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ON AN ESTIMATE OF THE REMAINDER
IN THE CENTRAL LIMIT THEOREM

CYRIL LENART

Let X, ..., X, be independent random variables. Let Fy(z), o and o,
k=1,...,n be their distribution functions, mean values and variances.

For k= 1,...,nlet ax = BE(Xy) =0, o} = H(X}) { 0, 062 = > o} » 0. Let F(x)
i1

be the distribution function of the sum

(1) X=3Sx.

F-1
Further, for each k= 1, ..., n an interval (—#, %), 0 <tz < 0, 0 <t, < 0
let be given. Define the random variables X and Xk, k= 1,...,n as follows:

Xk if Xk (S (—tk, t,lc)
0 if Xp¢(—t,t)
(2) Xe = Xi — Xk,

X =

where X are the independent random variables defined above.
Let us denote

& =E(Xr), Pfe=EX7D, 7r=E(Xk?,
&22&1“ 52231: 7= 2 7k
k1 k-1 k=1
(3) pr = E(X}), B :k;Z: B

Let @k(t), k =1, ..., n, be the characteristic functions of the independent.
random variables Xj and @(f) the characteristic function of the random

variable X.
Put

A4 = sup |F(zo) — G(x)|, where
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1 {2
(4) G(x) = (27) 2 {‘exp (—E) df .

-0

Many upper estimates are known for the quantity 4 defined in (4). The well-
known Esseen’s inequality (cf. e.g. [3] 20.3A) usss an expression which is
a linear combination of the functions

(5) Ua(T) = ‘

T
’ u u?\ |
O(—| —exp|——)||u1du.
. o 2
7

Evidently the upper estimate for 4 can be improved if at least one of the
multipliers in the combination is reduced.

In [5] Zolotarev proved an inequality for an uppsr estimatz of 4, from
which we obtain the Esseen’s inequality if we choos2 a certain class of functions
which are densities of symmetric distributions.

In [1] Berry gave an upper estimatz for 4 using the product of an upper
estimate of an absolute constant and the well-known Liapounov ratio depend-
ing on the third absolut> moments and the sscond moments of random va-
riables X, assuming the finiteness of their third absolute moments. The upper
estimatz of this absoluts constant has been improved by many authors.

In [2] Feller obtained an upper estimate for 4 as a product of an upper
estimate of an absolute constant (the existence of such a constant has been
proved by Osipov in [4]) and an expression depending only on the second
moments of the random variables X and their absolute second and third
truncated moments. To obtain this estimate it is therefore not necessary
to assume the existence of the third absolutz moments of the random va-
riables X and such an estimate does in fact hold even when thess moments
do not exist. To obtain this estimate, Feller used the well-known Esseen’s ine-
quality.

Using Feller’s method to compute an upper estimate for A it is possible
to improve the results in [2] in two ways: first, by using the Zolotarev’s
inequality which — as we shall demonstrat> — is a refinement of the Esszen's
inequality, and second, by improving other estimates used in the method;
this is just what the present paper proposss to do.

We have the following
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Lemma 1. Let R(x) be a distribution function and S(x) a function with a bounded
variation and the following properties:

(6) q = sup |S'(z)] < o0, S(—o0) =1 — S(0) = 0.

Let r(t),s(t) be the Fourier-Stieltjes transforms corresponding to the functions R(x)
and S(x).
Put
(7) A = sup |R(z) — S(2)],
(8) o) = r(t) — s(t) .
Then for every T > 0

_ 294 dt
) A<= 4 B|1—1ten)—,
T . 3
0
awhere A = 2.689388 and B = 0.409999.
Proof. Let
1 — cosx 1
(10) px) = - for x#0, p(0) =—-
a2 27

The function (10) is the well-known density function of the symmetric distri-
bution with the characteristic function

1— ¢ for |t <1,
(11) w(t) =
0 for |t >1.

Further, we use Zolotarev’s inequality (cf. [5], Lemma 3), which in our
case states that for allT > 0, x > xp

(12) 7 <2 x[K(z) + Q(T')]
oS T[4K (x) — ]

where
T F dt
(13) QT) =_— | lw(®)d(T) ——»
2nq H
0
(14) K(x) = xfzp(u) du
0
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and xp is a positive solution of the equation

(15) 4 K(x)=x.
Using the Taylor s=ries expansion for the function p(u) of (10) and (14)
we get
1 — 1 —cosu u o | uk
(16) K@x)== = — i(—l)’f——du.
nu2 n| o/, [2(k + D]
0 0 k=0
(

The integrand in (16) is a probability density function and evidently a posi-
tive solution of (15) exists.

47
For u € <0, 1—0> and for the integer k > 5 we have

w2k w2k+1)
(17)

> .
(2 + D) [2(k + 2))

From the Taylor saries expansion for 7p(u), using (17), we get the estimate

5

O 2% —
(18) 0 < Z(—l)’“ u < 1 — cosu <
[2(k + 1)]! u?

=0

N

Z(_ 20k +

47
which is valid for u € <O, 1—0> .

Now let 1 be a positive solution of the equation

(19) j z(— o du :%.

k=0

From (18) we sze that necessarily x; > xo. For x = 2 the left side of (19) has

8 T
the value greater than g > z Clearly therefore xy < 2.

47
Further, for x € <0, —> we have
10
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x

6
2k
x z [ T (—1)* v du
z [ p(u) du J L [2(k + 1)]!
(20) ; 0 <— o5 k=0
4gNMdu—J, 4[22(_nk——32;—(m——n

. [2(k + D]!

0 k-0

47

For the s:lect>d value of x = ~]~6 we get as an upper estimate of the right-

hand side of (20) the value 2.689388.

47
Analogously for z € <0, TO-> we have

1 4
e x <
4 [ pu)du — 1 ’ j u2k
gp( ) 4 (—1)* du—mn
J Lo [2(k 4 1)]!
%=0
47
As an upper estimatz for the right-hand side of (21) for x = — we get

the value 0.4099997.

Using thesz upper estimatss for the right-hand sides of (20) and (21), we
obtain (9) from (12), (13) and (14). This completes t he proof of Lemma 1.

As a consequence of Lemma 1 we get:

Lemma 2. For every T > 0 we have

o ot ) o 4 w
(22) Sp T a_eXp(_z

where A" = 2.145822 B’ = 0.205, A is defined by (1) and D(t) is the charac-
teristic function of the random variable X of (1).

Proof. In Lemma 1, put R(z) = F(xo), S(z) = G(x), where F(x) is the
distribution function of the random variable X of (1), ¢ > 0 and G(x) is the
distribution function of the normal distribution defined in (4). Evidently

|u]

o)

q = sup |G'(x)| = (27)
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The relation (9) yields
1

2.145822
(23) A4 < T -+ 0.409999 [(1 —t) X
0
i (1)2\ | dt
X|®|—| —exp| — —
o 2 ¢

Using the substitution » = ¢7" in the integral on the right-hand side of the

equation (23), we get the relation (22).
Remark 1. Lemmas 1 and 2 are evidently a refinement of the well-known

Esseen’s inequality.

Now let D(t), P, 7k, Brs ok, k= 1,...,n, D(t), B, 7, B, 0 > 0 have the same
meaning as before. Let k = 1, ..., n be the subscripts of independent random
variables X;. We define a decomposition of the set of all subsecripts {1, ..., n}

as follows:
n
Definition 1. Let T > 0, « > 0, 0 > 0 be given reals (o2 = 2 of, where o},
i1
1=1,...,n, are the variances of X;). We shall say that a subscript k belongs
to the set A iff

ao
<—.

B poi

(24) B

We shall say that a subscript k belongs to the set Ac iff it does not belong to the

set A.
The following lemmas hold:

Lemma 3. Let T > 0,1 >1,0< a < ],/E be given reals.
Suppose that

(25) 1 — =5
Then

o el

T n
_v - u g',% 2
< |e 2 Dp [~ | —exp|———] | |u|! du.
o 202
-7 k=1
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4 _ - - = .
Proof. (For o= —3— see [2]|. Define f4, 74, fa and Bac. Pac, fac in the same

way as 8, 7, g with the exception that the sums are over all ke 4 or k € 4¢
respectively.
For every real y the following well-known inequalities hold:

. y? lyl® . 2
27 e —1—wy+ —|<— e —1—y|l < —-
(27) v+, . I Yl 5
Since ax = 0 for k£ =1, ..., » by assumption, using this and (27) we have

fork=1,...,n

(28)
202 603 202

@43)=1—"wﬁ+&mw”+%wa,
g

where |0;1] < 1, |@;s] < 1. Further for ke 4, |u] < T from (28) we conclude

that
u w2 | _ Ty _
Dp|—]| < exp{—— — — — B}

Taking the product and the sum over all £ € 4 we get for |u| < T the estimate
u u? | _ Tya _ ]

(30) | | Pp ||| <exp{———|fu——"— —Ba
o

202 3o |
ked
i R S A
=exp|{———|f — Pac— —(} — Pac) — .
P 4 36(? Vac) — fa

(29)

~—————

Evidently 0 < fac < f,0 < 74 < 7,0 < Ba < §.
For k € A¢ we have from the moment inequality

Fe> B> e
. T
Summing over all k£ € 4¢ we get
_ oo i _
(31) yAC>?ﬁAc.
Using (31), (30) yields

u w2 | Ty T (1 1 _
(32) H Dy (;) < eXp{——- [ﬂ——-*(‘»——)mc—,’%

202 30 o\« 3
ked '

I
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— 1 1
Ifo <o < VQ, then *—E > 0 and we get an upper estimate for the right-
o

hand side of (32) for 74 = 7. Using this and the equality o2 = f + 3 (32)

gives the estimate
u u? Ty 28
D ||| <exp{—— 1——1———/))- .
o 2 o3 o2

(33) |1

By induction we easily prove that for arbitrary complex uz, vg, k= 1,...,n

[\

(34) UL eooUn — V1 ooo U = D UL ... U —1(Uk — VE)VE 41 ... Up .

k

1
Now for k=1, ..., n put

w\ o oou?
(35) up = Pr|—), wm=exp|— , lul<T.
o 202
%
Foj k € A we may use (29) to prove that an upper estimate for tDk( )
o
oru’
is not less than exp | — orn | Therefore it is possible to usz (29) as an upper
o

estimate for u; as well as for v;y. For k € A°¢ we use the estimate |ugx| < 1,
log| < 1. If j € AC, then the absolute value of the multiplier of u; — v; in (34)
with ux and vz defin=1 by (35), is not greatsr than the right-hand side of (33).
If j € 4, then this multiplier is not greater than the right-hand side of (33)
multiplied by

26 u?Pi u2a?
ex < ex .
(36) P 202 P 272
Thus for ux and v; defined in (35) the absolute value of the right-hand side
of (34) is smaller than

u? . Ty 28 a2
(37) |ugy — vi| exp{ — 5 — PP
k=1

Now (26) is a direct consequence of (37) if the condition (25) is satisfied.

1
Lemma 4. Forall T > 0,1 > 0,0 < % <Ewekave

T n
e O % u’o?
(38) e 2l O [— | — exp| — k
] 202

le]-1du <

326



/2t 7 7
|24 (U 2| 4 (38— 2
o o

Proof. Using (28) we get for k=1,...,7n

u u?o? u u?By
(39) Dy (—| —exp|— <|De|—|—1+ +
o 202 o 252
252" 2 35
U oy u?P [u|37k
+lexp| ———) — =
P( 2 ) + 202 6g3 l
wB | [ uPe? u2Py
exp|[——| —
202 ( ( 202 202
22
Forx >0,0<ez—1+42< ; Using this we have
u?B u’o} u?By
(40) - p < exp| — Pl -1 ——ﬂ_ <
202 202 202
xuB wu?Br (1 — 2x)u2B
<exp|— — 1+ + P <
a? a2 202
wu'py N (1 — 23x)u2By
T 244 202
From (40) we conclude that
u20'2 uzﬁ-k‘ u2=
(41) exp| — ) -+ < max ﬂk,
202 202 202
Lutfy (1 — 2x)up LUty
+ S T
204 202 204
(1 — 2s¢)u2pPr n (1 — 2)u?Bfr . u2Bs
204 2014 i 202 .
Summing over k£ = 1, ..., n and using the moment inequality (41) and (39)
gives
& 2 2
U u o |u|35
(42) Dp|—| —exp| — Bl < L
o 202 603

k=1
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u2g  x2uif? (1 — 2)u2p? 1 — 2x)u2fp
PR | ( 5
202 204 204 204
27 35 25 2945
u’h I Clhvd |u|3p LU ﬂ w*uly

202 h 603 202 203

(1 — 2x%)uy N (1 — 2)u?s +u2§

203 202 202

_(x2u4+|u|3 a —2u)u2) 7 B2 f
> 6 2

Furthermore,

w? __ 3 —12
(43) Je—g u2du = V2nl2, Je 2 |y du = 21,

u2
J e 2 |ul3du = 412.
-

Now (38) is a consequence of (43) and (42) and the proof is complete.
The main result of this paper is given by

Theorem 1. Let Xy, k= 1,...,n be independent random variables. For

k=1,...,nlet E(Xx) = 0, B(X2) = 07 < o0 and ¢® = Z o7 > 0. Then
(44) A< 4,35 (—l +ﬁ)
o3 o2

with A defined by (4) and 7, B by (3)
Proof. For arbitrary 7' > 0 we have

T

4 A<£ B’ (17E —ﬁ‘ -1d

(45) \T—f— ‘ ’ — exp 2 !\u\ w
3 !

where 4’ = 2.145822, B’ = 0.205, 4 is defined by (4) and @(¢) is the charac-
teristic function of the random variable X defined by (1). Using Lemma 3

for o« = V 2 and Lemma 4 we get
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A’ B’
(46) 4 < —+ B'|A(, ) +B(lx)~
T _ o?
where
— 3
1 27l®
(47) A(l, ») = 22212 - + (1 — 2x)l
1
Bllx)=3—2%), 1>1,0<x<—
2
and 7' > 0 is chosen so that
1 T 2 2
(48) [P T
(7 Voo T T
From (46) and (47) we have
L 7 B
(49) A4 < — + B'[max {A(l,x), B, »)}][—+—]|-
T g3 o2

1
Suppose that for some ¢ > 0,7 > 0,1 > 1, 0 < » < — the inequality
2

(50) f{ + B'[max {A(l, %), B(l, x }]( 7)) ) 0(___1_2.)
T ’ o2] = \g3 '

o2

is satisfied together with the condition (48).

Then
(51) a4 < O(LJr»ﬁ)-
P
Without loss of generality we may assume that
2 + ﬁ L c
5¢ — T ) >0.
(52) 52 C’

In the opposite case the inequality (51) is satisfied trivially, since 4 < I
Choose T' > 0 in such a way that for selected €' = Oy, I = ly, » = xo the

inequality in (51) is attained. In this case
;- )

1
(53) T A' [Co — max {A lo, #0), B(lo, o) }](

w |Y|
2% |‘m|
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Since 7' > 0 and also r -l—ﬁ > 0, evidently
g% o2
(54) Cp — max {A(lo, xo),B(lo, Jto)} > 0.

From (53) and (52) we derive for T' > 0 the estimate

(55) [0() — max {A lo, Mo) (lo, %0)}] .

1

T A’Oo

By computing lsfrom (63) and substituting into (48) we get the following:
o

’

[a—

(56) 1 — T [Co — max {A(l, #0), B(lo, x0)}]* +

T2

To prove (44) it is sufficient to prove that for selected Iy, o, Co a solution 7'
of (53) is also a solution 7' of (56). It is easily proved by direct computation
that for lp = 4,1, %y = 0.375, max {A(lo, #0), B(lo, 3{0)} = B(lo, #0) = 9.225.
Moreover, for Cy = 4.35 from (55) we sece that in this case 7" > 3.796177 >
> 2 V 2. For such [y, o and Cp the inequality (56) is satisfied; this completes
the proof.

Remark 2. In [2] Theorem 1 Feller proved (44) with the constant 6
instead of 4.35 obtained here.

Using our Theorem 1, other theorems in [2], which give analogous results
for arbitrary random variables, may be similarly improved. Before we for-
mulate these theorems, we introduce the following notation:
Fork=1,...,n let

n

2
X

(57) m:mi¢wp=§ﬁ,a-—brm¢m
. Tk
k=1

For 7z = 0 we define Ax = 0if ax = O and Ay = oo if & # 0.

Theorem 2. If
(58) 02 > B+ >k
k=1
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- 02 _ D
(59) A< 4,35(1+ ﬂ)—]—p
a3 a?
Theorem 3. Suppose that
t *t]
(60) fzdFy(x) <0 and [ xdFg(x) > 0
~*ti “tk

for some —o0 < —*t < — tpand t;, < ¥, < o .

If

n *te
(61) 02> > [ x2dFi(x), then (59) holds.

k=1 -*¢

These theorems may be proved in the same way as the original Theorems 2
and 3 in [2] except that our Theorem 1 is used instead of that given in [2].
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