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MATEMATICKO-FYZEK CLNY CASOPIS SAV . 16, 10 1966

TWO OPERATIONS WITH FORMAL LANGUAGES AND THEIR
INFLUENCE UPON STRUCTURAL UNAMBIGUITY

JOZEF GRUSKA, Bratislava

LINTRODUCTION

The formal languages here considered form a class %4 which contains the
elass of Chomsky's context-free grammars. Language ALGOL 60 (if con-
sidered without the limitations given in the non-formal parts of [1]) belones
to 7y, too.

ecently the problem of semantics definition for languages from 7, hus
been raised (in connection with the unsatistactory exactness of ALGOL 60
description). This problem was studied in Fabian’s paper [4]. He investigated
such semantics (a semanties is simply a transformation defined on the set of
all terminal texts derivable in a given Janguage), that the semanties value
of a text  derivable from a non-terminal symbol o is determined. rouchly
speaking, by the way in which the text ¢ is devivative from the svinbol

and showed, that for such definition of semantics the weak stractial nnainbi-
guity (sce Def. 7.1, [4]) of a given language is very important. (Aixo souie
ambiguities of ALGOL 60 were a consequence of the fact that ALGOL 60
is not weakly structurally unambiguous.) But the concept of structural un-
ambiguity (see Def. 7.1, [4]) is more convenient for the study. Tt has heen
proved (sce[5]) that it is possible to transfer the investigation of weak struc-
tural unambiguity of a given language on the investigation of structural
unambiguity of another language. Hence it is sufficient to study the struetiral
unambiguity (s. u. ) of formal languages.

In this paper the influence of language reduction (a non-terminai symbol
is removed from the language by replacing, in all metatexts of the languege
(a metatext is simply such text by which a non-terminal symbol may be
replaced, this symbol with its metatexts) and the language extension (a part
of a metatext is replaced by new non-terminal symbol}. on the =tructural
unambignity is studied. {The operations of reduction and exteusion have
been introduced in Culik’s paper [2].) Tt is proved that the extension and.
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under certain easily verified assumptions, even reduction have no influence
upon structural unambiguity.

The operation of extension has been usxed in the proof of structural un-
ambiguity of the language ALGOL MOD which is a slight modification of the
language ALGOL 60 (see [6]).

The present paper uses notations and definitions of [4]. The reader should
be familiar with section 1 to 7, [4].

2. REDUCTION OF LANGUAGES

A language ¢ is said to be cyclic if there is a text ¢ such that ¥ : ¢ = ¢
Lt has heen proved (sece [5]), that a language ¥ ix cyclic if and only if there is
an o ¢d¥ such that ¢ | A - {A]. Morcover, (sec [5]) the structurally un-
ambiguous language is not cyclic. Denote by %, the class of all non-cyclic
languages and by €. the class of non-cyclic languages such that ¢% and
1, A edY, ae YAY are finite sets.

2.1. Notations. 1f ¥ is a language. ge g?, then by 8,9 (S,9) we
shall denote the set of all structures |x, 7] (such that o« # [A]) of ¢ in Z.
By g, ¥ (g ¥) we shall denote the set of all structural unambiguous (structural
ambiguous) grammatical elements of &7,

2.2, Pefinition. A metasymbol 4 e d ¥ is called simple if there is only one «
such that o ¢ 2740 A metasvmbol o is called reductible it 4 ¢ symb #4.
symb ¥l - Adand A ¢ symb UL Bed Y.

Let A be a reductible metasvimbol, « € ¥4, « + .1. Denote w the transfor-
mation defined on ¢%” in the following manner:

() It o is a simple metasymbol. then
(Ia) gt -~ JIE, where & is the decomposition defined on dt such that, for each
podE S = [ () if b A (== A).
(2) It 0 is not a simple metasymbol, then
[2a] pt - {11E & is a decomposition defined en dé such that, for cach @ = d¢§,
either & [l or & = zand ti == A}
Morcover, denote &7 the transformation defined as follows:
d¥ - {4V if A is a simple metasymbol
avy,
©d Y otherwise.
and
Uiy pedBy iDL - A4
YN
S A a) it B-—Aded??.

The language ¥ will be called (A, x) — reduction of 2.



2.3. Theorem. Let A be a reductible metasymbol of a language ' <0y
and let A+ 2 ¢ LA . Then 4% €6y and if

(1) for each Bed¥?. and ay. asc B the inequality oy - o imiplies

wop N poe = A,
then L% is s. w. if and only if sois L. If (1) does not hold then ¥’ is not s .

(In the case A4 is a simple metasymbol we received the language ¥ from 7
by omitting the metasymbol 4 from d ¥ and by replacing. in all metatexts
of #, the symbol 4 with «. Tf 4 is not a simple metasvmbol then the matter
is a little more complicated. In that case we received the language 7 from &
in cuch a way that each metatext g is replaced with new metatexts which are
obtained from g by replacing some svmbols A in g with «. In this case we
received 2" new metatexts from every ff where n i the number of all A in .
Moreover, « is omitting from the metatexts of the svmbol A in 7))

Proof. Denote briefly % = 7. In order to prove 7y is a language. it
suffices to show according to the definition of ¢4 and Def. 5.1 [4]. that
(Bl ¢ LoBif B ed?y. But it follows straightfocrward from the definition of” 77,
and from non-cyclicity of ¢

Next, it is obvious that ¥ [B] - if ¥y :|B] = t. Henee,

(2) LBl >t if Lo[B] >t
and & is the non-cyelic language, i. e. &y €%y.

Now suppose that (1) does not hold. Then there are Bed?. » .20 e Y'B
such that oq - oo and oy O ypoe - AL Let xg € pay Ny, Recalling the de-
finition of » we have ¢t o »mxg. 0 2 - %, andd therefore. since % - 2o,
[B, a0] € g.% and the second assertion of Theorem is proved. Tu what follows
we shall suppose that (1) holds.

Tn the following we shall say that a text t does not contain the symbol
it 4 ¢ symb {{}. We proceed to prove some auxiliary results.

(3) If g +# /1. there is a [B, t] € g, such that ¢ does not contain .

Proof. Let g = [B, t] € .. If t does not contain 4, then (3) holds trivially.
Now suppose that ¢t contains 4. Let us define the transformation £ on df ax
follows: & = a if ti = A and & — |te]if ti 7/ A. Put w = [1&. "Then 7: [B]
> and u does not contain A. Denote gy — [ B, «]. We shall prove that g, «
e g Let [o, 1] and [as. 12] be two different structures in 8,¢. Fixed an 1.
If a 7/ [B], then [o;, 7, <0 &€ S,q0 and if o; = [B], then [, & e N,q).
From Lemma 4.11, [4] we conclude [oq, 71 0 &] 7 |oe, T2 0 &) if oy = [ B]

S, If oy = [B] / az, we have [t, &] / [x2, 72 & &] because the equality
implies &1 t = oy = ¢ which contradicts the non-cyclicity of . Similarly can
be proved gy € g, if &y -+ [B] = a2. This completes the prove of (3).

(4) Tf g = [B, t] € g¥ and t does not contain A. then either ¥”: [B] == [1]
= o 7t Lo tHand Lo a—>tif La>t)orgeg.
Proof. Denote M the set of all g € g% such that (4) holds. 1f ¥: [B] = t.
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then, according to the definition of ¥, |B. t] € M. Now suppose that [B, t]
has a M-regular structure [, 7] (see Def. 6.6, [4]) in ¥. In order to prove (4),
it suffices, by Theorem 6.7, [4], to show [, t] € M. By the preceding it suffices
to investigate the case £ ¢ B and hence, |p, 1] € S,g. 1If B = A and « = 4,
then i -~ A and because either e — i or [fi, ©i) € M, we get Ly [pi] - -7l
Thus 7%y x = -t (and Lo: a1t it ¥ a->t), (1) holds and g € M. If it is
not the case B - o and « == g, then we get [B. t] € M as follows: detine &
on dp by putting 50 == [pi] it Zy: [pi] - vi and & - x otherwise. According
to J-regulavity of [, 7], we obtain in this second case %y: a - 7i and hence
Yo ME -1 Recalling the definition of & we have 71& € wf and hence /& e
ol (I A - Bothen ¢ does not contain A, wp = {f} and = - g - [lfe
o o). Theretore. Py [B] = 11E -t [B. t] € M and the proot of (4) is
finished.
Now we introduce the following notation: If [ B, ] € g, t does not contain
A and [prf e N, B t], then by g and 7 we shall denote the text /78 and the
decomposition /17 respectively, where £ and Z) are transformations defined
on dpf as tollows: IF 97 [pi] == [A] = x ~ 7 then & == o and Jji is an a-de-
composition of 77 in ¥y otherwise &0 [piland Jfi = 7i. From this definition
and from (4) we conclude:
(5) It [B. t] ¢ g&. 1 does not contain A and [ 7] e S, [B. 1], then g e yp,
Yyp - tand Tis a p-decomposition of 1in .
Now we ean start the own proof of Theovem. First we prove that g, ¢ / A1
implies g ¥y - .1, Let go ¢ 7 .1
3v (3) there is a g == [B. t] € g. ¥ such that { does not contain A. Let
and [z, 2] be two different structures in S, [B. t]. Let us distinguish

[11 T
WO cases.

I - B Itte B and [p. T] €S, [B. t]. then, by non-cyclicity of ¢
and by (1. g+t - . From this and trom (5) we conclude g,.%y /A if
Sar. T (2. w2l €S, (Bt Now let [x, 1] [as. 2] €N, [ B, t]. Straight-
forward from (5) we have g %% # .1if 2~ &. At last we have to investigate
the case 2. By (1) a1 = x5 and hence 11 4 12, Next we prove 71 7 12
and the inequality g ¢’y 4 .1 will be proved for the case 4« B.

Denote (i ¢ = 7 for © = 1. 2. Since 11 # 72 there is the smallest

jo - 1

0
Jusuch that wgje < wsjo. Obviously jo - L Put w == > A(E j) +- 1. Because
i
b7 7 we have rp == o and it is the case 7y v = @1jy o+ X2 jo 2ave. Thus,
T 7 Te.
204 = B We first set down some additional notation. By the assumptions

of Theovem there are (" e d¥ and y € £C such that y contains 4. Define the
decomposition £ on dy as follows: & -t if pi = 4 and & = [yi] otherwise.
Put «w 115, As a consequence of the definition of & we have that ¥y: [4] > ¢
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implies [0 u] € @.?% and [y, £] e N, [C, u]. The case Lot ix, for in
stance, if ¥ {A] = ay > tand 2y - o Forcach o, 7] € N, [A.t] we define «
and 7" as follows: o = [1&, 7" = 17 where & and " ave defined on dv in the

’

following manner: it 572 == 4 then &7 = a, 2t = 17; otherwise &= [+7].

o= [[yd]). Put w == 11112, As « does not contain A we have, by the previous
definition and by (1) “4: ('] ~ o ~u, |, 7' e N, [CLu]. Moreover, 1, 1.
lf T S To.

Now we can begin the investigation of the case 4 = B First suppose [x(. 7],

[oz, 2] € N, [4. t]. Then o does not contain A and theretore, by (4), [%, =] ~
ES‘,/,“ (4. ] if oz # o That is g% « A it ~a . o =a. o,
then [y, &) and [of, 7;] are two different structurves in &, [(/ «] and again
g. ¥ - A. Similarly for the case a2y ~ a = . I o2 = 2 2. then 7y T
and [, 7;]. [2/, 1.] arc again two different structures in S, €0 w]. Thus,
9.y ¢ /. Finally suppose o = [A] # . As 7 is not cvelic, then either
a S aora bt It S« a then obviousiy [[A] [H] e S, [« and simi-
lacly as above we can prove |ag, 2] €8, [A. t]: that is gy - 1. Lf ¢
= o/ ag,then [[C], |u]] and [y, &] are two different structaves in S, [ ).
If t - o = ap, then two different structures from S, [, u} are [«, 7.] and
[y, &]. Similarly for the case o1 - [A] = a2. This completes the proot” that
g;l«yj() S Adf gai/) E A.

In the following part of this proof the converse implication, i. . g, ¥ - A
if g, # A, will be proved. Let g, % - A.

It Bed%. [ eZ0 B then by p we shall denote an element in ¢'f3 such that
B €yp; by & an p-decomposition of  in ¢ such that for cach ¢ e dp either
[pe] == &t or Bi -~ A Epi = a. Since A ¢ symb {1} and (1) holds. g and §;
are determined uniquely and .¢”: g -~ p. From this and from (2) we conclude
(6) [8. £ @ 7] € S,qif [B, 7l € N9

Now let g == [B, t] € g.%0 and let [o, 71]. [22. 72| be two different structures
in 8,9

First investigate the case oq == [B] ~ oo If t =1 then [[B]. [t]] =N,¢9
and, choosing suitable 72, also [%, 2] € 8,9 and hence g, ¥ - .1. Next we
shall investigate the case ¢ # 1. Then (I, &] and [#2, &, < 73] are, by (2),
from S,g. They are different, and hence g, + A if either I - %5 or &
- £, & 12. Now consider the case [ = % and & = & . 72, Since x
(by non-cyclicity of %), & 7 &, and therefore theve is the smallest integer
isuch that &i -+ &, 7. This means that either &7 = [A]and &, i = aor &, = [d]
&1 = |a). Since & == & (0 12, we have %y a—>[A]) in the former case and
Lo: [A] - « in the latter one. The relation o «— [d] implies. by (2). ¥~
[4] = o -~ [A] which contradicts the non-cyclicity of ¢ Since «a¢ ¥nd,
there is. in the case ¥: [A] = «. an o) € ¥y A such that ¥n: «y >« Thus Y%
[A] = o1 > a and [A4, ] € g. 7.
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Similarly we can prove that g.¢ - A it oy © [B] = a». Finally consider
the case an / [B] # ap. If either & » o or &ay X711 - £, 0 7T then it is
casy to see that [B, 1€ g.¥. Now let & = 7% and &, » 71== & () 72
Denote &= &, 00 71 == &, 0 72. We shall distinguish two cases:

l[.og - 2. Then & 7 &, . Hence. there is an @ such that & - &1 Now
there are two possibilities: either &4 = [4] and &4 = o or &1 = « and
&, 7 = |A]. Consider the first possibility. Then

() Lo a =St and Fy: [A] 7 2.

11 [A] = &, then (7) implies #y: o " [4] and hence ¥: [A] = o - [4],
which contradicts the non-cyclicity of ¥”. Hence ¥: [4] - Zi. But it means
that there is an «; € 94 such that ¥4: [A] = oy ~~ Ci. Obviously o1+ «
and, moreover, ¥: [A] = oq 7> Ji. By (7) we also have ¥: « - 7 and hence
[, Zi] € g. <. Similarly we can prove that g.¢" + A if & 7= o, & 1= [4].

2. oy = ag. Then 71 # 2. Denote o = &, =&, , v1 = (11 02 = 172, Since
£, r=§& 12 we have xjxi = asxt for each 7 e dx. Because of 77 7 1
it is also ;1 - xs. Hence, there is an 7 € dr such that xyxi = xowi, xyu(r -

i 1) == xox( -1~ 1) and a j such that as <) <x(? + 1), 1) » 22j. But it me-
ans that 7{70@ D= gnd 7{tr@ D=1 are two different a-decomposition of i
in ¥ and hence in ¢, too. Thus [4.2¢] € g..’. This completes the proot
of Theorem.

A a consequence of the preceding Theorem we have:

2.4. Theorem. Let ¥ € 6y and A be a reductible metasymbol of & A ¢ A,
Denote for every Bed ¥.pe ¥ By B3 = {11E: & s a decomposition defined on
dp such that for each i e dp either & = |pi] = |A} or & € LA and h A.
Denote LA the language defined as follows:

dt d¥ — (AN LB = {yp fo L B

/f
(VY there are B¢ d and py, po € LB such that B1+ B and ppynvppat A
then L is s a. If (1) does not hold then & is s. w . if and only if so is FA.

2.5. Remark. According to previous theorem in studying of the structural
unambiguity of languages from %, it suffices to consider only languages ¥
such that

(1) for cach A ed? either ¥4 = {1} or A esymb ¥4 or A¢symb U
U 1B Bed?}.

Indeed, if ¥y € 44, then we can construct a finite sequence ¥y, %, ..., 7,
of languages such that the language ¢; is an (4;, o;)-reduction of ¥;,
where 4, is a reductible metasymbol of i1, A =4 o € #1204, (1 = 1,2, ..., n).
and for the language .#, the condition (1) is already satisfied. If at least for
one of the languages ¥, i = 0, 1, ..., n — 1, condition (2.3.1) is not satisfied,
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then, by Theorem 2.3, Zis not s. u. If for all languages ¥%,¢ = 0.1, ...n — 1.
the condition (2.3.1) holds, thvn, again by Theorem 2.3, %, ixs. u.ifand only
if 50 is ¥.

This results with results of paper {5] show that in studying the weak strue-
tural unambiguity of regular languages from %. (i. e. languages sach that

(7, d) - o for o ed?), it suffices to consider only languages #’such
that
(2) A esymb ¥4 for every .l e d? such that A ¢ symb U | ZB: bed ¥},
Indeed, suppose that we want to investigate the weak structural unambiguity
ofa =%, If ¥ is not .1-s. w. (sce Def. 5.5, [5]), then by Lemma 5,60 [5] is
not weakly structurally unambiguous. too. lf Y is soul then. by Theorem
512, 5], ¥ is weakly s.u. if and only if the language ¥ . defined as in Det’
5.8, [6], is s w. But for ¥ it already holds .1 ¢ U (&% A0 4 e dZy) As it
was shown in the first part of this remark, the investigation of the structural
unambiguity of the language ¥ can be transferred. with suitable reductions,
upon the investigation of the structuml unambiguity ot a language ¥, which
satisfies condition (1) and. since 1 ¢ (J (% o0 =d &) condition (2), too.

3. KNTENSION OF LANGUAGES

3.1. Theoremy.  Let ¥ be a lunguage from €y let A =dY'. 2o Y401

i sxs Xo@a¥ Define the transformation & as follows: d77

d U XN B - B B¢ X (7740 - ) U ot b

[N oz bavl X st Then Yy =By (e shadl sy abondt
a simple extension of ¥ or aboul (A x 0y, oo X)-extension of ) and s
sou f and only if so s ¥

Proof. Obviously ¢y is a lancuage and ¢ isa (N 2") - reduction of 7.
If ¥y would be evelie. there would be a ('« d¥’) such that ¥ -~ [,
By (2.3.4). we have (note that in proving (2.3.4) we have not used the assump-
tion that the language ¥ considered in Theorem 2.3 is not evelie), that either
YO - Cyors it 10 XL glind ey which contradicts the non-
evelicity of 0 Thus, ¥ € €. 1t is casy to see. from the definition ot ¥y,

that for ¥;. for X and for 2@ condition (2.3.1) holds. and therefore, by

Theorem 2.3 ¢ is s, u. iffand only if'so is .

3.2. Corollavy.  Let ¥ Gy andlet Ly Sy, ... L be a sequence of transfor-
mations such that #y-= ¢ and, for v - 0, 1. ...« I, Ly s a simple exten-
ston of Lo Then e Go (Fpts colled extension of &) and &y is 5. u. if
and only if so (s .

3.3, Remark. In studying the structural unambiguity of lancuages from ¢,
it suffices to investigate the languages such that
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(1) Ax =< 2 for each metatext .

Indeed, let % be a language from %,. By suitable extension of % we can
obtain a language ¥y which satisfies condition (1) and, by Corollary 3.2, which
is 5. u. if and only if s0 is &,

Moreover, by suitable extension of a language £ € %2, we can obtain the

language ¢ satisfying not only condition (1) but also the following two con-
ditions:

(2) If Bed¥?,, «1, ane L1B, o # oz, Aoy + Aoz > 2, then symb {0(1} N
N symb {as} = A.

(3) It By, Boed¥%, oy € #1B1, o ¥ 1Bs, By # Ba, Aoq 4- das >> 2, then
symb {0} N symb {oo} = A.

Iixample. Let the language ¥ be defined as follows: d.% = {4, B, K},
¥4 = {B,C,D||E, A}, ¥B = {[C, K|}, LE = {[A]}. Let

¥y be an (4, |B, €, D), 2,3, F)-—extension of &,

Yrbean (4. K, A], 1, 1, G) -extension of %y,
#3bean (A, [(, 4], 2,2, H)  —extension of ¥,
Y1 bea (B,C,E].1,1,J) —-extension of #s,
Y5 bea (B,]J,E] 2,2, K) —extension of £y,
Ysbea (F.|C, D], L, 1, L) —extension of Zs,

then % is the extension of ¥ and % satisfies condition (1) to (3).
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