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Matematicky &asopis 17 (1967), No. 2

ON THE GEOMETRY OF SUBMANIFOLDS
IN HOMOGENEOUS SPACES

- ALOIS SVEC, Praha

For a submanifold of a homogeneous space G/H we show how to calculate
the groups of left movements of the space G/H preserving the element of the:
first and second order of the given manifold. Thus the differential geometry
of the second order of any submanifold is known. For the sake of simplicity
I suppose that @ is a subgroup of a full linear group, this being always the-
case in classical differential geometry.

1. AUXILIARY RESULTS

Let G be a Lie group and g its Lie algebra. If ge @ and 4, B € g, we have

(1) [A,B] = AB — B4, ad(g)4 = gAdg.

The following is known (or it is easy to verify): Let g € ¢ and 4, B € g. Then
(2) ad(g~!) [4, ad(g)B] = [ad(971)4, B],

(3) ad(g7?) [4, [4, ad(9)B]] = [ad(g71)4, [ad(g~)4, B]].

Recall the fundamental existence theorem; for the proof see [1].

Theorem 1. Let G be a Lie group, g its Lie algebra, (a, b) an interval of real
numbers, c € (a,b). Let there be given a mapping A :(a,b)—>g. Then there
is exactly one mapping g : (a, b) - G such that

_odg(s)
(4) g(s)1- A A(s) for each s€ (a,b)
and
(5) glc) =e.

e being the identity of G.
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Applying Theorem 1 to the case (a, b) = (— o0, o) and A constant, we get
the existence of a uniquely determined mapping

(6) exp 4 :(—o0, ) > G
such that

d(exp 4s)
(7) ———————=¢expAs. A, exp0=ece.

ds . s
It is easy to prove that
(8) exp A(s1 + s2) = exp As; . exp Ass
and
d(exp (—4s
9) (_I_)a(__ﬂ = —Aexp (— A4s).
s

In what follows, let G be a Lie group and H its fixed Lie subgroup; let
b C g be the Lie algebras of these groups. Suppose that [v, h] C§ implies v € h.

Theorem 2. Let A € g, B € ). Then the following two conditions are equivalent: 1.

(10) [4, B]eb;
2. we have \
(11) ad (exp (—Bt))A — A€l foreach te(—o0, o).
Proof. Let us write
(12) v(t) = ad (exp (—Bt))4 — A.
Using (7) and (9), we get
(13) O oy + 4, B
ds
and
(14) »(0) = 0, O _ [4, B].
ds

If v(¢) € b for each t, we have dv(0)/d¢ € b, and (10) is valid. Let us now suppose
(10). It is easy to see that

drw(0) [dn—lv(O) B]
= , ;N

15
{15) din dgn-1

Our condition yields dv(0)/dt € h, and — according to (15) —
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dnv(0)
din

(16) -€h; n=0,1,2,...

The curve v(t) being analytic, we get v(t) € from (16). Q.E.D.

Theorem 3. Let us write

(17) K(4) = {he H| (18))
where 4 € g and
(18) [A —ad(h1)4,v]€lh foreach veb.

Then K(A4) is a Lie group.
Proof. It is obviously sufficient to show that K(A4) is a group. Let &y, ke €-
€ K(4), i.e.,
[A — ad(h;1)4,vi]€h for each wv1€),

[A — ad(h;1)A4,v2] €l for each wv2€e].

Let veh be an arbitrary element. Recall that ad(k)wel for each ke H,
w €. Now let us choose v; = ad(hj'he)v € h; we have

[A — ad(h{1)A, ad (ki h2)v] €D
and — see (2) —

wy = ad(h3lh) [A — ad(h;1)4, ad(hilhe)v] =
= [ad(h;lM)A — ad(h31)4, v] €).
Further, choosing v2 = v, we get
we = [4 — ad(h3l)d, v] €D
and we — wy €0, ie.,
[4 — ad(h;lh1)4,v] €D
and hjlhs € K(4). Q.E.D.

Theorem 4. Let us write

(19) f(4) = {rep| (20)}
where A € g and
(20) [4,v]€}.

Then ¥(A) is a Lie algebra.
Proof. Let v, v2€¥(4). We have [4,n]€D, [4,v2] el and the Jacobi
identity yields
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[4, [v1, v2]] = —[v1, [v2, A]] — [v2, [4, m1]] €D,
the right hand members being in §. Q.E.D.

Theorem 5. f(A4) is the Lie algebra of the Lie group K(A).
Proof. Let us restrict ourselves to a neighbourhood of the identity in the

group H such that each element y € H may be written as

(21) y=exp B, Be).

Let us consider, for a given element (21), the one-parametric subgroup
(22) y(¢) = exp Bt, te(—o0, 0).

K(A) being a subgroup of H, we have y € K(4) if and only if y(t) € K(A4) for
each t € (—o0, ). Further, it is obvious that the condition (18) is, according
to the assumption [v, )] Ch = v €D, equivalent to the condition

(23) A —ad(h )4 el.
In our case, this condition is
(24) A — ad(y(t)1)4A = A — ad(exp(—Bt))4 €h,
and we get from Theorem 3 that (24) is equivalent to (10). Q.E.D.
Theorem 6. Let us write
(25) K(4,B) ={he K(A) | (26)}
where A, B e g and
(26) [B — ad(h™1)B, v] + [4 — ad(h )4, [4, v]] —
— [ad(h )4, [4A — ad(h V)4, v]]elh for each ve].

Then K(A, B) is a Lie group.
Proof. Let A1, k2 € K(A4, B), i.e.,

(27) [B — ad(h1!)B, v1] + [4 — ad(h11)4, [4, v1]] —
— [ad(h1)4, [A — ad(h{})4, v1]] €l for each v, €],
A — ad(hi1)4 €bh;
(28) [B — ad(h3!)B, va] + A — ad(h31)4, [4, v2]] —
— [ad(h;1)A4,[A — ad(h;1)4, v2]]€h for each va €,
A —ad(hz)d €p.

Let us choose an arbitrary vector v €. Putting v1 = ad(hjlh2)v €], we get
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wy = [B — ad(hj1)B, ad(h;the)v] + [4 — ad(k;})4, [4, ad (ki hs)v]] —
— [ad(A;1)4, [A — ad(hi1)4, ad(hithe)v]l €D,
and we get we = ad(h3lh1)wr € h where
wz = [ad(k3'h1)B — ad(h;1)B, v] +
+ [ad(R3lh1)4 — ad(h;1)4, [ad(h;lk)4, v] —
— [ad(R31)4, [ad(h;lhl)A — ad(kz1)4, v]] €h.
Further, write v = v; from (28’), we get
ws = [B — ad(k;1)B, v] + [4 — ad(h31)4, [4, v]] —
— [ad(A31)4, [A — ad(h31)4, v]] € ).

(272) yields
ad(h;1h1) (4 — ad(hi1)4) €b;

K(A) being a group we have hylh; € K(A) and
ad(hlh)4 — A €l.

Thus we get

wy = [ad(h31)A — ad(h3lh)A4, [ad(h3lh)A — 4, v]]€).
We have ws = w3 — ws — 2w4 € ; a simple calculation yields

ws = [B — ad(h31h1)B, v] + [4 — ad(h3lh1)4, [4, v]] —

— [ad(hz'h)4, [4 — ad(h3'h1)4, v]],

i.e., hilhe € K(4, B). Q.E.D.

Theorem 7. Let us write

(29) f(4, B) = {vei(4) | (30)}
where A, B e g and
(30) [By v] - [A: [A’ ’U]-! € b'

Then ¥(A, B) is a Lie algebra.
Proof. Let v1, v2 € (4, B). Evidently, it is sufficient to show that [v1, v2] €
€ (4, B). Applying the Jacobi identity, we get
(4, [4, [vr, ve]ll = — [4, [v1, [v2, A]]] — [4, [v2, [4, »1]]] =
= ['Ul, [[7)2, A], A]] + [[’112, A]’ [A, ’Ul]] + [027 [A’ ’Ul], A] + [[Aa vl]’ [A’ Uz]] =
= [v1, [4, [4, v2]]] — [v2, [4, [4, e1]]] + 2 [4, 1], [4, v2]].
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Further

[B, [v1, v2] = — w1, [v2, B]] — [v2, [B, v1]]

and
w = [B’ [’1)1, 02] - [A, [A5 [1)1, '1)2]]] = [’01, [B: Uz] - [A’ [A’ [A; ’Uz]]] -
- [’Uz, [B: '01] - [A, [A> 1)1]]] — 2 [A’ vl]’ [As '02]]'

Now it is easy to see that w € ) and [v1, v2] € §(4, B). Q.E.D.

Theorem 8. (4, B) is the Lie algebra of the Lie group K(4, B).

Proof. Let us restrict ourselves to a neighbourhood of the identity in the
group K(A) such that each element of this neighbourhood may be written
as y = expx with z € f(4). Let y € K(4). K(4) being a group, we have

(31) y(t) = expat € K(4) for each ¢ € (— 00, 0)
and
(32) [x, 4] €}.

Let v € §) be an arbitrary vector. Define

-~

(33) w(t) = [B — ad(exp(—=xt))B, v] 4 [4 — ad(exp(—xt))4, [4,v]] —
— [ad(exp(—=t))4, [A — ad(exp(—uxt))4, v]].

From Theorem 2 and (32), we get the existence of vectors

(34) A — ad(exp(—=xt))4d = »(t) €},

and we may write

(35) w(t) = [B — ad(exp(—at) B, v] +[»(t), [4, v]] — [4 — »(®), [¥®), ©]]-

By a direct calculation, we get

dw(t)
(36) [[x ad(exp(—uat))B] ——[A, py ], v]—l—

v(t) dx(t)
+ [ dt, ) [‘V(t), ’U]:| lv(t),[ at 5 v”.

From (14), d»(0)/dt = [z, 4] and

0
(37) _d(t_ =[—[B,2] + [4,[4, z]], v].

151



If y = expx € K(4, B), we have dw(0)/dt € }) for each vector v, i.e., x € §(4, B).
A very complicated calculation leads to a quite clear result according to which
the Lie algebra of the group K(4, B) is not less than f(4, B). Let us describe
the first step of this. Our aim is to show that

(38) . [4,x]eh, [B,x] — [4,[4,x]]€}
implies

d"w(0)
(39) eh forn=0,1,2,...

de"

Since »(f) € b, dv(t)/dt € ), we are not interested in the terms

dw(t) dx(t)
49 e e [ 20

According to (15), we have

de?

d(0) [ ds(0)
dt

, x] = [[z, 4], =].

Derivating (36), we get mod |

40 Bul)_ d 9)B 4, 20
( ) de2 = [(E, [aJ (exp(—"x )) ’ .’L']] - ’ di2 U1 »

d2w(0)
de
On the other hand, we have

— [4, [[=, 4], 1] = [[z, 4], [, 4]] + [=, [4, [=, 4]]],

= [[xs [B: .’L’]] - [A: [[x’ A]’ (l}']], ’U].

hence
d2w(0)
de2

= [, [B,2] — [4, [4, 2]]], v]

and d2w(0)dt2 € h according to (382). Derivating successively (40) and applying
the just described procedure we would get (39). Q.E.D.

2. CURVES IN HOMOGENEOUS SPACES

Let there be given a Lie group @ and its closed subgroup H subject to the
above conditions. The set of the left classes gH may be endowed by a structure
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of a differentiable manifold, this manifold being the homogeneous space G/H.
Denote by x: G- G/H the natural correspondence. The group G operates

on G/H to the left: (y, gH) € (G.G/H) - (y9)H € G/H. Lx
Let there be given a curve in our homogeneous space, i.e., a mapping

(41) @:(—1,1)~>G/H.
This mapping may be determined by its lift, i.e. a mapping
(42) fi(—=1,1)>@
such that the diagram
i

(43) -1, 1) ¢ ln
¢\G/H

is commutative. f being a lift of ¢, we get each other lift f* as follows: choose
a mapping h:(—1, 1) > H and set

(44) f*(t) = fOh(t) for te(—1,1).
To each lift f, let us associate the mapping 4 : (—1, 1) - g defined by
(45) ' A(t) = f()- dg (tt) forte(—1, 1).
Let A* be associated to the lift f* (44). Then
df*(t)
* *(f) =
froaxn =

and — according to (44) —

dh(t)

JORE)AX(E) = f()A@R(E) + f() TR

ie.,

dA(t)
(46) A*(t) = ad(h(t) 1) A(t) + h(t)2 A

Thus we get
Theorem 9. If the lifts f, f* are related by (44), we have (46) for the associated:
mappings A, A*.
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. Let us choose a fixed lift { to the given curve ¢, and let us consider the point
@(0) of ¢. First of all, let us construct the mapping g : (—1, 1) - @ defined
by the relation

(47) g(t) = f(0)f(@),
further, consider the one-parametric system of subalgebras
(48) h(t) = ad(g(®))ph.

Let y € G be an arbitrary element. Consider the one-parametric system
of subalgebras

(49) hy(t) = ad(yg(®)h.

Our task is to find all elements y such that the systems §(t), h,(¢) have, for
t = 0, the contact of order 0, 1 or 2, resp. Recall the definition of the contact:
Let W be a vector space, and U(t), V(f) two one-parametric systems of sub-
spaces; dim U(t) = dim V(t) = const. The systems U(t), V(t) have, for t = to,
the contact of order (at least) k if there are bases wuq(f), va(t) of the spaces
U(t), V(t) resp. such that

dlug(te)  dla(to)
dg de

forl=0,1,...,k and for all «s.

(50)

The contact of order 0 of the systems h(¢) and by(t) for ¢ = 0 means (0) =
= By(0), i.e., h = ad(yp)h, and it is equivalent to y € H. Therefore, let us con-
sider the contact of order 1 and 2. In ), let us choose a fixed basis

(51) B ={u,....,un}; m=dim}p
In what follows, use the obvious notation

ad(9)Z = {ad(9)us, ...}, [v, Z] = {[v,w], ...},
ete. In h(¢),

(52) B(t) = ad(g(1) 7B
is a basis,
(53) ZBy(t) = ad(yg(t)#

being a basis of hy(¢). The most general bases in the spaces f(t) are given by the
relations

(54) B*t) = Bt)S(t) where 8:(—1,1) > GL(n).
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The condition of the contact of order 1 or 2 at ¢t = 0 is equivalent to the
existence of a mapping § such that

dZ*(0) _ d#(0)

(55) 2*(0) = %5(0), & PR

or (55) and

d2g*(0 d2%,(0
56) ©0) _ &5,0)
de2 ds2

resp. From (45) and (47), we get

df(0)
uJO40)
and
dg(0)
(87) g9(0) = e, dt = 4(0),
e being the identity of G. Further,
azfe) _ df() d4()
ar a0,
and
d2g(0) d4(0)
= 4(0)4 —_—.
(58) = A040) + =
From (52), we get
ABt)g(t) = 9%
dZ(t) dg(t) _ dg(®)
(59) oy — 9+ Bl — — & pr z
and
60 4%(0) = [4(0), #
(60) gy = [4(0), #].
A further derivation of (59) yields
d2%(t) d%(t) d!}() d’g(t) _ d(t)
ae 19T A0 a7
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d2%(0) dA(0)
+ 204(0), FIA(O) + BAOA©) + F— = = AOAO)F +

de2
d4(o
di ) 7

and, finally,
(61) i L [dA(O) , Z| + [4(0), [4(0), Z]].

de2 dt
Now, it is easy to see that
(62) B*(0) = BS(0),
(63) O _ 32O a0, A100),

dt dt

(64) TIO) _ 5250 + 2[4(0), B] 450 +

ds? de2 dt

d4(0)
+ [—dr 93] 8(0) + [4(0), [4(0), Z118(0).
From (53), we get
(65) Z,(0) = ad()Z,
d4,(0) .
(66) PP ad(y)[4(0), #],
(67) 2O — o) [%@ @] + ad(y)[A(0), [4(0), Z]].
de2 dt

From (551), we get
(68) | Z8(0) = ad(y)4% .
The relation (552) yields

dsS(0)

9?7 + [4(0), Z18(0) = ad(y)[4(0), Z]
and
dsS(0) :

(69) 5‘5’7 = ad(y)[4(0), Z#] — [A4(0), ad(y)#)].

156



The systems h(t) and by(¢) have the contact of order 1 at ¢ = 0 if and only
if y € H and there is a matrix dS(0)/d¢ such that (69) is valid. But this condition
is equivalent to
(70) ad(y)[4(0), v] — [4(0), ad(y)v] €}

for each v € ). The final result is given by

Theorem 10. The systems Y(t) and by(t) have the contact of order 1 at t = 0
if and only if y € K(A(0)).
Let us now study the contact of order 2. Using (56), (68) and (69), we get
dzs(0) '
de2

+ 2[A(0), ad(y) [4(0),2]] — 2[4(0), [4(0), ad(y)#]] +

dA4(0
+ [ di ) ,ad(y)gf] + [A4(0), [4(0), ad(y)B]] =

[d4(0)
= aJd()’)li FPE @] + ad(y)[4(0), [4(0), Z]]
and
. dz8(0) [ d4(0) . .. d4(0)
an o adeE— —[ PR R

+ [4(0), [4(0), Z]] — [ad(y~1)4(0), [ad(y2)4(0), Z]] —
— 2[ad(y)4(0), [4(0), Z]].
It is now easy to prove

Theorem 11. The systems H(t) and by(t) have the contact of order 2 at t = 0
if and only if y € K(A(0), dA(0)/dt).

Let us summarize: We have a curve ¢ : (—1, 1) -> G[H, and we have chosen
its lift f:(—1, 1) > G. We construct the mapping 4 : (—1, 1) -~ g. To the
point 0 € (—1, 1), we associate the Lie subalgebras

dA(0)
a

§(4(0), f (A(O),

of ); we have described above their geometrical signification. Now, we are inte-
rested in the manner on which they depend on the lift f. First of all, let us
prove that they are independent on the parametrization of ¢.

Theorem 12. Let there be given the curves ¢ : (—1,1) > G[H and ¢1': (—1, 1) -
— G[H such that there is a mapping T : (—1, 1) - (—1, 1) such that
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(72)

T(0) = 0, u(T(t)) = @(t) for t € (—1,1);

dT(0)

dt 70
Let there be chosen a lift fi: (—1, 1) > G of @1, and let us determine the lift f
of ¢ by
(73) ft) = AT().
Then
dA(0) dA4;(0)
(74) 1(4(0)) = 1(41(0)), (A(O), ) = f(Al(O), )
dt dt
Proof. From (73) and (72;), we get |
(75) £(0) = f(0).
Further, ‘
6) dft) _ dAE) 4T df©) _ dfi(0) dT(0)
dt ar  at ar a
From
‘ df(o dfi(0
(77) A(0) = f(0) J;(t) . 4(0) = fy(0) ’32 )
and (76z), (75), we get
78 4(0) = 430) L0
(78) (0) = 441(0) PP
this proving (74;). Further,
9 af(0) _ dh(0) ((dT(O))Z . 4A0) 1)
dg2 dre dt a7 de
dA©)  df(0)
(80) a IO g A4,
dA4,(0) . d2fi(0)
% = f1(0)-! 7 - — A41(0)A41(0).
From (79), we have - | "
d4(0) _ - dfi(0) (dT(0)\2 _ 4f(0) d2T(0) ar(o)
dt SO drT2 ( dt. ) A ar  de 40 AI(O)( dt )
ie., _ o
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dA(0)  dd;(0) (dT(0)\ d2T(0)
(81 dt ar ( dt )+A1(O) dr
Now,
dA(0)
(82) [ YL v] — [4(0), [4(0), v]] =

(| d41(0) d7'(0) 2 dzT(0)
g7 ° — [41(0), [441(0),v]] & + [41(0), v] aw

and we have (742). Q.E.D.

Let us now study the changes caused by the change of the lift. First of all,
we have

Theorem 13. Let there be given a curve ¢ : (—1, 1) - G[H. Let us choose two
lifts f, fi: (—1, 1) > G such that

(83) f(0) = £1(0)

and let us construct the associated mappings A, Ay : (—1, 1) > g. Then

d4(0) d4:(0)\
(84) 1(4(0)) = 1(44(0)), T| 4(0), g | T8 41(0), T

Proof. According to (44), we have

(85) filt) = fOR(E), h(0) = &5 h(t) e H.
Define the mapping R : (—1, 1) - §) by the equation
(86) R(t) = h(t)‘lﬁ(t—)
= @

From (46), we get

. dh(t)
(87) h(t)As(t) = A(t)h(E) + %
and
(88) 41(0) = A4(0) + R(0).
Derivating (87), we have

dA4,(0) dA(O) (0)
(89) & & + [4(0), B(0)].

The equation (84;) is now obvious. Further,
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d41(0) d4(0)
(90)[ PP v] — [41(0), [41(0), v]] = [ FPE 'UJ — [4(0), [4(0),v]] + 8
where
dR(0)
(91) 8= [ at v| — [R(0), [E(0), v]] — 2[R(0), [4(0), v]];

S8 e} if v e §(4(0)), i.e., [4(0),v] €. Q.E.D.

Theorem 14. Let there be given a curve ¢ : (—1,1) - G/H Let us choose its
two lifts f, f1: (—1, 1) > G such that

(92) fit) = f(t)h,

h e H being o ﬁxed element. Let A, A1 : (—1, 1) - g be the associated mappings.
Then

dAl(O) d4(o )
(93) £(41(0)) = ad(R1)¥(4(0)), T | 41(0), e ad(A 1)E(A(0), —— Y

Proof. According to (46), we have

(94) Ax(t) = ad(h 1) At
and /

d.4;(0) dA4(0)
(95) A1(0) = ad(h1)A4(0), = ad(h) ==
The Lie algebra f(A41(0)) consists of all vectors » € ) such that
(96) [41(0), ¥] = [ad(A1)4(0), o] € .

The relation (96) is equivalent to
(97) ad(k)[ad(h-1)A(0), v] = [4(0), ad(k)s] € §.

Thus the vector v €} is situated in ¥(41(0)) if and only if the vector ad(h)v
is situated in ¥(4(0)), and (93;) is proved. (93z) follows analoguously from

d4.(0)
ds

, v] — [41(0), [41(0), »]] =

d4(0) :
= ad(A ) (|, »ad(k)o [;— [4(0), [4(0), ad(R)v]]| .

Q.E.D.
Summary. Let us summarize all we know up to this moment.
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" Let there be given a homogeneous space G/H and a fixed curve ¢ : (a, b) >
— G[H. Let @ C G be the manifold of all points which are above the points of ¢:

(98) & — a1(p(a, b)).

The space G/H being regarded as the principal fibre bundle G(G/H, H), @ is
the principal fibre bundle constructed from G(G/H, H) by the Testriction
of the base space G/H to ¢(a, b).

To each point g€ P, we associate two subsets 1 CmyCh as follows.
Let n(g9) = p, and let us choose an arbitrary mapping f: (—1, 1) - G such that

(99) f0) = ¢, n(f(—1, 1)) C g(a, b).
By means of f, we construct the mapping 4 : (—1, 1) - g defined by
(100) a0 = o 2.
. dt

Then we set

' d4(0)
(101) mg = $(4(0)), ng= f(A(O),—dt—) ’
where
(102) f(do) = {veh| [4o, v] €},
(103) 1(do, 41) = {ve (o) | [41, v] — [do, [do, v]] €}

for 4o, 41 € g. The sets mg, ng are Lie algebras, and they depend only on
q € G (being independent on f). Further, we have

(104) Mg = ad(A g, g = ad(h)n, for h e H..

The geometrical signification of mg, 1y has been given above, let us restrict
ourselves to the following description. Let ¢ : (a,b) > G/H be a curve such
that for a certain ¢ € (a, b)) we have g(c) = e, ¢ being the identity of G. Let
y € G be an arbitrary element. Let ¢, be the curve in G/H defined by @y(f) =
= yo(t) for t € (a,b), let M (N) be the set of all y’s such that the curves ¢ and ¢,

"have the contact of order 1 (2) at H eG/H. Then M, N are Lie groups with
the Lie algebras nt, and 1. resp. The signification of the algebras ma, 1a

for h e H is given by (104); if ¢(c) # e, we replace ¢ by a left translation
in G/H into a curve ¢; such that ¢i(c) = e.

3. MANIFOLDS IN HOMOGENEOUS SPACES

The theory of curves may be easily extended to arbitrary submanifolds;
here, we present only some remarks on this subject.
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. Let G/H be the given homogeneus space, M a domain of R» (with the coordi-
nates ul,...,u*), and let ¢: M - G/H be an embedding. Let f: M - G
be a lift of ¢. To f, we construct the g-valued 1-form w on M by

(105) fw) df(u) =
The mappings 4¢: M - g; ¢ =1, ..., n; being defined by
9f(u)
(106) Ai(u) = flu) PV
we have
n
(107) o= Ayw)dw.
i=1

The form w satisfies the so-called structure equation. From (106), we get

B _ fanyasd, + fay 2
owows T I
and
04; 04, o
(108) w_ﬁ_ui: [4:, A5]; 4,7=1,...,m.

The structure equation (108) may be written as
(109) do = —o0 A o,

dw being the exterior differential of w and w /\ ) bemg obtalned as the product
of matrices where we replace each term wfo by of A ol.

Let m e M be a fixed point, write p = <p(m) and ¢ = f(m). Further, let
o0:(—1,1)—> M be a curve such that p(0) = m; ¢ be given by the equations

(110) w=wult); t=1,...,n.

Now, consider the curve ¢g:(—1,1) > G/H and its lift fo:(—1,1)—>G.
To the curve fp there is associated the mapping Ae¢:(—1, 1) > g given by

n dut(t
(111) Ae(t) = > Aa(u(t) @ .
» . i1 ds
'Thus we may construct the Lie groups
- d4(0)
(112) M} = K(A2(0), N;= K|[A4¢(0), u

and the corresponding Lie algebras. The Lie a,lgebra of the group M} is the
set of all vectors v € ) such that
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dut(0)

(113) ﬁ:l[Az(m), ] €h.

Write M, = n M3, ¢ being an arbitrary curve g : (—1, 1) = M with ¢(0) = m.
The Lie algebra of M, is the set of all vectors v € b satisfying
(114) [Ai(m),v]eh; 1=1,...,n.

‘The Lie algebra of N7 is the set of all vectors v € | satisfying (113) and

A
([a dm) ’ v] — [di(m), [ds(m), v]]) 410) dwi(0) +

ouwl de dt
; dzui(O)
+ [A1 ’U]

Now, the following is easy to see: Let there be given a manifold ¢ : M — GH,
let m € M be a fixed point. Let ¢ € G be an arbitrary point with ¢(m) = =(q),
and let ¢ be a tangent of M at m. To ¢, we may associate the Lie algebras
‘mfl, mg, 1_13, 11y (with obvious geometrical significations) defined as follows.
Let f: M — G be an arbitrary lift of ¢ such that f(m) = ¢; let u¢ be local coordi-
nates on M, and ¢ be given by the vector

n

(115) S

L
i, 7=1

0
(116) T=uaxt—
out |;m

To f, we construct the mappings A;: M — g by means of (106). Then 1. my.
2. my, 3. 1, 4. ng is the Lie algebra of all vectors v € ) such that 1. we have

(117) i [di(m), v]2t €},

2. we have -

(118) [4i(m),v]elh fori=1,...,n,

3. we have (118) and

{119) S ([aAaiz(;n) ’ ”} — [di(m), [45(m), v]]) vl €,

7, j=1

4. we have (118) and
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0Ai(m)
ou’

(120) [ , v] — [di(m), [45(m),]]1€eph fori,j=1,...,n,

resp. Further, m}, = ad(h~)m;, etec.

4. MANIFOLDS IN AFFINE SPACES

Let An be the n-dimensional affine space with a fixed basis

F ={F;fi,....fa} = {F, f}.
Each basis E = {E, e} of A is given by

1 0
(121) Ea=wn(, o)
a being an (n X 1)-matrix and « € GL(n). All matrices
1 0
(122) A= (a a)

of the just described type form the so-called affine group GA(n); the bases
of A are thus in a 1—1 correspondence with the elements of GA4(n). The Lie
algebra ga(n) consists of all matrices of the form

0 0
(123) R= (r 9)

where 7 is an (» X 1)-matrix and ¢ an (»n X n)-matrix. Denote by GAo(n)
the subgroup of GA(n) consisting of the elements of the form

10\,
(124) a=(5 9

of course, G4o(n) is isomorphic to G'L(n), and we have A" = GA(n)/GAo(n).
Let there be given a submanifold ¢ : M — A». Let us choose its lift 4 : M —
— GA(n). To 4, we associate the ga(n)-valued 1-form @ on M defined by

(125) d4 = do.

(121) may be written as

(126) ' {E’ e}: {F’f}A;

we have ' '
d(E, ¢} — {F, )4 — {F, f}) do

and

(127) Ad{E, ¢} = {E, e}o.
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These are just the equations known in the classical differential geometry.
Let us write

{0 0
(128) o= (w Q) ’
ie.,
(129) dE = ew, de=efR
and
n n
(130) dE = Zlmiei, de; = leﬁe,-
= j=

where o = (w;), 2 = (). The structure equation (109) is
0 0\__(0 0 0 0)
do d@ o 2)Mo 0

(131) do=—QA0, d2=—0Q/\Q.

i.e.,

Writing (131) component-wise, we get

i1

n n
(132) dot = — > ol A of, dol= — > o A of,
k-1

these being the well known formulas.
According to (107), let us write

(133) © =3 Ry(u)dus, Ry= (0 0) ,
=1 Ta Qa

ul, ..., um being local coordinates on M. From the structure equations,
we get

134 37‘0‘ 37‘5 .
(134) o o 78T e
Using the notation
135 oy
(135) Sap = o T oara;
we get
(136) Sup = Sfa .

from (134). The matrices sag are known as well. Indeed, let us write

(137) o= (12, 0= (k) S = (sip).
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"Then we have

m
(138) ot = ridux.

a=1

"The exterior differentiation and (132) yield

(139)

Mz

a=1

@+ 5 )  dur = 0;
j=
using Cartan’s lemma, we see the existence of functions si; such that

R ort no

{(140) dr, + > 7iw; = 85, l.e. — + Z Q37 = Sig,
j=1 ou j=1

this being just the equation (135).

The matrices 7o« and sss play the fundamental role in the determination
of the spaces my,ng; ¢ = {E, e}. Each vector v € gao(n) may be written as

0 0
(141) v = (0 V)'
It is easy to see that i
0, 0 .
(142) (R, v] = (_ S V]),
ORy :
{(143) , v| — [Ra, [Bg, v]] =
oub
0 , 0

2

. a@a
J— VSO!B + QﬁVTCl - Qavrﬁa [8—’“[3, V]_ [Qﬂ’ [QB’ V]]:

and we get: The Lie algebra m, is the set of all vectors (141) such that

(144) ©  Vra=0; a=1,...,m.
"The Lie algebra ng is the set of all vectors » (141) such that (144) and
(145) Vsap=0; a,f=1,...,m.
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