of the assumption (23;) and
(232) we get immediately

(26) max Z o> | Dau(X) — Dp(X) |I) < do(u,v),

where S‘ = (..., 8, yn»---) denotes a vector with the Card [A;(y)] coordi-
nates 5, ., depending on k;, g, @, f,, .. Hence it follows that d,-con-
vergence of a sequence {ux(X)}y., of elements ux(X) from A implies the

convergence of the sequence {D, . u,(X)},7 in the sense of metric (13)

for every (y1...ym) Ado(y). Let {ux(X)}y, be a do-Cauchy sequence of
elements from A*, i.e. lim do(ux, w;) = 0. To prove that the space A i
k,l>0

complete it is sufficient to show that there exists an element u(X) e .M :(R)
satisfying the condition

lim d[D

k>0

uy(X), D, _,,u(X)] =0

Yi...Ym Y1...Ym

for (y1...vm) € 4,(y). Then following the same procedure as in the previous

theorem we obtain the desired equality: lim do(ux, #) = 0. The existence of
Esoo

the above-mentioned element %(X) is guaranteed by (26) and by Remark 3

We choose the same mapping 7', as defined by (17) for ¢ = 0, 1. Then the
Picard sequence {ux(X)}5., by (5) is equivalent to the sequence of iterations
{T*uo(X)}5, and {Tour-1(X)}5, for any wue(X) € M (R).

Proof of condition 1°. Let u(X), v(X) be arbitrary elements of A;". Then
there exist sequences {ur(X)}rq1, {vx(X)}r, of elements ux(X), vx(X) from
ToM,(R) such that lim d; (u;, u) = lim d) (v, v) = 0. By

k>

koo
aft ...y || Dy, g, W(X) — Dy, o, 0(X) || < it ... a57[ | Dy, g, up(X) —
— Dy, 5, u(X) || + || Ds,..o,u(X) — Dy, _s,0:(X) || +
+ | Ds,..5,06(X) — Dy, _5,0(X) |I]
and by (23), using Remark 1 we obtain the following estimate:
2yt .. 20 || Dy, 5,0 X) — Dy, o, 0(X) || <

< xil e x‘f;;‘ lim || Dy, 5,4 (X) — Dy, 5 0:(X) || < xil xfr'»"

k>

xlim [ dw... [ [IfE Dou, Dyuy, ..., D} "wy) +

k> Z(k1-01,21) Z(km~0m,Tm)

m
+ |f(Z, D0y, Dlvg, ..., D2 *wy) |1 dpum < 24 [ {98 B-1(k;, 85)},
j=1
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where

ks-0;
- [1 (iges +4) if 6 <hky— 1
B(ky, 65) = { ™

1 if 6 =%k

and ux(X), vx(X) are originals corresponding to the images wu(X), vi(X)
under the mapping 7%.
Thus in both cases ¢ — 0,1 we have

(27) @ ...aly Dy s, UX) — Dy s, 0(X) | < [24/C(9)] [ ] 20D

=1
If do(u, v) < 400, then from (24) and (27) we conclude

xil e xf);,n ] Dﬁ:.,.éngu(X) - Ddl...megv(X) ” S xil e xt:?’ln X

n-y
[ S (£, | Diu(E) — DI(E) )
70
X ) dyg ... - dum <
Z(ky 01,21) Z(km-06m,Tm) 1 -ee S
< af ... ar[2407Y(g)]e ! ¥
. n-v . . X m
duy ... J {S (Fi,, || Diu — Div ||)[J ] b0t
Z(k1 "01,a1) Z(km-0m,xm) -0 J=1

m

% H E;;;[(aml)(q—l) ry gml]} dym <
71

< (24)17C(g)] Wy, v)ak @D . gD

in the domain R° and for all (41 ... dm) € 4,(6). Hence and by the definition
of d, the inequality do(Tou, T'ov) < Ado(u, v) follows, where

A— A)[CY] T D fo.sn < 1, proving 1°
Ae(0)

The proofs of conditions 2° and 3° are trivial in this case, as the required
estimates are already given by (27).

Consequently, we have proved that the sequence of iterations {T%u(X)}y ,
for any element uo(X) € M j(R) converges uniformly on R in the norm defined
in B to the unique solution %(X) of the problem (1,), (2) from the class Jl[:‘(R).
For any function uo(X) € Mo(R) there exists an element uo(X) from T, M,(R)
such that wg  Teuo, whence it follows that also the sequence {T"uo(X)}%.,
converges uniformly in R to #(X). This proves our Theorem 4.

Remark 4. It follows from (23) that the operator f(X, Uy, U3, ..., Ut 1)
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is bounded in Ey. In the following theorem we show that the requirement
of boundedness is not necessary.

Theorem 5. If (for o = 0)

i) (X, U3, U, .
Banach space B,

ii) in the domain EJ

., Uy is a continuous mapping defined on Eo into the

(X, U, Ug, ..., Ug™) || < A(X)ap?

...wﬁ;"”’", —1< kjgj< 0, j =1,...,m,
(28)

where the real-valued function A(X) is continuous on R° and satisfies the ine-
quality

AX) < Ao [ a7 Ay > 0, (y1 ... ym) € do(y)
j=1
with the function h(x) of the one variable x determined by

1 of 2=0
h(x):{o if 20

iil) further,in Ej

Hf(Xa Ug, U&,...,Ug'l)__.f(X,Vg’v(l)’_“’vg—l) <

n-1
< [C(X)[2" .. xﬁ:"""]l—([) (Hy [Ug— Vo ll9), ¢ =1,

m
where I = (..., h, . {H aylobsy e -y denotes the vector with the Card
- J=
[44(y)] components and h,, . are positive constants for (yi ...ym)€ Ao(y). The
real-valued function C(X) is continuous on R° and

m
C’(X) < Co 1"[ x]jwmh(k: )':)’ Co>0
il

for every (y1...ym) € dol(y),
iiii) the constants Ao, Co, go, 75, q and h,, . are connected by

@G+g—r—g, i=1..m
{(240) Y[ (ksg; + 1)]9Co Z)hylv__,,m <1,
j1 do(y

then there exists one and only one solution u(X) from the class My (R) of the
boundary value problem (1o), (2) and furthermore the Picard sequence of successive
approximations {ur(X)}e1 by (5) for an arbitrary function wug(X) e Mo(R)
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converges uniformly in R in the sense of the norm defined in B to this unique
solution, . e. lim || uxg(X) — w(X) || = 0 uniformly in R.

k—>c0

Proof. We shall apply again the result of Theorem 1 to prove the statement
of Theorem 5. Since this proof is similar to that of Theorem 4 in the essential
features, we shall indicate it only.

Here we choose the space AF = [M;(R), do] with the distance function do
defines on Ay x Aj :

n 1
> (Hi, || Dgu(X) — Di(X) )
(30) do(u, v) = sup =
R

x’f1(01+1) . xﬁ;n(ﬂm+l)

and the mapping 7 defined by (17) for o 0. The space A is complete.
Let u(X), »(X) be arbitrary functions of A with do(u, v) < -+ o0, then

(31) 1_[ x?j[gjh(k’_amu | Ds,..5,u(X) — Dy, 5 0(X) ] <
ol

m
<2 l_l' x;?f[!hh(kj 05)+1] X
-1

X dus .. AE)Eho || ghmim qy, <

Z(k1-61,21) Z(km Om,xm)
m

< 240 [T (igy + ]2 @) glntomsd
il

for XeR and (01...0m) € 4o(6). Hence and by (29) we get the required
estimate

[ Tagtet® 410 Dy, 5, Tou(X) — Dy, 5, Tov(X) || <
il

m
< (2A0)q_1[n (kjgj + 1)]_q00xi'1(91+1) . xf,:n(am+l)
j1

and so we may claim that do(Tou, T'ov) < Ado(u, v), where 0 < 1 < 1.

The necessary estimates for the proof of conditions 2°, 3° are given in (31),
proving this theorem.

In the following theorem we shall employ an extension of the classical
condition of the uniqueness due to Nagumo to prove both the uniqueness
and the existence of the solution of the problem (1,), (2) (¢ = 1, 2) and the
convergence of Picard successive approximations.

We shall use for the considerations the complete metric space [/ :‘(R), d;‘],
which is a completion of the space [ToM, (R), d;“] for p = 1, 2 in the sense
of the distance d; given by (22). (See Remarks 1,2 and 3 in this section.)
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Theorem 6. For o = 1,2 let f(X, U], U}, ..., U;”” be a continuous mapping
defined on E, into B and satisfying the following conditions

(32) ”f(X: Ug,U;:wuzL_v) H S-I{ in EQ

(33) I, UG, Ug, ., Ug™) — fXL VG, VG, V) || <
o™ _zo[ﬁg(X), Ui —vii

in the domain Ej, where Py(X) = (..., D, . al' ... &, ..), (y1... )
€ A,(y) denotes the vector with the Card A.(y)] components. The factors p, .
are non-negative constants one of which at least is non-vanishing, such that

a ... am D P, . < 1. Then there exists one and only ome solution u(X)

AQ
Jrom the cl(;?s M (R) of the boundary value problem (1,), (2) o = 1, 2 and fuither-
more the Picard sequence of successive approximations {ur(X)}s., defined by (5)
for any function ug(X) € My(R) converges uniformly on R in the norm defined
in B to this unique solution, i.e. lim || up(X) — w(X) || = 0 uniformly in R.

k>0

Proof. Now we shall apply the result of Theorem 2 to prove Theorem 6.
To do this, we may choose the space A} = [M}(R), d] metrized by

z [F (X), || Die (X) — Djiv (X) []
“* . =
(34) d, (u,v) = Sllilap

k1-1 km-1
ap Tt a

as the space in the meaning 4 and the mapping 7, in the meaning T
(Toﬁ: < A'Z‘). Notice that by (17) and (32) we get for X € R

| Ds,. 5, 0(X) — Dy, 50(X) || < || Dy, s, u(X) — Djs, 5, u(X) | +
+ | Dy, s, ui(X) — Dy, 5, 0(X) || + || Do, 6,0:(X) — D5, 5,0(X) | <
< 2Kaki0 | gfmm

for (61...0m) € 4o(6) and any u(X),v(X)eﬂI:‘(R) and wg(X), v(X) from
ToMy(R) such that lim d;(u;, w) = lim d; (v, v) = 0. Hence by means of
k> k-
(31) we have
d¥(u,v) <2Kay...am D Py, pn < +0.
Ao(?)

The completeness of ff:‘ would be proved by the same procedure as in Theorem 4
and therefore we omit it.
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Proof of 1 . Let u(X), v(X) be two distinct elements from JZ," and

’fz;[ﬁzm, | Diu(X) — Din(X) ]

, ¢ if XeR°
Bus(X) — ali 1 ghn 1

n

0 if XeR— R°.
From the inequality

Buw(X) < 2K 1 ...2m D, Py,
Ao(v)

it isobvious that lim Byuy(X) = 0 for Y € R — R°. Then, the function Bus(X)
R sX-Y
is continuous in R for any u, v € M;‘(R). There exists a point Z = (21, ..., 2m) €
€ R in which the function By,(X) attains its maximum, i. e. Byy(Z) = d (4, v).
Consider the following estimate:

n v
(35) lZo[P;(X), | DT u(X) — DT w(X) ||] <AZY {Byynlt - @ X
n-v
Z[P (&), || Dju(E) — Dw(E) ||] <
d,ul 1 1 d,um B
L A
(k1 y1,31) =(km=ym,Tm) 1 m

<dju,v)a...akr > P, ...
do(y)
By the definition of d; we obtain d(Tou, Tov) < d;(u, v). We have to prove
that the equality cannot occur in (35), i.e. we must have d}(Tou, Tpv) <
< J:‘(u, v). Assume the contrary, then there exists a point Z = (z1, ..., Zn)
from R such that

n v

~ S Pi2), | Dju(z) — Dis(2) ]
detw, v) = 2l gfm-d =

g [Pi(Z), || DIT u(Z) — DT w(Z) ]

7%
Sk1-1 5 km-1 o (Tott, Tw)
N

It follows from (17) and (33)

df(w,v) = df (Tou, Tev) <[22 ... 202717 5 {p,, .20 ... 20 X

4o(7)
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n-v
> [PYE), | Diw(Z) — Dw(E) | ]
i-0
X dys ... e oo i
Z(k1-y1,21) Z(km-ym,2m) 1 et Sm

<J:‘(u, v),

which is the desired contradiction.

Proof of 2°. Let uo(X) be an arbitrary element of M =:(R). Let us consider
the family of iterates {T%uo(X)}7, = {Tour 1(X)},. From (17) and from
the hypothesis (32)

Il Ds,..,Tor(X) — Dy, 5, Touz(Y) || < || Ds,. 5,G0(X) — D, 5,Go(Y) +
m
+11> [ dwm... | dug—1 X
J-1 Z(k1-61,y1) Z(ks 105 1,95-1)
X5 @1 Pr; 6 -1
X{[dp [dgs... [ d&}x

Yi 0 0

N f de+1 . f f(._f Uk 1, D! oUE-15 .- Dg‘vuk 1) d,um <
Z(ks+1 O5+1,75+1) Z(km Om,Tm)

< || Ds,..5,G0o(X) — Ds,. 5,Go(Y) || +

ak} 85-1 m alz L]
i — -3
Z" J’[(kf—éf—llnjwl—al)
and
a’u L1
| Ds,.. s, Lour(X) || < max || Dy, Go(X) || + K ]—[
XeR kj — (3_7)

for X, Y € R and for every (01 ... dn) € 44(8), k = 0, 1, ... . The above inequali-
ties guarantee the equicontinuity and uniform boundedness of the sequence
iterates. As a consequence of the generalized Ascoli theorem we are able to
choose successively a subsequence {T%uo(X)}o ;, which converges to p(X)
in the metric (13) together with the corresponding sequence of derivatives
{Ds, s, Ttouo(X)}e, such that lim d[D, , Truo(X), Ds s p(X)] 0 for

wW—>0

{01 ... Om) € Ao(8), whence it follows that the function y(X) is from M;(R).

We must show that the sequence {T:uo(X)}s ; tends to y(X) also in the
distance given by (34).

Notice that for ¢ > 0 there exists (on account of the continuity B,,(X) in R)
4 > 0 such that for all » we have
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z [BX), || D T5uo(X) — Dip(X) ||]

1]
sup
0 abl | gk

<e,

where O — U 0; and O; = {X : X € R° and 0 < z; < §}. Since the sequence
i1
{Tﬁ”‘uo(X )}Yo 1 converges to y(X) in the metric (22), we may choose a positive
integer N(d) such that for w > N(J)
sup {2 [P(X), | DT "uo(X) — Digp(X) ||]} < edfrtthm,
-0 i%

Hence we obtain

n-v

Zo[f’é(X), | DT "uo(X) — Dyp(X) |/
* ko, =
dy(T™uo, y) < max sup rEp—— ;

ZO [P(X), || DiT"uo(X) — Dip(X) ]

K3
sup <e€
k-1 km-1
R -0 NN

for all > N(d), 1. e. lim J;"(Té“"uo, y) = 0, which ends the proof of Theorem 6.

W->00

Remark 5. Theorem 6 was proved specially for the problem (1,), (2)
if o 1,2 and besides we have supposed that a1...an > p, ., <L

c¥m —

However, in case we confine ourselves to the proof of existence and uniqueness
only, we may omit the above-mentioned restriction for the domain R and
formulate the following theorem for the problem (11), (2).

Theorem 7. If the continuous mapping f(X, U, U}, ..., Ur ™), defined on Ey
tnto B satisfied the condition (32) from Theorem 6 for o = 1, the condition

fX, U, UL, ..., Ur™ — fIX, VO, V], ...,V | <

n m

<axhxt 2) [(PL(X), |Ui — Vi
pa

in EY, where P} is the vector given in Theorem 6 and moreover > p, . < 1.
4,(¥)
Then there exists one and only one solution of the problem (11), (2) from: the class

MM (R).

The proof of the existence is similar to that of Theorem 2 from paper [5],
where the Shauder principle of the fixed point is used. The uniqueness can be
proved by the classical method applied for ordinary differential equations.

(See [11.)



Theorem 8. If the continuous mapping f(X, U3, UL, ..., UPY) defined on E,
into B, satisfies the condition

[ X, U, Ug, oo, Up™) — fX, V9,0V, L, v <
n 1
<aih .. x7fm2) [Po(X), [ U§ — Vi

in B9 and moreover > P, . < 1. Then the problem (lo), (2) has at most one
Ao()
solution from the class My(R).
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