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Matematický časopis 17 (1967), No. 2 

ON THE GEOMETRY OF SUBMANIFOLDS 
IN HOMOGENEOUS SPACES 

ALOIS SVEC, Praha 

For a submanifold of a homogeneous space GjH we show how to calculate-
the groups of left movements of the space GjH preserving the element of the 
first and second order of the given manifold. Thus the differential geometry 
of the second order of any submanifold is known. For the sake of simplicity 
I suppose that G is a subgroup of a full linear group, this being always the-
case in classical differential geometry. 

1. AUXILIARY RESULTS 

Let G be a Lie group and g its Lie algebra. If g e G and A, B e Q, we have 

(1) [A,B] = AB-BA, &d(g)A = gAg-K 

The following is known (or it is easy to verify): Let g e G and A, Beg. Then. 

(2) adfer--) [A, nd(g)B] = [&d(g-i)A, B], 

(3) ad(<7-i) [A, [A, &d(g)B]] = [&d(g-i)A, [ a d ( < r V , B]]. ' 

Recall the fundamental existence theorem; for the proof see [1]. 

Theorem 1. Let G be a Lie group, g its Lie algebra, (a, b) an interval of real 
numbers, c e (a, b). Let there be given a mapping A : (a, b) -> g. Then there: 
is exactly one mapping g : (a, b) -> G such that 

dg(s) 
(4) g(s)-1 — -4(s) for each se(a,b) 

ds 
and 

(5) 9(c) = e: 

e being the identity of 0. 
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Applying Theorem 1 to the case (a, b) = (— oo, oo) and A constant, we get 
t h e existence of a uniquely determined mapping 

(6) 

such that 

(7) 

exp A : (—-oo, oo) -> G 

d(exp As) 

ds 
= exp As . A, exp 0 = e. 

I t is easy to prove tha t 

(8) exp A(si + S2) = exp Asi . exp As% 

and 

d(exp (—As)) 
(9) 

ds 
—^lexp (—As). 

In what follows, let G be a Lie group and FT its fixed Lie subgroup; let 
f) C g be the Lie algebras of these groups. Suppose that [v, rj] C f) implies ve f ) . 

Theorem 2. Let A e Q,B e\). Then the following two conditions are equivalent: 1. 

(10) [A,B]ef); 

2. we have 

(11) ad (exp (—Bt))A — A e f) for each t e (— 00, 00). 

Proof . Let us write 

(12) v(t) = ad (exp (-Bt))A — A. 

LTsing (7) and (9), we get 

dv(t) 
(13) 

íind 

(14) 

dí 
= [v(t) + A,B] 

dг>(0) 
t>(0) = 0, ——=[A,B]. 

át 

I f v(t) G t) for each t, we have dv(0)jdt e t), and (10) is valid. Let us now suppose 
{10). I t is easy to see that 

(15) 
d^(0) 

dtn 

dя-^O) 

d^- 1 
B ; n = 2, 3, 

Our condition yields dr(0)/d£ef), and — according to (15) 
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dwf(0) 
(16) e l j ; » = 0 , 1 , 2 , . . . 

dtn 

The curve v(t) being analytic, we get v(t) ej) from (16). Q.E.D. 

Theorem 3. Let us write 

(17) K(A) = {heH\ (18)} 

where A e g <md 

(18) [-4 — ad^" 1 ) J., v] e ty for each v e \). 

Then K(A) is a Lie group. 

Proof . I t is obviously sufficient to show tha t K(A) is a group. Let h\,h2e* 
eK(A), i.e., 

[A — ad(A1
1)^l, v{] e f) for each v\ e \), 

[A — ad(^21)-4, V2] G t) for each v2 e \). 

Let v el) be an arbitrary element. Recall that &d(h)w e f) for each he H, 
w e\). Now let us choose v\ = a.d(h'[1h2)v e\)\ we have 

[A - ad(^"1)^, ad(.VA2)v] e I) 
and — see (2) — 

w\ = ad(A2%) [-4 — ad(A1
1)^4, ad^J 1 ^)^ ] = 

= [dA{K£hi)A — ad(^21)^J *>] e l ) . 

Further, choosing #2 = v, we get 

W2 = [A — a d ^ 1 ) ^ ! , v] G I) 

and W2 — w\ e I), i.e., 

[A — a d ^ A i M , w]e^ 

8indh^h2eK(A). Q.E.D. 

Theorem 4. Ze£ us write 

(19) I(.4) = {t;e .§|(20)} 

wAere A e Q and 

(20) [A,v]e1). 

Then 1(A) is a Lie algebra. 

Proof . Let vi,V2el(A). We have [A, Vi]efy, [A,v2]e\) and the Jacobi 
identity yields 
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[A, DM, V2]] = —[vi, [v2, A]] — [v2, [A, v}]]e\), 

the right hand members being in t). Q.E.D. 

Theorem 5. 1(̂ 4) is the Lie algebra of the Lie group K(A). 
Proof . Let us restrict ourselves to a neighbourhood of the identity in the 

group H such that each element y e H may be written as 

(21) y = expB, Be)). 

Let us consider, for a given element (21), the one-parametric subgroup 

(22) y(t) = ex$Bt, te(— oo, oo). 

K(A) being a subgroup of H, we have y e K(A) if and only if y(t) e K(A) for 
each t e (-co, oo). Further, it is obvious that the condition (18) is, according 
to the assumption [v, f)] C f) => v e Ij, equivalent to the condition 

(23) A - ad(h-i)Ae\>. 

In our case, this condition is 

(24) A - a d ^ ) " 1 ) ^ = A — 8bd(exp(—Bt))A e\), 

and we get from Theorem 3 that (24) is equivalent to (10). Q.E.D. 

Theorem 6. Let us write 

{25) K(A, B) = {he K(A) | (26)} 

where A, B e Q and 

(26) [B - ad(A"!)5, v] + [A - a,d(h-i)A, [A, v]] -

— [sidfi-^A, [A — ad(^-1)^l, v]] Gf) for each vefy. 

Then K(A, B) is a Lie group. 

Proof . Let hi,h2e K(A, B), i.e., 

<27) [B - 8id(hli)B, Vl] + [A- ad(h~^)A, [A, v{]] -

— [adfil^A, [A — a d ^ 1 ) ^ , v±]] e f) for each vi e I), 

A - a d ( . V ) ; l e f ) ; 

(28) [B - sid(h^)B, v2] + A - ad(h'^)A, [A, v2]] -

— [ a d ^ 1 ) - ^ , [A — a d ^ 1 ) - ^ , #2]] e f) for each v2e\), 

A -ad(V)-4eI). 

Let us choose an arbitrary vector v e t ) . Putting v\ = &d(h\1h2)v e I), we get 
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Wl = [B - SidQi-^B, ad(A1
1A2)t;] + [A - ad(fcj V > [A9 ad^ i 1 ^ )^ ] ] -

- [ a d ^ i 1 ) ^ , [A - a d ^ i 1 ) ^ , a d ^ J w ] ] e ^ , 

and we get tv2 = a d ^ ^ i j w i e I) where 

w2 = [ad(^1Ai)5 - a d ^ J - B , v] + 

+ [ a d ^ 1 ^ - a d ( ^ 1 ) ^ , [ a d ( ^ % ) ^ , v] -

- [ad(7*--)^, [ a d ( ^ % M - a d ^ M , v]]ej). 

Further, write V2 = v; from (28), we get 

ws = [B - a d ^ 1 ) ^ , v] + [A- a d ^ 1 ) ^ , [-4, v]] -

- [ a d ^ 1 ) ^ , [ 4 - a d ^ 1 ) ^ , v]]el). 

(272) yields 

adfVAi) (.4 - a d ^ i 1 ) ^ ) G I); 

K(^4) being a group we have h'^hi e K(A) and 

a d ^ A i ) ^ — A e l ) . 

Thus we get 

iv4 = [ad(A2X)-4 — ad(^2%)-4, [ad(^2%)^4 — A9 v]] e I). 

We have w$ = wz — W2 —- 2iv4 e f); a simple calculation yields 

u>5 = [-B — ad^AiJ-B, v] + [-4 - ad(A2%)-4, [.4, v}] — 

- [ad(A2%)-4, [-4 - ad^-Ti i )^ , v]], 

i.e., h^faeK^.B). Q.E.D. 

Theorem 7. Ze£ ws write 

(29) f ( ^ , 5 ) = {»ef (A ) | (30)} 

tvAere i , B G g and 

(30) [ B , t ; ] - [ ^ , [ ^ , t ; ] l e ^ . 

TAew 1(^4, B) is a Lie algebra. 
Proof . Let vl9 v2 e t(A9 B). Evidently, it is sufficient to show that [vl9 v2] e 

G i(A9 B). Applying the Jacobi identity, we get 

[A9 [A9 [vl9 v2]]] = - [A9 [vl9 [v2,A]]] - [A9 [v2, [A, vi]]] = 

= [tM, [[v*,A]9 A]] + [[V29 A], [A9 vi]] + [v2, [A9 vi]9 A] + [[A, vi]9 [A, v2]] = 

= [vl9 [-4, [A, v2]]] - [v2, [A, [A, «!]]] + 2 [^, t*], [A9 v2]]. 
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Further 

and 

[B,[Vi>V2] v i , [«й,B]] .- [%,[B, tм]] 

w = [B, [Vl, v2] - [A, [A, [vl9 V2]]] = [vu [B, v2] - [A, [A, [A, v2]]] -

- [v2, [B, Vl] - [A, [A, Vl]]] - 2 [A, v{], [A, v2]]. 

Now it is easy to see that w e rj and [vl9 v2] G t(A, B). Q.E.D. 

Theorem 8. l(A, B) is the Lie algebra of the Lie group K(A, B). 

Proof . Let us restrict ourselves to a neighbourhood of the identity in t h e 

group K(A) such that each element of this neighbourhood may be written 

as y = expo; with x e 1(A). Let y G K(A). K(A) being a group, we have 

(31) y(t) = expatf G K(A) for each t e (— oo, oo) 

and 

(32) [x,A]e\>. 

Let v G rj be an arbitrary vector. Define 

(33) w(t) = [B — ad(ex^(-xt))B, v] + [A — ad(exp(—xt))A, [A, v]] -

— [ad(exp(—xt))A, [A — ad(exp(—-xt))A, v]]. 

From Theorem 2 and (32), we get the existence of vectors 

(34) A — ad(exp(—xt))A = v(t) e \), 

and we may write 

(35) w(t) = [B- a d ( e x p ( - ^ ) ) B, v] +[v(t), [A, v]] - [ A - v(t), [v(t), v]]. 

By a direct calculation, we get 

(36) 
dw(t) 

dí 

+ 

[x, ad(exp(—xt))B] — 

dv(t) 

A, 
dv(t) 

dt + 

dř, 
[v(t), v] + vЏ), 

dvЏ) 

dí 

From (14), dv(0)/dt = [x, A] and 

dw(0) 
(37) 

dř 
= [ - [B,x] + [A,[A,x]],v]. 
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"If y — expo; e K(A, B), we have dw(0)/d£ e \) for each vector v, i.e., x e \(A, B). 
A very complicated calculation leads to a quite clear result according to which 
the Lie algebra of the group K(A, B) is not less than i(A, B). Let us describe 
the first step of this. Our aim is to show that 

(38) 

implies 

(39) 

[A,x]eì),[B,x]-[A,[A,x]]eì) 

dnw(0) 

dř" 
є h for n = 0, 1,2, ... 

Since v(t) e I), dv(t)ldt e i), we are not interested in the terms 

dv(t) 

dí 
, [»(*), v] є h , x(t), 

dv(t) 

dt 
, v є ћ . 

According to (15), we have 

d2*(0) _ 

dt2 " 

Derivating (36), we get mod \) 

d2w(t) 

dҶO) 

dí 
= [[x,A],x]. 

(40) 
d<2 

[x, [ad(exp(—xt))B, x]] — 
d-v(t) 

dí2 

d2w(0) 

dt 
^[[x,[B,x]]-[A,[[x,A],x]],v]. 

On the other hand, we have 

- [A, [[x, A], x]] - [[x, A], [x, A]] + [x, [A, [x, A]]], 

hence 

d2rø(0) 

d«2 
[x,[B,x]-[A,[A,x]]],v] 

and d2w(0)dt2 e I) according to (382). Derivating successively (40) and applying 
the just described procedure we would get (39). Q.E.D. 

2. CURVES IN HOMOGENEOUS SPACES 

Let there be given a Lie group G and its closed subgroup H subject to the 
.above conditions. The set of the left classes gH may be endowed by a structure 
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of a differentiable manifold, this manifold being the homogeneous space GjH. 
Denote by n:G-> GjH the natural correspondence. The group G operates 
on GjH to the left: (y, gH) e (G,G/H) -> (yg)H e G/H. Lx 

Let there be given a curve in our homogeneous space, i.e., a mapping 

(41) q>:(-l,l)->GIH. 

This mapping may be determined by its lift, i.e. a mapping 

(42) f:(-hl)->G 

such that the diagram 

(43) ( - 1 , 1) л 

fЧG/H 

is commutative. / being a lift of cp, we get each other lift/* as follows: choose 

a mapping h : ( — 1 , 1) - > H and set 

(44) f*(t)=fW(t) for * 6 ( - l , l ) . 

To each lift/, let us associate the mapping A : (—1, 1) -*• Q defined by 

d/(0 

(45) A(t)=f(t)~i+^- for te ( - 1 , 1 ) . 

d£ 

Let A* be associated to the l i f t /* (44). Then 

d/*(j) 

and —- according to (44) — 

dh(t) 
f(t)h(t)A*(t) =f(t)A(t)h(t) +f(t)——; 

dt 

i.e., 

dh(t) 
(46) A*{t) = эAЏЏУ^AЏ) + A(ř)-1 

d* 

Thus we get 

Theorem 9. If the lifts f, f* are related by (44), we have (46) for the associated' 
mappings A, A*. 
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. Let us choose a fixed lift / to the given curve q>, and let us consider the point 
<p(0) of cp. First of all, let us construct the mapping g : (—1, 1) -> G defined 
by the relation 

(47) 9(t)=f(0)-V(t), 

further, consider the one-parametric system of subalgebras 

(48) D(<) = ad(gr(0)I). 

Let y e G be an arbitrary element. Consider the one-parametric system 
of subalgebras 

(49) \)v(t) = *d(yg(t))\). 

Our task is to find all elements y such that the systems \)(t), fyv(t) have, for 
t = 0, the contact of order 0, 1 or 2, resp. Recall the definition of the contact: 
Let W be a vector space, and U(t), V(t) two one-parametric systems of sub-
spaces; dim U(t) = dim V(t) = const. The systems U(t), V(t) have, for t = to, 
the contact of order (at least) k if there are bases ua(t), Va(t) of the spaces 
U(t), V(t) resp. such that 

dlua(to) dlV(x(to) 
<50) — = — 

dt* dt1 

for I = 0, 1, . . . , k and for all a's. 

The contact of order 0 of the systems \)(t) and \)y(t) for t = 0 means I)(0) = 
= I)y(O), i.e., f) = ad(y)t), and it is equivalent to y e H. Therefore, let us con­
sider the contact of order 1 and 2. In I), let us choose a fixed basis 

(51) 3& = {u\, ...,uny, ^ = diml) 

In what follows, use the obvious notation 

ad(gr)^ = {ad(g)^i, . . .}, [v, SS\ = {[v, ui], ...}, 

etc. In \)(t), 

<52) &{t) = &d(g(t))@ 

is a basis, 

<53) SSy(t) = a,d(yg(t))& 

Tbeing a basis of t)y(0- "the most general bases in the spaces \)(t) are given by the 
relations 

(54) &*{t) = @(t)S(t) where S : ( - 1 , 1) -> GL(n). 
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The condition of the contact of order 1 or 2 at t = 0 is equivalent to the 
existence of a mapping S such that 

(55) Я*(0) = Яү(0), 
d J 1 * ^ ) dЄSv(0) 

dť dť 

or (55) and 

(56) 
d2^*(0) 

dť2 

d-.Җ,(0) 

dť2 ' 

resp. From (45) and (47), we get 

d/(0) 

dť 
= /(0M(0) 

and 

(57) g(0) = e, 
díľ(O) 

e being the identity of G. Further, 

d2/(ť) d/(ť) 

dť2 dť 

dA(t) 
җt)+f(t) y 

dť 

and 

(58) 
d̂ fiг̂ O) dA(0) 
- ^ = A(0)A(0) + — — . 

dť2 dť 

From (52), we get 

Җt)g(t) i = g(t)@, 

(59) 
^ t ) ,л , л m Mt) dg(t) 

g(t) + Җt) 3 = л @ 
dť dť dť 

and 

(60) 
àăHţS) 

= \A(0),âf\. 
dt 

A further derivation of (59) yields 

*ад «w*m+ iw.dw 
dť2 * w dť dť dť2 dť2 
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d^ҖO) dA(0) 
, „r,,^ ҷ,,^ , ^,,^,,^ . ^ A(0)A(0)@ + 

dt* 
-S|/jЦt , ZØ]J± ̂ u; f aøл.\v )Л.yV) f eм 

dt 

dA(0) 

+ —---#, 
dt 

ímd, fìnally, 

<вi) 
d-ҖO) 

dí2 

' dA(0) —— ,я 
dt 

+ [A(0),[A(0),Щ]. 

Now, it is easy to see that 

(62) @*(0) = &S(0) 

d#*(0) d8f(0) 
<63) 

<64) 

dí 

d 2 ^*(0) _ 

dí 2 

d^(0) 

dř 
+ [A(0),ЩS(0), 

+ dř 

d2s(0) <Ш0) 

S{0) + lA(0),[Л[0),ѓl]Щ0). 

Prom (53), we get 

<65) 

(66) 

<67) 

ggy(0) = a,d(y)ŠB, 

d&v{0) 

dt 

đ Җ ( 0 ) 

df2 

From (55i), we get 

<68) 

The relation (552) yields 

dS(0) 
38—— 

dt 

ad(y) 
dA(0) 

dí 

àd(y)[.4(0),£ř]. 

+ ad(y)[A(0),[A(0),ář]]. 

aS(0) = ad(y)ář. 

+ [A(0), &]S(0) = ad(y)L4(0), Sf\ 

and 

<69) 
dř 

= &d(y)[A(0),Щ - [A(0), ad(y)Җ]. 
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The systems J)(t) and \)y(t) have the contact of order 1 a t t = 0 if and only 
lfyeH and there is a matrix dS(0)\dt such that (69) is valid. But this condition 
is equivalent to 

•<70) *d(y)[A(0), v] - [A(0), nd(y)v] e f> 

for each v e\). The final result is given by 

Theorem 10. The systems \)(t) and \)y(t) have the contact of order 1 at t = 0 
-if and only if y e K(A(0)). 

Let us now study the contact of order 2. Using (56), (68) and (69), we get 

d2S(0) 

d«2 
f 2[A(0), ad( ľ ) [A(0),Щ - 2[A(0), [A(0), аd(yЏ]] + 

+ 
dA(0) 

dt 

= ad( ľ ) 

, аd(y)Щ + [A(0), [A(0), &d(y)Щ] = 

+ ad( ľ )L4(0),L4(0),^]] 
[dA(0) 

dí 
a n d 

<71) ad^^- J 1 
d2£(0) 

d<2 

d^(0) dA(0) 
— — - a d ( ľ - i ) — ^ , a + 

dt dt 

+ [A(0), [A(0), <%]] - [ad(y-i)4(0), [ad(y-i)4(0), O]] -

- 2 [ a d ( r - V ( 0 ) , [A(0),O]]. 

I t is now easy to prove 

Theorem 11. The systems \)(t) and l)v(t) have the contact of order 2 at t == 0 
if and only if y e K(A(0), dA(0)/dt). 

Let us summarize: We have a curve cp : ( — 1, 1) -> G\H, and we have chosen 
its lift / : (—1, l)->Cr. We construct the mapping A : (—1, 1) -> g. To the 
point 0 G (—1, 1), we associate the Lie subalgebras 

l(A(0)), t\A(0), 
dA(0) 

dř , 

of f); we have described above their geometrical signification. Now, we are inte­
rested in the manner On which they depend on the lift /. First of all, let us 
prove that they are independent on the parametrization of (p. 

Theorem 12. Let there be given the curves cp : (—-1, 1) -> G\H and q>i : (— 1, 1) -> 
-> G/H such that there is a mapping T : ( — 1, l ) - > ( — 1 , 1) such that 
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(72) T(0) = 0,n(T(t)) = <p(t) forte (-1,1); - ^ i ° l ^ 0 . 
d£ 

Ze£ tfAere 6e chosen a lift / i : (—1, 1) -> 0 of <pi, and let us determine the liftf 
of cp by 

(73) f(t)=fi(T(t)). 

Then 

( dA(0)\ t d^j(0)\ 
(74) t(^(0)) = l(^i(0)), I \A(0), — - M = I U ( 0 ) , — j p I . 

Proof . From (73) and (72i), we get 

(75) / ( 0 ) = / i ( 0 ) . 

Further, 

(76) __ = dfl{T{t)) dT{t) d/(°) _ d ^ l dT{0) 

dt dT dt ' dt dT dt 
From 

d/(0) d/i(0) 
(77) .4(0) = /(0)-i - ^ , Ai(0) = /i(0)-i ^ r -

dt dt 

and (762), (75), we get 

dT(O) 
(78) .4(0) = . 4 i ( 0 ) — — , 

at 
this proving (74i). Further, 

( 7 9 ) d2/(0) = d2/i(o) / ( d y ( o ) \ 2
1 d/i(Q) d2r(0) 

d<2 dT2 \ dt ) dT dfi 

dA(0) d2/(0) 
(80) _ ^ L = / ( 0 ) - i _ Z L j _ ^ ( 0 M ( 0 ) > 

dt d<2 

d^x(0) d2/i(0) 
~ ~ - - = / i ( 0 ) - i - - ^ - l - - ^ i ( 0 ) . 4 1 ( 0 ) . 

dt dt2 

From (79), we have 

<L4(0) p d2/i(0) (dT{0)\* d/i(0) d2^(0) (dT(0)\2 

—— =Moyi-J^~L\——I + / i ( 0 ) - - - ^ ^ — — — 4i(0Mi(0) ——\> dt dT2 \ at ] J K } dT d^ u } 1V '[ dt I 

i.e., 
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(81) 

Now, 

(82) 

dA(0) dAi(0) dT(0)Y d2T(0) 
— — = — — — + Ai(0) 

dí dT \ dt dí 2 

<L4(0) 

dí ', v [.4(0), [.4(0),»]] = 

d4i(0) 
—, v 

dT 

\(dT(0)\2 d2T(0) 
[Ai(0), [Ai(0),t>]]JI-^-j + [A1(0),v]—I^-, dí 2 

and we have (742). Q.E.D. 
Let us now study the changes caused by the change of the lift. First of all, 

we have 

Theorem 13. Let there be given a curve cp\ (—1 . 1) -> G/H. Let us choose two 
lifts / , / i : (—-1, 1) -> 0 such that 

(83) / ( 0 ) = / i ( 0 ) , 

and let us construct the associated mappings A, A\ : (—1, 1) -> g- Then 

I cL4(0)\ / <L4i(0)\ 
(84) i(4(0)) = !(-4i(0)), 11.4(0), — ^ = t I Ai(0), - - - - - 1 . 

Proof . According to (44), we have 

(85) • fi(t)=f(t)h(t),h(0) = e; h(t) e H. 

Define the mapping R : (— 1, 1) -> f) by the equation 

dh(t) 
-ß(ť) = цt) - i -

dř 

A(í)-4i(í) = A(t)h(t) + 

(86) 

From (46), we get 

(87) 

and 

(88) - 4 i ( 0 ) = " ^ ( 0 ) + i 2 ( 0 ) . 

Derivating (87), we have 

dh(t) 

dř 

(89) 
<L4i(0) d4(0) diž(0) 

* ' - ^ + _Lj + ^ ( 0 ) ^ ( 0 ) ] . 
d* dt dt 

The equation (84i) is now obvious. Further, 
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(90) 
dAi(O) 

dí ' 
[.4i(0), L4i(0), v]] 

dA(0) 

dř , v [A(0), [A(0), v]] + S 

where 

(91) S = 
diř(O) 

dř -, v [R(0), [R(0), v]] - 2[R(0), [A(0), »]]; 

S el) live l(A(0)), i.e., [A(Q), v] e r). Q.E.D. 

Theorem 14. Let there be given a curve cp : (—1, 1) -> GJH. Let us choose its 
two lifts /, / i : (--1, 1) -> G such that 

(92) Mt)=f(tџ, 
he H being a fixed element. Let A, Ay: (—1, 1) -> g be the associated mappings. 
Then 

( d^i(0)\ / dA(0)\ 
(93) 1(^(0)) = ad(A-i)t(^(0)), I U ( 0 ) , — ^ 1 = ad(A-i)l U ( 0 ) , - ^ - - l . 

P r o o f . According to (46), we have 

(94) A^t) = adih-^Ait) 

.and 
d^i(O) d^(0) 

(95) ^i(O) = ad(A-i)^l(0), = ad(ft-i) — — . 

dt dt 

The Lie algebra l(Ai(0)) consists of all vectors v e\) such that 

(96) [^i(O), v] = [ad(h^)A(0), v] e X). 

The relation (96) is equivalent to 

(97) ad(A)[ad(A-i)^(0), v] = [.4(0), a d ( % ] e l ) . 

Thus the vector v e f) is situated in f(-4i(0)) if and only if the vector ad(A)u 
is situated in l(A(0)), and (93i) is proved. (932) follows analoguously from 

dAi(0) 

= ad(A-

dř ' 

d^ł(O) 

dí 

- [Ai(0), [Ai(0), v]] = 

, ad(A)г> | - E--(O), [A(0), ad(ВД] 

Q.E.D. 
S u m m a r y . Let us summarize all we know up to this moment. 

160 



Let there be given a homogeneous space G\H and a fixed curve <p : (a, b) -> 
-> G\H. Let 0 C G be the manifold of all points which are above the points of <p i 

(98) 0 = 7r-%(a,6)). 

The space G\H being regarded as the principal fibre bundle G(G\H, H), 0 i s 
the principal fibre bundle constructed from G(G\H, H) by the restriction 
of the base space G\H to <p(a, b). 

To each point q e 0, we associate two subsets nq C mq C I) as follows. 
Let n(q) = p, and let us choose an arbitrary m a p p i n g / : (—1, 1) -> G such t h a t 

(99) f(0) = q,n(f(-l,l))C<p(a,b). 

By means of/, we construct the mapping A : (—1, 1) -> Q defined by 

<-/(«) 

/ cL4(0)\ 

[ .4o,0]el)}, 

for ^ o , - 4 i G g . The sets m g , nq are Lie algebras, and they depend only o n 
q eG (being independent on / ) . Further, we have 

(104) mQh = a d ^ - 1 ^ , nQh = a d ^ - 1 ) ^ for heH.. 

The geometrical signification of mq, Uq has been given above, let us restrict 
ourselves to the following description. Let <p : (a,b) -> G\H be a curve such 
that for a certain c e (a, b) we have <p(c) = e, e being the identity of G. L e t 
y e G be an arbitrary element. Let <pv be the curve in G\H defined by <pv(t) = 
= y<p(t) for t G (a,b), let M (N) be the set of all y's such that the curves <p and <pr 

have the contact of order 1 (2) a t H eGjH. Then M, N are Lie groups with 
the Lie algebras me and rte resp. The signification of the algebras rru, tt* 
for he H is given by (104); if <p(c) ^ e, we replace <p by a left translation 
in G\H into a curve <p\ such that <pi(c) = e. 

3. MANIFOLDS I N HOMOGENEOUS SPACES 

The theory of curves may be easily extended t o arbitrary submanifolds* 
here, we present only some remarks on this subject. 

1 6 1 

(100) A(t) ^ Л * ) - 1 

Then we set 

(101) mq = = Ї(A(0)), n g = 

wher 

(102) ï(-4o) = {^єћl 

(103) í(A0 ,Aг) = {vє Î(A0) \ [Ai 



Let G\H be the given homogeneus space, M a domain of 5R71 (with the coordi­
nates ux,...,un), and let <p:M->G\H be an embedding. Let f:M->G 
be a lift of cp. To / , we construct the g-valued 1-form co on M by 

(105) f(u)~1df(u) = co. 

The mappings Ai: M-> Q; i = 1, ...,n; being defined by 

8f(u) 
(106) - ^ ( t O ^ M - 1 - ^ — , 

ou 
we have 
(107) co = ^ Ai(u)dut. 

The form co satisfies the so-called structure equation. From (106), we get 

3H(u) 3Ai 
- ^ - ^ = f(u)AfAi + f(u) 
dufidu* du< 

and 
8At dAj 

(108) —— — - — = [Ai9 A,]; i,j= 1, . . . , n . 
dw cul 

The structure equation (108) may be written as 

(109) dco = —co A co, 

dco being the exterior differential of co and co A co being obtained as the product 
of matrices where we replace each term co\col

k by co] A co\. 
Let m G M be a fixed point, write p = cp(m) and q = f(m). Further, let 

{0:( — 1, 1) -> ikf be a curve such that D(0) = m; Q be given by the equations 

(110) u* = ^ ( 0 ; i=l,...,n. 

Now, consider the curve cpq : (— 1, 1) ->GjH and its lift /o : ( — 1, 1) -> G. 
To the curve /jo there is associated the mapping A' : (—1, 1) -> g given by 

(111) A9(t) = 2Ai(u(t))-—-. 

i=i d£ 

'Thus we may construct the Lie groups 

/ d^(0)\ 
,(112) Ml = K(Ae(0), N*q = K \A*(0), —^-\ 

:and the corresponding Lie algebras. The Lie algebra of the group MQ
q is the 

set of all vectors v e I) such that 
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<113) 
» duЩ 

2,[At{m), v\——-єђ. 
i-i dř 

Writo MQ = fl Me
q, Q being an arbitrary curve Q : (—-1, 1) -> M with o(0) = m. 

Q 

T h e Lie algebra of Mq is the set of all vectors v e t ) satisfying 

(114) [Ai(m),v]e\)\ i=l,...,n. 

T h e Lie algebra of Ne is the set of all vectors v e f) satisfying (113) and 

<115) 

І, ? = 1 

дAi(m) 

дrì 

dwt(O) dw'(0) 
- L4ť(™)> [-4J(Í»), »]] | — : — + 

dŕ dť 

dЧЩ 
+ > L4,(m), v]— є . 

dß 
í - i 

Now, the following is easy to see: Let there be given a manifold cp : M -> GjH, 
let m e l / b e a fixed point. Let q e G be an arbitrary point with (p(m) = n(q), 
and let i be a tangent of M at m. To q, we may associate the Lie algebras 
ni£, ttttfj tt{, Tt0 (with obvious geometrical significations) defined as follows. 
L e t / : M -> G be an arbitrary lift of 99 such tha t / (m) = g; let w* be local coordi­
nates on M, and t be given by the vector 

(116) T = XІ 
дri 

T o /, we construct the mappings Ai : M -> Q by means of (106). Then 1. mq. 
2. mg, 3. x\q, 4. nq is the Lie algebra of all vectors v e \) such that 1. we have 

,(117) 

2. we have 

<118) 

3. we have (118) and 

J^[Ai(m), v]x*eí), 
i=l 

[Ai(m), v]e\) for i = 1, . . . , n, 

i, j=i 

-4. we have (118) and 

dAi(m) 

дvß 
-, v — [Ai(m), [Aj(m), v]]ì xtø єí) ,vШ 
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(120) 
дAi(m) 

— [Ai(m), [Aj(m), ]] є for г,j = 1, . . . , nr 

du* 

resp. Further, m[h = ad(A-1)m^, etc. 

4. MANIFOLDS IN AFFINE SPACES 

Let An be the ^-dimensional affine space with a fixed basis 

& = {F;f1,...,fn} = {F,f}. 

Each basis E = {2?, e} of ^4n is given by 

(121) {-M ={->,/> (J ° ) ' 

a being an (w X l)-matrix and a G GL(n). All matrices 

- - ( . . ) 

of the just described type form the so-called affine group GA(n); the bases 
of An are thus in a 1 — 1 correspondence with the elements of GA(n). The Lie-
algebra Qd(n) consists of all matrices of the form 

(123) R 
V e) 

where r is an (n X l)-matrix and Q an (n X w)-matrix. Denote by GAo(n)> 

the subgroup of GA(n) consisting of the elements of the form 

(124) 
(o «) ; 

of course, GAo(n) is isomorphic to GL(n), and we have An = GA(n)/GAo(n)^ 
Let there be given a submanifold q? : M -> An. Let us choose its lift A : M ->-

-> GA(n). To A, we associate the Qd(n)-valued 1-form w on M defined by 

(125) dA = Aco. 

(121) may be written as 

(126) {E,e}={F,f}A; 

we have 

&{E,e} = {F,f}&A = {F,f})Ao 
and 

(127) d{E,e} = {E,e}o>. 
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These are just the equations known in the classical differential geometry.. 
Let us write 

-- C«) • 
i.e., 

(129) dE = eco, de = eQ 

and 

(130) &E = f>%*, dei = '2<4ei 
i= l j-1 

where co = (co*), Q = (col). The structure equation (109) is 
(o o\ _ /0 0\ (0 0\ 
\dco dQ) \co Q) A

 \CO Q) ' 

i .e . , 

(131) dco= — Q f\co9 dQ=—Q/\Q. 

Writing (131) component-wise, we get 

n n 

(132) dco* = - 2 co) A co\ dco{ =-~lco[\<o\, 
j=l Jc=l 

these being the well known formulas. 
According to (107), let us write 

m / 0 0 \ 
(133) w = £ .R«(tO<to«, Ra = ( 

a=l VOC QOC/ 

ux,...,um being local coordinates on M. From the structure equations,, 
we get 

dra drp 
m ) ~ ^ ~ - ~ ~ ~ Q«re ~«"«• 

Using the notation 
dra 

(135) *tx/j = — — + e / i r a , 
CUP 

we get 

(136) Sap = Spa-

from (134). The matrices sap are known as well. Indeed, let us write 

(!37) ra = (ri), Qx = (g£.), s^ = (s%). 
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0І _ 2 r^d^«. 
a=l 

T h e n we have 

(138) 

The exterior differentiation and (132) yield 

m m 

(139) 2 (d< + 2 « A d « a = 0; 
a = l ?=1 

using Cartan's lemma, we see the existence of functions s1^ such that 

(140) 
n Qүi n 

àri + Zri<4 = *Іß, i-e. - г + 2 é ^ = 4> 
?=i 8wp ?=i 

this being just the equation (135). 
The matrices r« and sap play the fundamental role in the determination 

of the spaces mq,nq; q= {E, e}. Each vector veQCLo(n) may be written as 

- C Я (141) 

I t is easy to see that 

( I 4 2 » [a-]-(-?;..ta.n) 
dRa 

(143) 
a^ 

-, V -[Ra,[Rß,v]] = 

0 

— F«Saø + QßVГcc — Є a F r ^ , 

0 

ÔQa 

дuP , v — [Qfi>[QP> V]], 

and we get: The Lie algebra mq is the set of all vectors (141) such t h a t 

(144) Vra = 0; a = 1, . . . , m . 

T h e Lie algebra % is the set of all vectors v (141) such that (144) and 

<145) Vsaa = 0; a , / ? = 1, . . . , m . 
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