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Matematický časopis 18 (1968), No. 1 

ON CERTAIN THEOREMS OF BERRY AND A LIMIT 
THEOREM OF FELLER 

CYRIL LENART, Kosice 

The purpose of this paper is to improve the statements of certain theorems 
due to Berry (Section 1) and a limit theorem due to Feller (Section 2). 

Let Xjc, k = 1,2, . . ., n be independent random variables, let F^x), oc/c, 
a\ > 0, JUU < °o, k = 1,2,.. .n be their distribution functions, mean values, 
variances and third absolute central moments, respectively. 

Let 

(1) X = ŻXк; 
к 1 

denote F(x), oc — ]> a#, a2 = 2 °"f > the distribution function, mean value 
A 1 k 1 

and variance of X, respectively. 

We define 

(2) 8 = 
к-1 

(3) 

where 

M = sup 
-oo< .r <+oo 

F(x) - Ф 
x — a 

(4) Ф(x) = 
(2ný 

e 2 dt, x є (—oo, cю). 

(5) 

Further we define the ,,moment — ratio c c h as follows: 

h = - -, i -= 1, 2, . . ., w 
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and put 

s = — max Xk. 
a l<k<n 

I t can be easily shown that e ^ e. 

A. C. B e r r y [1] has shown that there exists an absolute constant C (in­
dependent of the Fks) such that 

M ^ Ce. 

He also gave an upper bound for i t : 

C < 1,88; 

the proof of the last inequality contains however, an error, which was corrected 
by K. T a k a n o [3], who obtained thus only the estimate 

C < 2,031. 

Berry's method of proof has been essentially refined by B. M. Z o l o t a r e v 
[4], who obtained an estimate 

(6) C < 1,322, 

even for the inequality M ^ Ce. 
I n the mentioned paper Takano pointed out that also other theorems in 

[1] will have to be corrected. Theorems 3, 4, 5 in [1] hold because of our rela­
tion (6), but, as we shall show below, they can be improved. 

Let us now assume that Fk(x), k = 1,2, . . . , n are the distribution functions 
of independent random variables Xk, k = 1, 2, . . . , n, F(x) the distribution 

n 

function of the sum X = ^ Xk and the function &(x) defined as in (4). Let 
k=l n 

ak (k = 1, 2, . . . , n), b > 0 be real numbers and a = ^ak. Let 
k-l 

(?) M = sup 
-oo< .r <+oo 

F(x) - Ф x — a 

For a given x > 0, we define the following quantities 

(8) 
k=l 

n dk+xb 

*o = Hp{\xk — ak\ > xb), 
k=l 

(9) Kí = l (x — ak) dFk(x) 

k=l cik-xb 
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n cik+xb 

1 
1 

&2 

(10) 7C2 = 

I °* . 
k=l ctk-xb 

Theorem l.If&o ^ x,x\ ^ x, x% ^ x, then 

(11) M < 4,647£ 

(ж - ak)ЧFk(x) 

P r o o f . We shall use the correct part of Berry's Theorem 3 in [1], which 
states 

1 
log 

_ C(x + x\) x\ 1 
(12) Ж < — ^ — '-- + xo+ г + 

(1 - x\ - x2)
1 (2n)1 (2ne)1 (1 - x\ - x2f 

Using further the inequalities C < 1,322, xk ^ x, k = 0, 1, 2 we get 

(13) M<xg(*)> 

where 
2,644 

(14) flr(й) 
(1 x) 

1 + 1 + + 
1 

log-
(2тr)J ü(2тi:e)s (1 - й- - xf 

Since ilF ^ 1, the theorem is trivial for x > 
1 

; assume therefore that 

Л 
4,647 

In this interval, g(x) is an increasing function of x and g(x) < xe\0, /. 
\ 4,647/ 

< 4,647 which proves the theorem. 

From now on let us assume that the mean values <xk and the variances 
G\ > 0 (k = 1, 2, . . ., n) of the random variables are finite. Let us use the 

n n 

symbols a = 2 a * a n ( i o"2 = 2 at ^ o r ^ n e m e a n value and the variance of the 
* i £ = 1 

sum X = 2 -X"*. I n this case M = M, where ak = <xk, k = 1, 2, . . . , n and 
* I 

6 = cr. 
For quantities .*, XQ, X\, X% corresponding to x, x0, x\, X2 in the preceding 

case, we can write 

(15) 

(16) 

xo = 2 P І\X* — a*l > xa)> 
k=l 

Xi = 
1 V " 

k=l 

П <Xk-X<У 

r 
+ I (x - ock) dFk(x) 

oo ajfc+xcr 
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11 <xk-xa 

(17) *ä = - І + 
J 

\(x - oc,)HFk(x). 
Oú 

k-l -oo otk+xa 

We prove the following 

Theorem 2. if x% ̂  *3, then 

(18) JF < 3,188*. 

/ 1 
P roo f . To get a non-trivial case, let us assume that x e 0, 6 \ 3,188 

we shall again use the correct part of Berry's Theorem 3 in [1] and the ine­
qualities x0 ^ x, xi ^ x2, X2 ^ xd, (where the first and the second inequa­
lities follow from (15), (16), and from the third), we get 

(19) M <xgi(x), 

where 
1,322(1 + *) 1 1 1 

(20) gUx) -= + 1 H 1 x • log T • 
y ' J y > (1 _ *4 _ „3)S ( 2 7 U ) - *(27ue)^ & (1 - *4 _ „3) . 

In the interval I 0, ) , gUx) is an increasing function of * and gi(x) < 
\ 3,188/ 

< 3,188 which proves the theorem. 

A simple consequence of Theorem 2 is 

Theorem 3. Let 

(21) /«,,* = E (\Xk - a*|'), k = 1, 2, . . ., n 

be finite for s > 2 (wo£ necessarily integer). Then 
i 

(22) ill < 3,188 (e*) s + 1 , where 

n 

(23) € * _ — \ ^ , . 

&_i 
i 

Proof . We put * = (e*)sH1. Further, we have 

(24) fjktk ^ j \x - ock\
sdFk(x) ^ xs-2 — { \x - ock\

2dFk(x) 
x-oc.k\>xa & \x-xk\>:xa 

Summing over k and dividing by os gives 
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(25) £* ^ xs 2x2i i .e . x* ^ x2. 

R e m a r k . Berry in [1] (Theorems 3, 4, 5) gives the constants 5,8 and 3,6 
instead of our 4,647 and 3,188 respectively. 

F e l l e r ' s T h e o r e m 1 in [2], which is a generalization of C r a m e r ' s l i m i t 
t h e o r e m can be improved using the results of the preceding section, and also 
by improving some estimates used in Feller's proof. As we shall demonstrate 
in the sequel, the technique of the proof itself remains unchanged. 

Let Fjc(x), h — 1,2, . . ., n be distribution functions of independent random 
variables Xk, h — V 2, . . ., n. Suppose that 

(1) E ( . Y * ) - 0 , E(Xt) = <4, 0<al< + oo, 

k — 1, 2, ...,n. 
Further, let 

(2) A ' - | A V 
k 1 

The mean value of X is 

(3) E(X) - 0 

and its variance is 

k 1 

From now on we shall suppose that, in addition to (1) the random variables 
Xk satisfy for some X > 0 the condition 

(5) \Xk\ <Xa for h - 1,2, ...,n. 

Further, let F(x) be the distribution function of the random variable X. 
With the help of a suitable transformation (cf. [2]) we can, if we choose 

a suitable real parameter h > 0 transform the sequence {Fk(x)}l x of distri­
bution functions into another sequence of distribution functions {Fjc(x)}l x. 

The transformation is defined by 

oo 

(6) Vk = j e»*dFk(x) 
- o o 

and 
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1 г 
(7) Fk(x) = — -

Vjc 

e"«dFk(y). 

Let Xjc (k = 1, 2, . . . , n) be the independent random variables correspon­
ding to these distribution functions Fjc(x). 

The mean value of the random variable Xjc will be denoted by a* and its 
variance by af. 

Let F(x) be the distribution function of the random variable 

(8) X = fxk, 
k=l 

let 
n n 

(9) 5c = J^ajc, 0=2 = 2 ^ 
& = 1 j b = l 

be its mean value and variance. 
Using (7) (see [2]) it is easy to prove the following. 

Lemma 1. We have 
oo 

(10) 1 - F(x) = ViV2... Vn j eh(*+va)dF(a + yd). 
(x-<x)ld 

Corollary. Let 

(ii) F = i o g n V * . 
£=i 

jp0r x = oc the relation (10) implies 
oo 

(12) 1 - F(5L) = ev~M (e-hy°dF(a + yd). 

o 

The semiinvariants yjc,v (k = 1, 2, . . . , n; v = 2, 3, . . . ) of the functions 
Fk(x) are defined by the relation 

oo oo 

f V v 
(13) log e^dFk(y) = \ yk,v~-. 

J /-, "! 

- o o »_» 

We put 
( u ) Tr = 2y*.»-

j t - i 
From (13) and (C) we get 

oo 

(15) log Vk = / y*,r 

f = 2 
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From the first derivative of (15) with respect to h we get 

oo 

^ r hv-1 

(16) Oik = > yie.v 

Z^ ( " - ! ) ! 
v=2 

and the second derivative of (15) with respect to h gives 

oo 

/r2 

(17) 0% = > y*,, 
(v-2)\ 

Formulae (11), (14), (15), (16), (17) and (9) imply 

CO 

(18) F=Z/^' 
v=2 

SГ Л"-1 

(19) « = > Г, -• 
v-2 

oo 

(20) ã2 = > Г, 
0 - 2 ) ! 

v-2 

The following lemma is due to Feller (cf. [2]): 

Lemma 2. Let X > 0 be the constant in formula (5). Then for v ^ 3, k = 

1, 2, .. ,,n the following estimates hold: 

(v — 2)\ o 

(21) |y*.,| < ^(2Ao-)-2, 
__< 

(v-2)\ 
(22) |r,| < — ff2(2A(r)"-2. 

I n the next l^mma, the results depend not only on the interval containing 
Xah, but also on the estimate (18) of the preceding section. 

Lemma 3. Let 

(23) 
13 

0 < lah < 
144 
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Then 

(24) 

and 

(25) 

Further 

(26) 

where 

(27) 

1079 
la*l < "~T7T to, k = \,2, . . .,n 

11328 

— — 1 < 
13 

118 

1 - F(a) = eF-tó{eí<A5)2(l - &(ho)) + &iX), 

| 0 i | < 7,403016. 

P roo f . Using (16) and (21) we get 
oo oo 

(28) |5*| ^ | y w | * + > |y*,,| T " ^ — < ojfr 1 + — > " Vtoh)' 
/ ( (v — \)\ { 2/__,v—\ 
v=3 v -3 

< X2a2h 1 + 
1 Àah ì 

2 1 - 2lah 

13 
Since 0 < Xah < by assumption, formula (28) implies the relation 

144 
(24). 

Further, 

(29) 52 = Г 2 + > Гv — 
Z_v (" — 
v 3 

V* h* -
— = ff2 + \ r, 

2)! Z . (" 2)! 
v 3 

according to (13), (14) and (20). 
Therefore 

(30) 7 2 l s: i m < <J2 
(v - 2)! 1 - 2lah 

v 3 

13 
For 0 < ЯGh, < , Лcr > 0, we get 

144 

(31) |ã2 - <r2| 
13 

118 

and therefrom directly follows (25). Using (5) and (24) we get for k — 1,2, . . . ,n 

(32) 
1079 

11328 
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Using (32) and (25) we have for k=l929...9n 

(33) \Xk -^ $k\ < A A6=, where 

12407 
(34) Д = 

П328 

'118 
< 1,161075. 

105 

Therefore for k = 1,2, . . ., n we have 

1 
ehxdFk(x) = 0. (35) dFk(x + 5ck) < 

\x\>AXo \x\>Xo 

I n Theorem 3 of the preceding section, let us put x = AA. Then from (33) 
x$ = x\ — 2̂ — 0 and the conditions of the theorem are satisfied. I n this 
way we have proved that 

(36) F(5c + xa) — @(x) = E(x)9 

where 

(37) \E(x)\ < 3,701508,1. 

Using (36) and (12) we have 
OO CO 

(38) 1 - F(5c) = ev-M{(2iz)-1 \e-hya~-ly* dy + f e-hyadE(y)}. 
o o 

The following estimate of the absolute value of the last integral in (38) 
follows from (37): 

(39) I {ehv°dҖy)\ < |Д(0)| + ћa\ íe-hv°Җy)dy < 7,403016A. 

Further, 
OO 

(40) (2TZ)~1 [ e-hya-ly2 dy = eUha)2 (1 - @(ha)). 

o 

From (40), (39) and (38) we obtain the remaining proofs of (26) and (27). 

Now let h = h(x) > 0 be a function of x defined with the help of the in­
verse function x: 

CO 

1 V " h*-1 5. 
(4i) x = — > r , 6 / _ , (v — 1)! <* 

v 2 
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A formal calculation of inverse series to (41) gives 

x x2 

(42) . = - - — r 3 + . . . . 

Using (22) we see (Cauchy's principle) that the inversion of the series (41) 

is possible for at least all those values of x for which we can invert the series 

oo 

(43) h = -^ + - J - Y (2xy-2{ohy-i. 
a 4c/ / f 

r=3 

The inversion of (43) is possible for 

1 
(44) 0<h< , 

2;.cr 

which corresponds to the interval (cf. [2]) 

(44') 0 <Xx < (3 - 55)/4. 

Feller (in [2]) proved for these x and h the following estimate using (43) 

x 6Xx 
(45) h — x< , 

12 1 - 6Xx 

where -< denotes the fact that the expression on the right hand side majorizes 
the expression on the left. 

1 13 
R e m a r k . Let 0 < Xx < ; then (from (45)1 we get 0 < Xah < , 

12 144 

which is the hypothesis of Lemma 3. 

Feller defines the function 
oo 

(46) Q(x) = 2 qvx" 
v 1 

by the formula 
oo 

x2 \r v — i 
(47) — { i + Q ( x ) ) = \rv-^hvy 

2 /_^ vl 
v-2 

where h = h(x) > 0 is defined through its inverse function x in (41), and 

he further defines the function 

OI ' л 

ľ = l 

(48) Q*(X) = 2 Я> 
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by the formula 

x2 (o*h*f [ 1 
(49) — (1 + Q*(x)) = - 1 + 7 > (2^*A*)'-2|> 

v=3 

where 
x 6?x 

(50) r j V ^ - H . 
12 1 — 6?x 

Evidently the interval of those values of x for which the series (49), (50) 
are convergent lies within the interval of convergence of the corresponding 
series (47), (45). 

Further, according to (18) and (19) 

(5i) y rv h* = M-v, 
/ , v\ 
v-2 

so that from (47) and (51) we get 

(52) -^-(1 +Q(x)) = ha- V, 

the series (51) and (52) being convergent if (44) is satisfied, owing to the vali­
dity of (22), at least on the interval (44'). 

The following lemma now holds: 

1 
Lemma 4. Let 0 < ?LX < — . Then series (49) and (50) are majorants for 

the series (47) and (54), respectively. 
Moreover, the coefficients qv, v= 1, 2, . . . , defined through (46) and (47), 

depend only on v + 2 first moments of Xk, k = 1, 2, . . ., n, and they satisfy 

(53) h Z i K — A 

and 

(53') qv\ < —(12A)', for v = 2, 3, . . . . 
8 

P roo f . The coefficient of xs — say cs — in the inverse series h = h(x) 
depends only on coefficients of h, h2, . . ., hs in the original series (47), i. e. 
only on the quantities F2, . ..,-T.j+i; inserting h = h(x) into the series (41) 
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and grouping the terms with the same power, we find out that the coefficient 
of xs in this series depends on ci, c2, . . . , c8-i, i. e. on F2, . . ., rs. By comparing 
we get t h a t qs depends on F2, ...,Ts+2\ these quantities can be expressed 
by moments of Xk, k — 1, 2, . . . , n, of order at most s + 2. 

The fact of majorizing is evident from (22); therefore 

(54) WA^q*, v = l , 2 , . . . . 

Simple computation shows that 

Q* I 1 < 0,259809. \m] 
5 

Further, q* = —X. Using this, we obtain for q*, v = 2, 3, . . . , the estimate 
o 

q* < 0,120920 (\2X)V < \ (122)% 

which implies (53'). Using (47), (42), (46), (47) and (22) we get the following 
estimate for q±: 

(55) | ? 1 | = _ | r 8 | < — A. 
3a^ 3 

Lemma 5. Let h > 0, a and x satisfy the relations (20) and (41) and let 0 < 
1 

< Xah < — . Then 
3 

(56) \ha -x\ ^ X*(ohf 

P r o o f . From (41) we have 

1 

+ [ 1 - 2Xoh 8(1 - 2lah) (1 - ЪXoh) 

( 1 V ^ лV-2 
<57) x = oh Ц > Гv (T2 / , (v-l)\) 

v=3 

Furthermore from (20) 

<58) ho = oh li + — > rv 

d1 / f (v — 2) ! 
y=3 

Using (57) and (58) we get 

<59) há-x = oh\ > i\\ í-n > /
 r ' , hr-tf--*-Srt

 hv~2 ] 
k)\o2/^(v — 2)\ ) o* / J

 V (y — 1)! 
fc=l v=3 v_3 
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1 1 

~|_72iÅ*~+2> fcj\cr2__/(r-2)! * j 
v-3 

' ^ r , j _ _ U л [ _ 
< r ' _ _ ( " ~ 2 ) ! 

v 3 

Г, 

V/ł 1 
z_ 

Jfc-2 

*7 W22_>-2) ! 

( » - 2 ) ! \ 2 v 

г, үì 
Ä"-2 

- 1 
U,-2 + 

Therefore, using (22), we get 

(00) _ > ______ hvJL - ___\| < - 1 I_ \ - i (2_7»- = 
ff2_L/(r_2)! \ 2 - — l/l cr2 2 _ _ /

2 

(Дgft)-

1 — 2ДcrA 

Further for 0 < hsh < — we have the following estimate 
3 

(61) V / j \ / l 

Z_ 
i 2 

IV Y 

И 7 \ ø - Z _ ( » - - ) 1 

i 

oo co 

1 v / 1 
<: 

S 2 _ \ f f 2 2 _ > - 2 ) ! 

(Xahf 

IT>I Y 
' -fe"-2 < 

^ 8 (1 - 2;.cr7i) (1 - 3Acrft) 

The formulae (59), (60) and (61) imply 

(62) \ha x\ < A2(o*)3 + 1 — 2Xah 8(1 — 2Xah) (1 — 3_crft), 

which is the formula (56). 

Corollary. Let 0 < Ax < - ; then 

(63) 
13 

0 < ah < x. 
12 

For 0 < lah < 
13 

144 
we have 

(64) |A_ — x| < l,817535A2o;3. 
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(The inequality (63) follows from (45); the inequality (64) from (56) and 
(63). 

We define the function f(t) as follows 

(65) f(t) = *l*{l-&(t)}> * > 0 . 

For 1 — 0(t), t > 0 we have the well-known estimates 

1 1 N 

(66) M - í e - i " j - ^ < 1 - Ф(t) < (2 Tr)'5 Q-Џ' 
V 

If we compute the derivatiwe of (65) and then use (66), we get the relation 

1 
(67) 0 ^ - / ' ( * ) ^ - , t> 0. 

(2 n)¥ 

Now, it is easily seen that 
1 

(68) \f(ha) —f(x)\ ^ \ha — x\ max \f'(t)\ ^ \ha — x\ max , , 
(2 n)n2 

where the maximum is taken over all t betwen ha and x; this gives 

\ha — x\ 
(69) \f(hd)-f(x)\ ^ 

(2n)1 (x - \ha — x\f ' 

when \ha — x\ < x. 
1 

For 0 < Xx < the inequality (64) implies 

1,817535A2^3 

(70) \f(ha) -f(x)\ < —— ———— < 0,743748A2*. 
(2 7i)a (x — 1,817535A2£3)2 

The following lemma is easily derived from the results we have obtained: 
1 

Lemma 6. Let X > 0, 0 < Xx < . For Q(x), f(x) as defined in (47) and 

(65) respectively, we have 

(71) 1 - F(xa) = e~lx2{1+Q(x)){f(x) + (0X + 62)X}, 

where 

| 0 i | < 7,403016, \02\ < 0,743748^. 

P r o o f . From (26) we get 

(72) 1 - F(5c) = ev~M {ei(A5)i(l - 0(ha)) + OiX} , 
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moreover Oi satisfies (71). Using (41), (52) and (72), we get 

(73) 1 - F(xa) = e-lx2(HQ(x)){eWla)\l - &(hd)) + 0±X}, 

the 0i again satisfying (71). From relations (73), (65) and (70), the relation 
(71) can be directly derived, completing thus the proof. 

Let us write the expressions Q(x), a, rv with the indices: Q^(x), oV),rvU\ 
if they refer to random variables X±, X2, . . ., X?. 

We shall now prove the following lemma : 
1 

Lemma 7. Let 0 < Xx < -—. Then for 1 ^ i < j ^ n, we have 
12 

GU)* _ a ( t ) 2 

(74) \QU)(X) - QM(x)\ < 1,256 . 
o-<̂ )2 

Proof . Formula (47) implies 
00 J 

(75) ^ (QU)(X) - QM(x)) = -J- A2(a«)« - o^) + > / *' > yk,,. 
2 2 __^ v(v — 2)! / , 

v-3 k i+1 

Using the estimate (22), we have 

(76) \QU)(x) - QW(x)\ ^ — (o-O-)2 - oW) 1 + \ — — . 

r_3 

Let us choose K so that 

4 00 

A2 [ sr (2XoWhy-* 1 v 1 ) A 
(77) — 1 + > 1- > (2A(T<»)A)'-2 < 

x* ( _ ^ v 5 _ _ / J <r<»>" 
v 3 r_5 

1 13 
Since, for 0 < Xx < ', we have 0 < Xo^n)h < , according to (45) 0 < 

12 144 
a^h 13 

< —-— < , and according to (63) formula (77) implies that we can choose 

(78) K = 1,256. 

The preceding results permit us to formulate the following theorem, which 
is an improvement of Feller's Theorem 1 stated in [2]. 

Theorem 4. Suppose that Xk, k = 1, 2, . . . , n are independent random varia­
bles, which satisfy the following conditions: for k = 1, 2, . . ., n 

E(Xk) = 0, 
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(79) E(XŽ) = o í , 0 < < - í < + co 

|-X*| < Á<T, 

Å* 1 

1 

where X > 0, a2 — 2 of • 
A' 1 

Suppose further that 0 < to < T 7 - i e * ^(~) 6 e ^ e distribution function of 

e ^ t fг/. 

íЛe <шm I = _ I t 

ł - 1 
, řeř 

ф(z) 
1 f 

(80) 

I = _ I t 

ł - 1 
, řeř 

ф(z) 
~ (2 кÝ J 

-oo 

"Vгeгг гve лшг>e 

(81) 

/ ] / < / ] Ґ)ҐУ*S) 

1 - F(xa) = e -ìxHЦx) п _ 

wiiere 

(82) |o | < 7,4 

(83) Q(x) = 2qvxv, 
v = l 

lt^e coefficients qv depend only on the v + 2 ̂ rstf moments of __&, k — 1,2, . . ., ?£, 
amZ ^ei/ satisfy 

(84) M < — A 

1 
\qv\ < — (12A)», r = 2, 3, . . . . 

8 

Furthermore for every l^i<ij^nwe have 

(85) \QU){x) - Qit>(z)\ < 1,256 
a4 

where Q^(x) = Q(x), G^2 =, G
2. 

Proo f . Formulae (81) and (82) are consequences of (71) and (65); (84) 
comprises formulae (53) and (53') and (85) is the relation (74). 

For x > 0 we have 

(86) 

74 

1 / •& \ 
1 _ 0(X) = e - j * j. , where 0 < § < 1. 

(2TC) \ - \ gfl) 



Then (81) can be written as follows 

Corollary. 

1 f 0 ) 
(87) 1 - F(xa) = — e-

il;2(1+Q(T)) 1 h (2 n)1 Qlx , 
(2 7r)2o; ( x 2 J 

ivftere |O| < 7,465. 

W. Feller in [2] gives the following estimate for (85): 

1 a^2 — cr«)a 

\QV>(x)-QV>(x)\ < — -

However, this estimate is not a consequence of the estimate (22) as Feller 
asserts. For (82) Feller gives the estimate \Q\ < 9 and for (84) the estimate 

\qv\ <—(12A)% v = 1, 2, . . . ; in the statement about q'vs Feller erroneously 
7 

states the dependence only on v first moments (instead of v + 2). 
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