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Matematický časopis 18 (1968), No. 1 

NOTE ON THE SEVRIN RADICAL IN SEMIGROUPS 

ROBERT SULKA, Bratislava 

J . B o s a k [1] showed on examples that the radical defined by S e v r i n [2] 
can be distinct from the set of all nilpotent elements and from the radicals 
with respect to an ideal J . I n this note it is shown that the Sevrin radical has 
similar properties as the Clifford radical, the Schwarz radical and the McCoy 
radical (see [3]). 

Definition. Let S be a semigroup and J a two-sided ideal of S. Let I be such 
an ideal of S that every subsemigroup S' _= S, generated by a finite number of 
elements of I, is nilpotent with respect to J (i. e. for a positive integer n we have 
(S')n _= J ) . Then I is called a locally nilpotent ideal with respect to J. The union 
of all locally nilpotent ideals with respect to J will be called the Sevrin radical with 
respect to J and it will be denoted by L(J). 

Lemma 1. Let I\ be a locally nilpotent ideal with respect to J\ and I2 a locally 
nilpotent ideal with respect to J 2 . Then J, n I2 is a locally nilpotent ideal with 
respect to J\ n J 2 . 

Proof . If we take a finite number of elements of/] C\ I2, then the semigroup 
A generated by these elements is nilpotent with respect to J i and J 2 , i. e. 
there exist positive integers n\ and n2 such that Ani _= J i and An* _= J 2 . 
Let n = max {n\, n2}. Then An _= J\, An<=,J2, i. e. An _= J i n J 2 , q. e. d. 

Lemma 2. Let J\ and J2 be ideals of S and J\ _= J 2 . Then L(J\) _= L(J2). 
Proof . If the ideal / is locally nilpotent with respect to J i , then it is evident­

ly also locally nilpotent with respect to J 2 . But every element of L(J\) is con­
tained in some locally nilpotent ideal / with respect to J i and therefore it is 
contained in L(J2). 

Lemma 3. L(J\ n J2) = L(J\) n L(J2). 
Proof, a) from J i n J 2 _= J i and J i n J 2 _= J 2 according to Lemma 2 

we obtain L(Ji O J 2 ) _= L(J\) and L(J\ n J 2 ) _= L(J2). Hence L(Ji n J 2 ) £= 
_= L(J\) n L(J2). 

b) If x e L(J\) n L(J2), then x e L(J\) and x e L(J2). Thus x is contained in 
some locally nilpotent ideal I\ with respect to J i and in some locally nilpotent 
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ideal 72 with respect to J2, therefore x e Li n 72 and this is by Lemma 1 
a locally nilpotent ideal with respect to J\ C\ J 2 . Hence x e L(J± n J2) and 
L{Ji) n L{J2) ^ L{J± n J2) . 

From a) and b) our statement follows. 

Lemma 4. L(Ji) U L(J2) .= i ( J i U J2) . 
Proof . From J i ^ J i U J 2 , J 2 .= J± U J 2 and by Lemma 2 A\e have 

.L(Ji) := K(Ji U J2) , L(J2) S L(Ji U J2) and this implies Lemma 4. 
R e m a r k . In Lemma 4 the equality need not hold. This can be shown on the 

following example (cf. [3], p. 213). 
E x a m p l e . Let S be the free semigroup generated by elements a and b. 

Let (a) and (62) be the principal two-sided ideals generated by a and b2, respec­
tively. Since (b2) i= (a) U (b2), the ideal (b) is localy nilpotent with respect 
to (a) U (b2) and hence b e L ((a) U (b2)). But no power of 6 e (b) is contained 
in (a) and no power of bae (b) is contained in (b2), therefore (b) is a locally 
nilpotent ideal neither with respect to (a) nor with respect to (b2). Thus b is not 
contained in L({a)) U L((b2)). We proved that beL ((a) U (62)) but b is not 
in K((a)) U L((b2)). Hence L ((a) U (b2)) + L((a)) U L((b2)). 

From the foregoing lemmas we have: 

Theorem. The mapping which assigns to each two-sided ideal J of the semi­
group S the Sevrin radical L(J) is a C\-endomorphism of the lattice of all ideals 
ofS. 
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