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Matematický časopis 22 (1972), No. 1 

SOME CHARACTERIZATIONS OF THE DARBOUX 
CONTINUITY OF REAL FUNCTIONS 

JAROSLAV SMITAL, Bratislava 

1. Introduction 

In recent years a number of articles appeared which deal with the limits 
of sequences of Darboux functions (we consider real-valued Darboux functions 
defined on the real line). I t is known t h a t the limit function of a sequence 
of Darboux functions may fail to be Darboux though the sequence converges 
uniformly (see the expository paper [1] of Bruckner and Ceder). The following 
problem has been stated by S. Marcus (see [1]): What is the ,,natural" type 
of convergence ,,=>" for Darboux functions, i. e. what type of convergence 
-,=>" has the property tha t if {fn}nj\ is a sequence of Darboux functions converg­
ing pointwise to / then / is Darboux if and only if fn => / (i. e. when fn con­
verges to / in the sense of „=>"). I t is very difficult to describe such a type 
of convergence in general but in the present paper a ,, characteristic" type 
of convergence for uniformly converging sequences of Darboux functions 
is given (see Theorem 2 below). I t is shown that the real-valued Darboux 
functions defined on the real line can be characterized as the continuous func­
tions from one topological space to another topological space (Theorem 1 
below). There are also given some types of convergence which preserve the 
Darboux continuity (see Theorems 3 and 4 below). 

In the sequel, the set of real numbers is denoted as Ro while the set Ro U 
U {— oo} u { + oo} of extended real numbers as R. 3f stands for the class 
of Darboux functions. The fact tha t / is a function with a domain A and 
a range B is written as / : A -> B. 

2. Preliminary Constructions 

Let 8 be the cartesian product S = Ro X {—, + } of the set Ro of real 
numbers ordered by the usual order-relation, and the set {—, + } whose 
only elements are the symbols — and + ordered by — < + . If [a, a) is 
an element of S, then a e Ro is called the real part of (a, a), and a e {—, + } 
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the characteristic of (a, a). Assume S to be ordered by the lexocigraphic rela­
tion defined as follows: If (a, a) and (b, /?) are two elements of S then (a, a) < 
< (b, (3) if and only if a < b, or a = b and a < /J. Let 3T be the order topology 
for 8 generated by this ordering. 

I t is easjr to verify tha t (8, !T) is a first countable topological space (i. e, 
the neighbourhood system of every its point has a countable base). The 
space (8, 3~) is also separable and does not satisfy the second axiom of counta-
bility. Hence (8, ^) fails to be a metric space (see Kelley [3]). 

The following lemmas give more information on the structure of the topo­
logical space (S, $~). 

Lemma 1. Each non-empty bounded subset M of 8 has the least upper bound. 
P r o o f : Assign to each element x of M its real part x'. The set M' of all 

this elements x' has the (real) least upper bound y'. Now let y = (y , —) 
if (y', + ) $M7 and y = (y', + ) if (y', + ) G M. I t is easy to verify tha t y is 
the least upper bound of M, q. e. d. 

Lemma 2. Every closed bounded subinterval I of 8 is a compact. 
P r o o f : Let I be some closed bounded subinterval of 8 with the end-points 

a, b, a < b, and let ^ <= ZT be an open cover of I. We may assume without 
loss of generality that the characteristic of a is + , and the characteristic 
of 6 is —. We wish to show that there is a finite subfamily of ^ which covers 
the interval I. 

Denote by A the set of all elements x el such that the closed interval (a, x} = 
= {yel; a < y ^ x} has a finite subcover. Clearly aeA ^ 0. Let s be 
the least upper bound of A, and let s' be the real part of 8. Then the interval 
(a, (s', — )> has a finite subcover. To see it we may assume tha t a < (8', —) . 
The point (sl', —) is in some open set Ge *£, hence G contains some open 
interval <(s' — e, + ), (sf, — )>, where e > 0 is sufficiently small. Since (8' — 
— £ , + ) < 8, the interval <a, (8' — e, + )> has a finite subcover and hence 
<a, (s', — )> = <a, (sf —-£,+)> u <(8' — - £ , + ) , (8', —)> has also a finite sub-
cover. Now if s < b, then the point (sf, + ) is in some G' e &', hence G' contains 
an open interval <(«§', + ) , (8' + e', — )> with a sufficiently small e > 0. 
Since (a, (s', — )> has a finite subcover the interval (a, (s' + e', — )> = 
= (a, (s', — )> u <(8', + ) , (8' + s', — )> has also a finite subcover contrary 
to the fact that s < (8' + e', —). Lemma 2 is proved. 

Lemma 3. Each non-empty closed subset P of 8 is a second category set in 
itself. 

QO 

Proo f : Let X = [ J Pt, where Pi are nowhere dense in P. We wish to show 
i=l 

t ha t P — X ^ 0. Since Pi is nowhere dense in P there is an open interval / 
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such that I n P ^ 0 and I C\P\ = 0(A denotes the closure of A). I t is easy 
t o verify t h a t I contains a closed bounded interval J i suoh t h a t (int J i ) n 
C\P ^ 0. Assume by induction that the closed intervals Jk, 1 ^ k < n, 
have been constructed such that 

Ji ZD J 2 => . . . 3 J«_i, (int J n _i) n P =£ 0, and Jk nPk = 0, 

for every fc, 1 < k < w. Since P w is nowhere dense in P , the set int Jn-i 
contains some closed interval Jn such t h a t (int Jn) C\ P - ^ 0 and Jn n P ^ — 0. 
Now, by -Lemma 2, the interval J i is a compact, and {Jw n P}n=1 is a family 
of closed subsets of J\ which have the finite intersection property, hence 

00 00 

{see K e l l e y [3], p. 136) the set f] (Jn n P) = ( f | Jn) n P is non-empty 
n-l w=l 

oo 

and ( f | J n ) n P c P — X, q. e. d. 
n=l 

Next consider another topological space. Let 3F be the family of closed 
subintervals of P = i?o U {— oo} u { + oo}, and let 2T\ be a topology for !F 
with the following base 3# : G e& if and only if there is an open set G\ 
in R such that G = {Ae#r; A a G{\. Clearly (2F, 2Ti) is a compact. 

L e t / : R0 -> P 0 be a function. The left range P/(#, —) o f / i n #, and the right 
range Rf(x, + ) of / in x are the sets 

Rf(x,-) = 

•and 

ń/(( 

»-i \ \ wy 

respectively. Clearly f(x) e Rf(x, —) n P/(.x, + ) . 
Now to each function f : R0 -> R0 assign three functions 

f*:S->R, f*:S->R, and J : S-* & 
defined as follows: If I = <a, 6> is the closure of the connected component 
of a set Rf(x, —) (resp. Rf(x, + ) ) , which contains the point f(x), then 

U(x,—) = a, f*(x,—) = b, and f(x,—) = I 
(resp./*(a:, + ) = a, f*(x,+) = b, and f(x,+) = I). 

The functions / play an essential role in the next sections. 

3. A Characterization Theorem for Darboux Functions 

The following two lemmas show t h a t if / : R0 -> R0 is a Darboux function, 
then the functions/* a n d / * have characteristic properties. 
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Lemma 4. For each Darboux function f: Ro -> Ro, /# is a lower semi-conti­
nuous function, and / * is an upper semi-continuous function. 

Proof: We prove the Lemma for /* (for / * the proof is similar). Let z e 
e [/* > X]. Since the construction is symmetric we may assume the charac­
teristic of z to be —, i. e. z = (z', —). Hence /*(z) > X. Choose a X' such that 
f*(z) > X' > X. Since / is a Darboux function, the set Rf(z) = Rf(z', — } 
is connected (see Bruckner and Ceder [1]) and hence f*(z) = f%(z', —) = 

= inf 2?/(z', - ) ; thus X' < £ for every f eRf(z', -) = f)f((z' - Ijn, z '» , 

and since every set f((z' — Ijn, z')) is connected, there is some n0 such that 

X < Cfor every C e / 2' — — , z'\\. Now for each y e (z' — — , z'\, Rf(y, 

+ )cf llz' - — , * ' ) ) a n d ^/(y» ~ ) c / ((*' ~ — . »' ) ) hence, for each 

such y we have 

i n f J f / ( y , + ) = / * ( y , + ) ^ X'> X 

and 

in f i^y , - ) ==/*(y, - ) ^ A' > A. 

Thus the set [/* > X] contains an open neighbourhood ((z' — l/w0, + ) , (z'> —)> 
of z = (z', —) which proves the set [/# > X] to be open, q. e. d. 

Lemma 5. For each function f : Ro-> Ro, if f* is lower semi-continuous, and 
/ * upper semi-continuous, then f is a Darboux function. 

Proof: Let /* be lower semi-continuous and / * upper semi-continuous. 
Assume that contrary to what we wish to show there are numbers x\ < x2 

and c such that f(x{) < c <f(x2) and /(£) ^ c for every f e (xi, x2} (for 
f(xi) > f(x2) the proof is similar). Let A = [ / > c] n (#1, #2) and B = [f < 
< c] n (#i, #2). Both the sets 4̂ and J5 are bilaterally dense in itself. To see 
it assume that there is a point xo e A, and some e > 0 such that -4 n (#0, Xo + 
+ e) = 0. In this case we have f*(%o, +) = f(%o) > c but /*(z) < c for each 
z e ((xo, +), (xo + £, —)), hence (#0, + ) cannot be an interior point of [/* > c] 
and consequently /* fails to be lower semicontinuous. Thus we have proved 
that every point of A is a cluster point of every its right-hand neighbourhood. 
In other cases the proof is similar. 

Thus the connected components of the sets A, B are closed intervals. Lete/# 
be the set of components of A and B which contain more than one point, i. e. 
of components of the form K = (x, y), x < y. To every such component K 
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assign the set K' = {(x, y)} X {—, + } u {x} X {+} u {y} X {—}. Clearly, 
K' is an open set (in (S, ST)). Now put 

p = {(xl9x2)} x { - , + } - n ^ ' -

The interval (x±, x2) cannot be written as the union of a (at most countable) 
family of pairwise disjoint closed nontrivial intervals (Sierpiriski [4], p. 220— 
221), hence there are components of A or B which contain exactly one point. 
From this it follows that P is non-empty. The set P is also closed. Now let 
P = Pi u P2, where Pi is the set of z e P with real part in A, and P 2 the 
set of z e P with real part in JS. Both the sets Pi and P2 are dense in P, i. e. 

(D P1=P2 = P. 

Indeed, let zeP and assume z = (z', —), where z' e A (in other cases the 
proof is similar). Since z' e A, we have zeP±. On the other hand ze P, hence 
the point z' cannot be the right-hand end-point of any non-trivial component 
of the set A; thus in every left-hand neighbourhood of z' there is a point of B. 
But in this case every left-hand neighbourhood of z = (z', —) contains som& 
point of P2, hence zeP2. 

Since P is closed/* is lower semi-continuous, and /* is upper semi-conti­
nuous, each of the sets 

f*<c-—\nP, 

is closed. There is also 

/* > c + — 
n 

г\P, 1,2,. 

(2) 

(3) 

/* < c -
n 

/* > c + -
n 

П P c Po 

n P c P i ; 

and 

indeed, if f*(z) < c 
n 

and (say) z = (z', + ) , then f(z') < c hence zeP^ 

(similarly for / * ) . Now from (1) it follows that each of the sets (2) and (3) 
is nowhere dense in P. But 

/* < c 
1 \ /« 1 

nP u U /* ^ c + -
U / \«-i n 

r\P\, 
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hence P is a set of the first category in itself contrary to the fact that P is 
closed and non-empty (see Lemma 3). Thus Lemma 5 is proved. 

The next theorem is a consequence of Lemmas 4 and 5 and gives a characte­
rization of Darboux functions using the notion of continuity. 

Theorem 1. Ijet f : Ro -> ^ o . Then f is Darboux if and only if f is continuous. 
Proof : I t is easy to see t h a t / is continuous if and only if f% is lower semi-

continuous and / * upper semi-continuous. From this and from Lemmas 4 
and 5 the theorem follows. 

4. A Characteristic Type of Convergence for Uniformly Converging Sequences 
oi Darboux Functions 

The following Theorem 2 gives a characteristic type of convergence for 
uniformly converging sequences of Darboux functions. (For facts concerning 
the uniform closure of 3> see Bruckner, Ceder and Weiss [2]). In this section 
and in Section 5 we use this convention: If x, y e R, and e e Ro, e > 0, then 
k ~~ y\ < f if a n ( i o n l y if x, y e Po and \x — y\ < e in the usual sense, or 
x = y = + oc. or x = y =•= — oo. Cauchy sequences and uniformly converg­
ing sequences of functions with I? as domain must be interpreted similarly. 

To prove the theorem the following three lemmas are necessary. 

Lemma 6. Let {/w}^=1 be a Cauchy sequence of Darboux functions fn : Ro -> /?0 . 
Then both {/*}*=1, and {/n*}^] are Cauchy sequences. 

Proof : Because of symmetry of the construction it suffices to prove that 
there is some no such that m > no implies \flQ(z) — fm(z)\ < e for arbitrary 
zeS with characteristic 4- (z = (z'. + ) ) (for { J ^ } ^ , and for z = (z , —) 
the argument is similar). 

Each/,* is in (/\ hence for every positive integers ?i, k, the s e t / J ( z', z' -j- —J | 

is an interval and since fn ( ( z',z' + —J J ID fn I / z', z' + 11 we have 

k, 
(t) /,;(2) = HU|> «,.<*) - SUp fj /„( A', .' + 

= ; ™ ( 8 u p / " ( ( 2 ' z ' + * ) ) ) • 

for every n. Let e > 0. There is some no such that , for each x e ifo, |/m0(a<") 
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fm(x)\ < 8 whenever m> n0. For such m, n0, from (4) it follows that 

/ » - e = lim ||sup/M Uz', z' + H J J - e L 

< Urn f (sup/J lz', z' + H J J = / » ^ 

Äľ->00 

< l i m sup/„ ( z ' , Z ' + - + « = / « ( 2 ) + e 

Thus \fm(z) —fm(z)\ < e, whenever m > n0, q. e. d. 

Lemma 7. L/e£ {/wKLi ^e a sequence of Darboux functions fn \ Bo -> Bo converg­
ing uniformly to a function f. Then lim (fn)* ^ /* , <md l im/* ^ / * . 

w-> oo n-» oo 

Proo f : We prove that lim/*(z) ^ /*(z), where 2 = (z\ + ) (for lim (/„)* < 
W-» 00 w ^ . oo 

< f* , and for z = (z', —) the argument is similar). Let e > 0. There is some 
no such that fn + £ > / , whenever n> no. For such n, using (4) we get 

(ð) /«(*) +£ = Иm 11 sup/я 
fc-*oo ' ( г ' ' г ' + ì)))+ í) ï-( s u p /« z ' ' г ' + ì))) 

It is easy to verify that 

f*(z) ^ sup f]f(zf, z' + H ) ^ lim (sup/I 
*=1 \ A;/ / &->oo\ 

From this and from (5) it follows that fn(z) + e ^ /*(z), which proves the 
Lemma. 

In the proof of the next Lemma 8 we use this property of semi-continuous 
functions: The uniform limit of a sequence of lower semi-continuous functions 
defined on a first countable topological space X is lower semi-continuous 
(similarly with upper semi-continuity). Although this property must be known 
I have been unable to find a reference. The property follows simply from the 
fact tha t a function / on X is lower semicontinuous if and only if, for each 
x e X, and each sequence {xn}^i of points in X which converges to x, 

(6) liminfgr(a„) > g(x) 
n-»oo 

(see K e l l e y [3], pp. 72 and 101). 

Lemma 8. Let {fn}n.i oe a sequence of Darboux functions fn : Ro ->• Ro con­
verging uniformly to a function / . Then f is Darboux if and only if both lim /* = 
= / * , and lim (/»),,, =-/„,. 
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P r o o f : Let/<££^ . By Lemma 6, {//*} =̂=1 converges uniformly to a function 
g : S -> R: since every /* is upper semi-continuous the function g is also upper 
semi-continuous. Similarly the sequence {(/??,)*}^Li converges uniformly to 
a lower semi-continuous function h. But f$3, hence by Lemma 5 either 
/ * .-£ gr, or /* 7-= 7̂ , which proves the first implication. 

Now let f e 3. Clearly, it suffices to prove tha t ]im/*(z) = / * ( z ) for some 
•«•-> oo 

z = (z', + ) G S whose characteristic is + (in other cases the proof is similar). 
Let E > 0. Using (4) we get, for sufficiently large n, 

m+.-uuJu *+;-)))+•)> 

^sHlf'^l =/*(--) ^ 

^ lim (supfnI ( z \ z ' + — J j i - e | = /,*(s) — «, q.©- d . 

Now we are able to prove the following 

Theorem 2. Let {/^}^=1 be a sequence of Darboux functions fn : 7?o -> #o> 
converging uniformly to a function / . Then f is Darboux if and only if l i m / w = / 

«->oo 

(m £/?e topology 3T{). 

Proo f : Let f e 3. Let z e $ and let 6? be an open neighbourhood (in 3~i} 
of/(z). There is an open interval J a R such t h a t / ( z ) = </#(z),/*(z)> c: J y 

and every closed subinterval of J is in G. By Lemma 8, l im/* ==/*, and 
n->oo 

lim (/«),,. = / * ; hence / n ( z ) = <(/»)*(z),/^(z)> c J and hence / n ( z ) e 67, for 
tt-*oo 

sufficiently large n. T h u s / n converges t o / . 

On the other hand let f$3. By Lemma 8, there is either l im/* -?-=/*, 
n-»oo 

or lim (/*)* ?-=/*, hence by Lemma 7 either lim/*(z) > /*(z), or lim (/n)*(z) < 
/?,-»• oo ?i-» oo «-> 00 

< f*(z). So there is some open interval J a R such t h a t / ( z ) = </*(z),/*(z)> c 

cz J and there is an n as large as we want such that <(/w)#(z), fn(z)} 4- J . 
Now the set G of closed subintervals of J is a neighbourhood of f (z) such 
tha t there is some n arbitrary large wi th / w (z) £ G. T h u s / w fails to converge 
to / , q. e. d. 
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5. Some Sufficient Conditions for a Limit of Darboux Functions to be a Darboux 
Function 

Since 3) is not closed under the uniform limits (see Bruckner, Ceder and 
Weiss [2]) from Theorem 2 it follows that there is a sequence {/n}£Li of Darboux 
functions such that \imfn = / , b u t / w fails to converge t o / . In the present 

n->oo 

section we shall consider the sequences {fn}nal of Darboux functions fn : i?n -> 
-> i?o with the following property: There is a function / such tha t {fn}naal 

converges pointwise to / and / n t o / . For such sequences some sufficient and 
necessary conditions for / to be in 3 are shown below. At first we note tha t 
in general / n ->/ does not imply fe 3 as it is shown in the following example. 

E x a m p l e . Define fn : RQ -> J?o by 

U{X) 

1 . / 
1 + ~ sin I 

n \ кx) 
if 

1 
0 < x «S — , 

nл 

л{l — nx) 

л - 1 
if 

1 1 
— < x < —, 
nл n 

0 if 
1 

— < X, 
n 

1 if x < 0, 

and let f(x) = 0 for x > 0, and f(x) = 1 for x < 0. Clearly every fn is in 3 

I ] 1 

and lim fn = f $Q. On the other hand, / n ( 0 , + ) = ( 1 — — , 1 + — 
«-*oo \ n n 

and for z ^ (0, + ) , f n(z) = fn(z'), where z' is the real part of z. Similarly 
for every z, f (z) = f(z'), where z' is the real part of z. Thus fn converge t o / . 

The next theorem gives a sufficient condition for the limit of a sequence 
of Darboux functions to be also Darboux. 

For the sake of simplicity, if I is an interval in R, and a > 0, let Oe(I) 
denote the open ^-neighbourhood of I (in R). 

Theorem 3. Let {fn}n=i be a sequence of Darboux functions fn : R0-> Ro 
converging pointwise to a function /, and letf n converge pointwise tof. If for 
every e > 0, and every m, there is some n > m such that 
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(7) f(z) c- ( J Oe(f*(z)), 
k=m+l 

for every z e 8. then f is a Darboux function-

P r o o f : Let 6 > 0, and z0eS. Since (fn)* converges to /* there is some 
m0 such that 

6 
(8) m' > m0 implies (/„»-)* (2o) > f*(z0) ——. 

o 

s 
Pu t in (7) m — mo, and e = —. Since (/()*, m < i < w, are lower semi-

3 
continuous there is a neighbourhood 0(zo) of z0 such that z e O(z0) implies 

(9) ( A ) * ( « ) > ( / . ) * ( z o ) - - , 
o 

where m < i ^ n (see (6)). Now from (7) it follows that for every zeO(z0) 
there is some nz with m -\- 1 ^ nz ^ n such that 

d 26 
/*(*) > (/»,)*(«) - T > (/».)• (go) - — > f*(z) - r5 

(here the second inequality follows from (9), and the third from (8)). Hence 
f*(z) ^ /*(zo) for every z eO(z0) and consequently f% is lower semi continuous. 
A similar argument shows tha t / * is upper semi-continuous and hence by 
Lemma 5. fe@, q. e. d. 

The next theorem is more general than Theorem 3. I t gives a sufficient 
condition for the limit / of a sequence {fn}n=1 of functions to be in Q), where fn 

are arbitrary functions fn : R0-> R0 such that / n - > / . First we prove the 
following lemma: 

Lemma 9. Let T be a first countable topological space. Let {fn}n=1 be a sequence 
of functions fn:T -> R which converges pointwise to a function f. Then f is 
lower (upper) semi-continuous if and only if for every a eT and every s > 0 
there is a neighbourhood 0(a) of a such that for every z e 0(a) and every k there 
is some m with 

fk+m(z) > f(a) — s fresp. fk+m(z) <f(a) -f e); 

in symbols 

(10) V V 3 V V3ft+m(z)>f(a)-e (resp. fk+m(z) <f(a) + e). 
a G > 0 0(a) zeO(a) Jc m 
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P r o o f : Because of the symmetry it suffices to prove the Lemma for lower 
semi-continuous functions. Thus assume the condition (10) to be satisfied. 
Let {znKJLi be a sequence converging in T to a. We can assume zneO(a), 
for every n. Since fn converge to / there is a k\ such tha t (fz\) > fk(zi) — e, 
for k> k\.ln general, let kn be a positive integer such tha t for every k > kn, 
f(zn) > fk(zn) — s. From (10) it follows that there is a sequence {^}£i °f 
positive integers such that fkn+mn(zn) > f(a) — e, for every n. Hence 

f(zn) > fkn+mn(Zn) — £> f(a) — 2e 

and hence 

l iminf f(zn) ^ f(a) — 2e; 
n-*co 

thus lim inf/(zn) > f(a) and consequently (see (6)) / i s lower semi-continuous. 
tt-»oo 

Now assume tha t a sequence {fn}™=1 converges to a lower semi-continuous 
function / and tha t contrary to what we wish to show the condition (10) 
is not satisfied. Then 

3 3 V 3 3 V/*+«(*) ^f(a)-e. 
a e > 0 0(a) zeO(a) 7c m 

Hence in every neighbourhood of a there is a point z such that , for every m, 
fk+m(z) ^ f(a) — e, so that lim/A,+w(z) = f(z) ^ f(a) — e. But in this case / 

m-* oo 

cannot be lower semi-continuous (see (6)) in a. The contradiction finishes 
the proof of the Lemma. 

Now we are able to prove the following. 

Theorem 4. Let {fn}n^\ be a sequence of functions fn : R0 -> Ro converginy 
pointwise to a function f such thatfn converges to f. Then f is in Q) if and only 
if for every a e S, and e < 0, there is a neighbourhood 0(a) of a such that for every 
z GO(a), 

f(z)czOs(f(a)). 

P r o o f : S is a first countable topological space (see the section 2 above) 
hence Lemma 9 can be applied. Replace the functions fk+m, f, in (10) by 
(/*+*»)*, / * , resp. (/&fOT)*, /* , to obtain the condition 

• V V 3 V Vlfk+m(z) -= <(f*+m)*(z),(fk+m)*(z)> c Oe/2(f(a)); 
a e>0O(a) zeO(a) k in 

From tliis the Theorem follows. 
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