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MATEMATICKO-FYZIKALNY CASOPIS SAV, X, 3-1950

SOME INEQUALITIES FOR THE SPECTRUM
OF A MATRIX

MIROSLAV FIEDLER, VLASTIMIL PTAK, Praha

Introduction. It is the purpose of the present paper to prove several
results which enable us to associate with every matrix a region of the complex
plane which contains the spectrum of the matrix considered. All known results
of this type consist in formulas which use absolute values of the elements of
the given matrix (see below). In distinction to these theorems, our results are
based on the use of a norm of the whole non-diagonal part of the matrix. Our
results are valid for a fairly wide range of norms, including especially all
l,-norms.

Further, the results of the present paper are proved for matrices partitioned
into blocks and make clear the different role played by the diagonal and nondia-
gonal blocks.

The paper is divided into eight sections. In the first one, some auxiliary results
and definitions are collected. The second and third paragraph contain sufficient
conditions for the regularity of a matrix. In sections four and five, these condi-
tions are applied to matrices A — A to obtain inequalities for the proper
values of 4. In the sixth section we apply tensor products of linear spaces to
obtain some auxiliary inequalities.

The seventh and eighth sections contain several corollaries of the main
results in the most important special cases.

The starting point of all previous investigations of this type was the result
of Hadamard on matrices with “dominant diagonal elements” stating that
a matrix (a;;) is regular if | a;; | > z la,, | foreachi. Applied to the matrix 1 — A

k=i
this yields the fact that the whole spectrum of A is contained in the union of

the “Gershgorin circles”

a; —A| = Z | a,. |. There is an extensive literature
k+i

on questions of this type; a good bibliography may be found in the monograph

of Householder [4]. As for norms of matrices and tensor product, the reader may

consult [1], [2] and [3].
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1. Notations and lemmas

Let X be the linear space of all vectors  with complex coordinates 2, . . ., z,.
We denote by G the set of all real functions g defined on X which fulfil the
following conditions:

(1) g(zy + x,) = g(xy) + g(@,) for all x,, x,€ X;

(2) g(Ax) = | A | g(x) for all x € X and every complex number :

(3) g(x) = 0 implies x = 0.

The functions ¢ € G are called norms on X. To every norm ¢ € ¢ there corres-

ponds an associated norm of n-rowed square-matrices as follows: for such
a matrix

9(4) = sup g(Ax).
g(z) = 1

It is easy to verify that this matrix norm satisfies the relations

g(4 4+ B) = g(4) + g(B),
9(4AB) = g(4) g(B),
g(24) = | A | g(4)

for any matrices 4, B and complex numbers 2.

We shall denote by N the set {1,2,..., n}. With every subset K CN we
associate a projector P(K) in X transforming a vector x with coordinates x;
into the vector y with the coordinates y, = x; for i€ K and y; =0 for j non € K.

Definition. Let L denote the subset of those norms ge G which fulfil the fol-
lowing conditions:

(L) IfK C N,theng(P(K)) < 1;
(Ly) IfK,, ..., K,is a partition of N and P; = P(K,),i=1,...,7, then
g(> P:AP;) < max g(P,AP))

i=1
for every matrix A4;

(Ly) Let KCN, P= P(K),Q = PN —K);
if A is a matrix with PAP = 0, then

g(PAQ + QAP) < g(A).

(1,1) Let geG be a norm which fulfills (L,) and the following condition:

(L,) If KCN,P = P(K), Q = P(N — K), then g(4) < max {g(P4Q),
g(QAP)} for every matrix A satisfying PAP = QAQ = 0.
Then g has the property (Ls).

11 Matematicko-fyzikalny ¢as, X, 3.
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Proof. Suppose that a matrix A fulfills PAP = 0. Let us put B = 4 —
—QAQ. 1t follows that PBP = @QBQ = 0, PBQ = PAQ, QBP = QAP
PAQ + QAP = B. Assuming (L,), we see that g(PAQ + QAP) = g(B) =
< max {g(PBQ), 9(QBP)} = max {g(PAQ),g(QAP)} =g(A4); thelast inequality
is a consequence of (L,). This proves (Ls;).

(1,2) If xis a vector with coordinates &, . . ., x,, put §u(x) = max |z; | and
1

1
g (®) = (Z | @, \P\-” for p = 1. Then g€ L and g, € L.

3

Proof. It isa well known fact that g, (4) = max Z | a;, | for every matrix A.
i k

Using this expression, the conditions (L) may be verified immediately. Now
let p = 1. (L,) and (L,) being evident, it is sufficient according to (1,1) to
prove (L,).

Let K C N, P = P(K), @ = P(N — K),
and let 4 be a matrix with PAP = QAQ = 0. Is is easy to see that

(90 (PY)]” + (g @) = [90n())"

for every vector y € X. From this fact and from P? = P, @? = it follows that,
for every vector x € X,

[9)(A2)]” = [g(PAX)] + [9,)(@AX)]? =
= [g(PAP + @) x)IP + [9,(QA(P + @)2)]" =
= [9p(PAQx)}” + [9p(@APx)]” =
= [9p)(PAR)) (9, (@) + [9m(Q@AP)) [9,)(P2)]P =
= ([9(@2)]7 + [90n(Px)]? max {[g,)(PARQ)]", [9,)(QAP)]"} =

= [9(,)(2)]” max {[g,(PAQ)]", [9,)(QAP)]"}.
Hence

Ip(Az) = g4y (x) max {g,)(PAQ), 9., (RAP)},

so that g,(4) = max {g,,(PAQ), g, (@QAP)}. The proof is complete.

It will be convenient to introduce some further notations and conventions.
Let KCN and P = P(K) and put Z = PX. Let g € L and let T be a linear ope-
rator which transforms Z into itself. We intend to show that the norm of 7T,
associated with ¢ on Z, is equal to the norm of TP, associated with g on X.
To see that, let us denote by ¢, the norm induced on Z by ¢. The associated norm
g:(T') is equal to

9.(T) = suyp g(Tx) = suzp 9(TPz) < su}[() g(T'Px) = g(TP).
g(zace)él y(ze)§l gf:)él



Conversely,
g(TP) = sup g(TPx) = sup g,(TPx) =

g@)=1 g(®)<1
= gu(T) f‘fl’l 91(Px) = g:(T) g(P) = go(T).
g =

Thus ¢,(7T) = g(TP). 1t will lead to no misunderstanding we if agree to
write g(T') instead of g,(7").

Finally, if B is a matrix, we define g(P;B) = 0 if PBP is singular on Z,
g(P; B) = [g(W)]-* if PBP is a regular operator on Z and W is its inverse
operator on Z. For P = K we write simply ¢(5) instead of §(#; B). It is easy to
verify that

D. (/( b )
g(P; B) —1161})1"‘ g(e)

=0

2. A regul rity condition for a matrix

In this paragraph we derive a generalization of the well known Hadamard
regularity condition for matrices with dominant principal diagonal.

(2,1) Theorem. Let A be a matriz, K., ..., K, a partition of N, P, = P(K,).

Let us denote by B the matrix B= A — Z P, AP, and let g be a norm g €
i-1
fulfilling conditions (L) and (L,). Let §(P;; A) > g(B) for i = 1, ..., r. Then 4

s regular.
Proof. Let us put R = > VoW, P, W= Z [g(W)]t WP, where W,
i=1

are operators on P,X, inverse to P,4P;; the operatom W, exist since ¢(P;; 4) >
> 0. According to (L) and (L,), we have g(R) =< max Vg gand g(W)<1.

Now, RAR = R(Z P,AP; + B) R = Zg i) P,AP; + RBR. 1t is easy to

i=1
see that the matrices Z g(W,) P,AP, and W are inverse to each other. Con-

sequently, RAR = (Zg PAP) (£ + WRBR).Butg(WRBR) < (RBP)g

< [g(R)]zg(B)ég(B)maxg( W,)= "rﬁﬁigq(g}_z—) < 1, so that the series S‘ Hiis
v i= 0

convergent for H = —WRBR to the matrix (£ + WRBR)-'. Hence RAR is
regular, and so is 4.
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3. Another regularity condition for a matrix

The results of the present paragraph are based on some inequalites for norms
of matrices. These inequalities will enable us to prove a general criterion for
the regularity of a matrix.

(3,1) Let K C N, P=P(K), Q=P(N — K). Let A be a matrix with PAP =
=0; ifc =0 and v =0, put B = o (PAQ + QAP) + vQAQ. Then g(B) <
< max (o, 1) g(4) for every norm ge L.

Proof. Let us put & = min (o, 7). Since 4 = (P + Q) A(P + @) = PAQ +
+ QAP + QAQ. we have B = (0 — &) (PAQ + QAP) + (v — £) QAQ + &A.
are fulfilled, so that g(B) = g[(c — &) (PAQ - QAP) + (r — &) QAQ + £4] =
= lo—8& + (r—8&) + &l g(d) = max (v, 7) g(4).

(3,2) Let K,..... K, be a partition of N, P; = P(K,), and let ~;, =, =
>

~

=...=x~, = 0. Let A be a matrix with PLAP, = 0. Then for every norm ge L

g( Z xiijiAPj) = xxg(A).

i, =1
Proof. Let us put B = Z ~iv; PLAP;. Forr =1 or xy = 0 we have B = 0
ii=1

and the assertion is valid. Thus, let x, > 0. We put H = z xx; R AR; where
ij=2

R, = P, + Py, Ry = P,, ..., R, = P,. 1t is easy to verify that P,HP, = 0 and
B = "L (P.HQ, + QuHIPy) + QuHQ,
Xy
where @, = P, + ... 4 P,. It follows from (3,1) that

gB) = max (2, 1) g(tt) = gt

X2
Now H = DAD where D = Z x;R;, so that ¢g(D) < x, according to (L,).
=2
Hence g(H) < ¢*(D) g(A) and

This completes the proof.

(3,3) Let K, ,..., K, be a partition of N, P, = P(K,). Let A4 be «
matrix with P, AP, = 0 for i = 1,2,...,r, let D be a matrix with D =
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r

Z P.DP,. Then g(DAD) < max {g(P;,DP;) g(P,DP),)} g(A) for every norm
i=1

- 4
cL.

Proof. If D = 0, the assertion is true. Let D = 0, so that P,DP, = 0 for at

<

least one ¢. Let us put «, = ¢(P;DP,;) and o; = for o, =0, o; =0 for

a; = 0. For the matrix M = Z o P.DP;, we get g(M) <1 by (L,), and it 1s
i=1
easy to verify that
‘\DAD = M (3w, PAP;) M.

iy

From (3,2) it follows that

g(DAD) = g (> xx;P;AP)) = max () g(4).
b z‘#;
which completes the proof.

(3,4) Theorem. Let r = 2, let K,, ..., K, be a partition of N, P, = P(K,).
Let us denote, for a given matriz A, B = A ——Z P.AP,. Let ge L and suppose

i=1
that

g(P; A) §(P;; A) > g¥(B)

for each pair i, j (i, ) =1, ... 7), 1 & j. Then A is reqular.
Proof. Since g(P;; 4) > 0, it follows that P,AP; is regular on P, X for
t=1,... r. Let us denote by W, the operator on P, X, inverse to P,AP,.

Put R = Z VoW P, W= Z (W) WP;. According to (L,) and (L,), we
have g(W ) < 1. In the same way as in the proof of (2,1),
RAR =R (3 P,AP, + B) R = > ¢(W,) P,AP, + RBR =
i=1 i=1

_( N g(W,)P; AP,) (E + WRBR).

1

u'[

L

From (2,3) we get g(WRBR) < g(RBR) <

S B 9(B)
= I,I,I?fy ]/9 Vg W) ~ min {§(P; 4) g(P;; A)} =t

DY ES]

Hence RAR, as well as A, is regular.
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4. The spectrum of a matrix

In this section, we shall use the criterion of regularity given in (2,1) to
obtain an estimate of the spectrum of a matrix.

(4.1) Let K4, ..., K, be a partition of N, P, = P(K,). Let A be a matriz,

B=4— ZPlAPi. Let g be a norm g€ G which fulfills the conditions (L,) and
i=1
(Ly). Let us denote by M, (1 =1, 2, ..., r) the region of those complex nuwmbers
z, for which
g(P;; A —zE) = g(B).

Then, every eigenvalue of A lies at least in one M.

Proof. Let 4 be a complex number outside every M,. It follows that

g(P;; A — AE) > g(B)

fori =1, 2,..., . Consequently, the matrix 4 — A is regular by (2,1).

5. Second theorem on the spectrum of a matrix

In this paragraph we use theorem (3,4) to obtain regions in the complex
plane, containing all the eigenvalues of a given matrix.

5,1) Let K., ..., K .(r = 2)be a partition of N, P, = P(K,). Let A be a given
matrix, g € L a norm, and let us denote by M;; (1,7 = 1. ..., 7,1 == j) the region of
those complex numbers z, for which

g(P; A—zE) §(P;; A —zB) = g*( > P,AP)),

kyl=1

kL
Then every eigenvalue of A lies at least in one of the regions M;; (i,j=1, ..., 7;
i %+ j).
Proof. Let 4 be a complex number such that Anon € M;; fori,j =1,... r
and ¢ = j; 1. e.

G(P;; A — AE) §(P;; A—AE) > ¢*( > P,AP).
kyi=1
k1

Since > P,AP,=A—JE— > P,(A— AE) P, it follows immediately from
Bi=l i=1
theorem (3,4) that A — AE is regular.
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(5,2) Theorem. Let K, . . ., K, (r = 2) be a partition of N, k; the number of
elements of K;, P, = P(K,). Let u8 define for 0 < & <1 the function v(§) =

j T
_ é (1— Vit’éé’), v(0) = 0. Let A be a matriv, B = A4 — Z P AP;, geL
i=1

a norm. If i is a given index (1 =1 =7), le}

¢, = min {inf [§(Pi;; 4 — AH) + g(Py; A — AE)]}.
ki 2
If ¢, > 0 and

then the region H; of all complex mumbers z such that
g(P;; A —zE) = g(B) v(0)),

contains exactly k; etgenvalues of A (each of them considered with the correspond-
ing multiplicity).
r
All remaining eigenvalues are contained in the region H = u HF where HY is
i=1
i
the set of all complex numbers for which g(P;; A —zE) < g(B). We haveH;C H}
and H¥ is disjoint from H.

Proof. It is easy to see that the assertion is valid if B = 0. Hence let B = 0.
Then 0 < o; < 1 and consequently 0 < v(s;) < 1.

We shall prove first, that H} is disjoint from each H¥ for j == i. If, on the
contrary, A,€ Hf n Hf(j 4 1), then ¢; < g(P;; A — AE) + g(P;; A — 2,B) <
=< 2¢(B) = o,¢; < ¢;. This is a contradiction.

Further, all the regions H} and the region H; are bounded: if z & 0,

j(P;; A —zE . N .
9Py A —=28) _ gJ(P;; B —27'4) - g(P;; E) for |z | — oco. But g(P;; ) =

|z |
= [9(P;)]"* = 1 according to (L,), so that

[2]

g(P;; A —2H) > -

[S)

for all sufficiently large z.

Now, let ¢ =H,u LSH}" We shall prove that all eigenvalues of 4 are
i=1
j*i
contained in (. This will follow from theorem (3,4) if we prove that for 4
non € G and each pairk, [ (k,l=1, ..., 7, k1) g(P,; A— AE) g(P;; A—AE) >
> g3(B), since then 4 — AE is regular.
To prove this inequality, we shall distinguish two cases:
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(1) 2 non € Hf and A non € Hf. Then

g(P; A — AE) > g(B)
and

g(Py; 4 — AE) > ¢g(B)
which implies the inequality considered.

(2) A€ H¥, so that k = ¢. Further,
g(Py; A—2E) = ¢; —§(P; A — AB),
which gives
gJ(Py; A— AE) g(P;; A — AE) = &(c; — &)

for & = g(P;; A— AE). Since Ae Hf and 2 non € H;, we have clearly
g(B) v(s;) < & = g(B). The function x(c; — ) is increasing for z <~Zi, and,

consequently, in the interval {g(B) v(s;), g(B)>. Hence

Ee— &) = g(B) v{oy)(e; — g(B) v(or)) —
— 4(B) v(c) [%B) —y(B) v(cf,-)] — g%(B) v(o) [2" - v(m-)] — g(B).

g; [

t

This proves the desired inequality in the second case. Now, let us denote by
A(&), 0 =& <1, the matrix

A(g) = > PAP;+ £ > PAP,.
j=1 Jok=1
j*k

If we define, in a similar way as in the theorem,

and the numbers c;(¢) and o¢,(¢), we obtain
B(E) = fB, C,‘(E) = €4, O'i(g) = SO'i-

It is easy to see that the assumptions of the preceding considerations are
fulfilled for every & € {0,1> so that, for every £ € (0,1>, the matrix A(&) — AK
is regular, if 1 lies in the complement C of G. The region C separates H; from

,
L_JlH;k Since the roots of a polynomial of a given degree depend continuously
T4

on its coefficients, the matrix 4 = A(1) has the same number of eigenvalues
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in H; as the matrix 4(0). But the matrix 4(0) — AE = > (P;AP,— AP)) is
i=1

singular if and only if at least one summand P;4 P; — AP; is singular in P;X.

The summand P;4P; — AP, is singular in P, X for k; numbers (each consid-

ered with its multiplicity), all of them lying in H,. If j == 4, then P,AP;, — AP,

7
is regular in P;X for A non € H}, hence for 1 € H;, Hf being disjoint from H,.

]
It follows that H, contains exactly k; eigenvalues of 4(0), and consequently,

of A (with corresponding multiplicities). The proof is complete.
(5,3) Theorem. Let K,, ..., K.(r = 2) be a partition of N, k; the number of

elements of K;, P; = P(K). Let A be a matrix, B = 4 — Z P;AP;, let g € L.
j=1
Let i be a given index and suppose that

0 < ¢, < min {inf (§(P;; A — AE) + g(P,; 4 — AE))}
k+1i 2
and

Then the region H| of all complex numbers z such that

g(P;; A—zE) = g(B) v(o})

contains exactly k; proper values of A (each considered with the corresponding
multiplicity ).
.

All remaining proper values of A are contained in the region H = u HF
i=1
ji

where H¥ 1s the set of all complex numbers z for which §(P;; A —zE) < g(B).
We have H; C H¥ and H¥ is disjoint from H.

Proof. It follows from our assumption that 0 < ¢; =< ¢;, where ¢; is the num-
ber defined in theorem (5,2). It follows that 1 > o; = ¢,. Since v is increasing
in the interval (0,1), we have v(o;) = v(0;). If H, is the region defined
in (5,2), we have the inclusions

H, ¢ H; ¢ HF.

Let us show now that H¥ n H is empty. Indeed, suppose that A€ H¥ n Hf
for some j 5= 7. Hence

¢; =g(P; A—2E) + g(P;; A — AB) = 29(B) = ojc; < ¢

which is a contradiction. According to (5,2), the region H, C H¥ contains exactly
k; proper values of 4 (each considered with its multiplicity) and the region H
contains the remaining ones. It follows that H; contains exactly &, proper values.
The proof is complete.
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6. An application of tensor produets

In this paragraph we shall recall some notions of the theory of tensor products.
This theory will enable us to find a theorem similar to (5,2) but more convenient
for applications. ‘

Let Z be a given linear space. We denote by Z’ the adjoint space of Z, i. e.
the space of all linear functionals on Z. For 2’ € Z’ and z€ Z we denote by {z, 2">
the value of the functional 2’ at the point z.

Let X and Y be two finite-dimensional linear spaces, B(X, Y) the linear
space of all bilinear functionals defined on the pair X, Y. The adjoint space to
B(X, Y) will be called the tensor product of X and Y and will be denoted by
X®Y. For x € X and y€ Y, the tensor product x ® y of @ and y is defined as
that element of X ® Y, for which

b, x @y> = bz, y)

for all b € B(X, Y). It is easy to see that every element of X ® Y can be writ-

ten in the form Z x; ® y; wherex;€ X and y; € ¥ and » is the smaller of the di-
i—1
mensions of X and Y.
Further, let L(X, Y) denote the linear space of all linear transformations of
X into Y. We shall show that there is a natural isomorphism between the
spaces L(X, Y)and X’ ® Y. Infact, it is not difficult to verify that the mapping

fof X' ® Yinto L(X, Y), which transforms the element { = z Qe X' @Y
&

into the element f(t)e L(X, Y) such that g(f)xz = Z<x, x> y; for all xeX,
iT1

is an isomorphism between X’ ® Y} and L(X, Y).

In the sequel, we shall need the notion of the tensor product of linear
transformations. Let X, Y, V and W be linear spaces. Let us define a linear
mapping ~ of L(X, V) ® L(V, W) into (X ® V, ¥ ® W) in the following
manner: if 4 e L(X, Y), Be L(V, W), let x(A ® B) be the element of L(X®V,
Y ® W) defined by the relation x(4 ® B) (x ® v) = Ax ® Bv fulfilled for
each xe€ X and eachwve V. It is easy to see that x is onto and an isomorphism.
We shall use this fact in the case X = ¥V = X, V= W = X,, so that the
transformations considered are operators in X,, X, respectively. If e,, . . ., ¢,,
is a basis of X, f. ..., f, a basis of X,, we define the matrix of the operator
A ® B in these bases as the matrix of the operator (4 ® B) € L(X, ® X,,
X, ® X,) in the basis ¢; ® f;. It will be denoted by [4] ® [B] where [4] and
[B] are matrices of A and B in the respective bases.

Finally, let us defineamapping y of L(X,, X,)® L(X,, X,) into L[L(X], X,),

158



L(X}, X5)] where X,, X, are linear spaces. This mapping y will transform an
element te L(X,, X,) @ L(X, X,) into the element w(t)eL[L(X|, X,),
L(X|, X;)] such that

y(t) & = px(t) 1.

for each &€ L(X;, X,). Here f is the isomorphic mapping of X, ® X, onto
L(X}, X,) and « the isomorphic mapping of L(X,, X,) ® L(X,, X,) onto
L(X, ® X,, X, ® X,) defined above. It is easy to see that y is an isomorphism.

Now, let us turn to the case when normed spaces are considered. Let g and &
be norms in X and Y respectively; we define a norm p = 7(g, &) in L(X, Y)
in the following manner. If A e (X, Y), we pubt

p(A) = sup (h(Ax); g(x) = 1).

This is the usual norm of a linear transformation. If X = Y, we have the case
of linear operators in X; it is then customary to write simply g for (g, g).
If Y is the real line E,, we have the case of linear functionals on X. The norm
(g, | . |) on L(X, E,) = X' is called the adjoint norm of g and will be denoted by
g'. Thus

) =sup (| @y > s gl) = 1),

If X and Y are linear spaces with norms g and A, we define a function ¢ =
= (g, h) in the following manner: if 4 € L(X, Y), we put

§(A) = inf (h(4x); g(x) = 1).

Clearly we have g(4) = 0 if 4 is singular. If 4 is regular, it is easy to show
that ¢(4) = (p(4~Y))~*, where p = t(h, ¢g) on L(Y, X). If X = Y, we write
simply ¢ for 7(g, g) in conformity with the convention already introduced for
matrices.

Further, it will be necessary to introduce a norm into tensor products.
There are many ways of defining a reasonable norm in X ® Y. A norm ¢ in
X ® Y is said to be a crossnorm of ¢ and & if

Hx @ y) = g(x) hy)

for all ze Xand y €Y. Let ) bean arbitrary crossnormof gandhandletue X ® Y.
If w= Z %; ® ¥y;, we have

) = > da; @) = 2 g(@) by

Hence #(u) = y(u) where y ==y (¢, h) is given by
p(u) = inf (3 g(@) b(y,); D2 @y = u).
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It is not difficult to show that y is a crossnorm of g and A; it follows that
(g, h) is the greatest crossnorm of g and . Another crossnorm may be obtained
in the following manner. There is an isomorphic mapping § of X ® Y on
L(X’, Y). We shall define a norm 4 = A(g, ) on X ® Y by A(u) = k(B(u))
where £ is the norm z(g’, &) on L(X’, Y). Let us show that 4 is a crossnorm of g
and k. Indeed, we have Alx ® y) = k(f(x ® y) = sup (A(B(z @ y)x'); g'(x') =
= 1) = sup (h(<x, @' y); ¢'@) = 1) = g(a) h(y).

Let us consider now a special case where the norms in question may be easily
computed. Let p be a real number p = 1. Suppose that X and Y are spaces
with bases e, ..., e, and f, ..., f,, respectively and that the norms ¢ and A
are given by

n 1

" 1
g@@) = (> |& )7 and h(y):(zm )7,

1

the numbers &; and #; being coordinates of x and y in the given bases. Let

e; ... e, be the dual basis of X'. If a;, is the matrix of an 4 e L(X’, Y)in the
1

bases ¢] ... e, and f,, ..., f,, put G, (4)= (Z | a;, [")7. Wehave the following
ir

lemma.

(6,1) Let p be a real number = 1. Let X and Y be linear spaces with 1, -norms
gand h. Ifue X ® Y, put

npy(u) = G, (B(u))

where f(u) € L(X', Y). Then n,, s a crossnorm of g and h.

Proof. Take an # ® y and put 4 = f(x ® y). Take an 2’ € X' and put
z = Ax'. Since z = da' = {x, 2'> y we have (, = n, Z &, &, the numbers

Ciy mis &5, &7 being coordinates of z, y, , «’ in the given bases. It follows that
1

a;. = n;&, whence (Z | @ ]1’}_?7 = g(x) h(y). The proof is complete.
ik

(6,2) Let K,CN, P, = P(K,) and X, = P,X where 1 = 1, 2. Let g be a norm
on X and let p be a crossnorm of g, and g, where g, are the norms induced on
X;byg. Let Ae L(X, X) and let A be a complex number. If we write simply p for
(p, p) in L(X, @ X,, X, ® X,), then

P4, ® E,—E, ® 4,) = g(Pﬁ A — AE) + g(sz A — AK),

where A; = P;AP; (considered on X;) and E, is the identity operator on X,.
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Proof. For 1 = 1,2 there exist non-zero vectors y; € X, such that

g(Ay; — Ay:) -
Tl o — g(P;; A — AR).
9(:) 9P )

We have, by definition of p
P4, @ E,—E, ® A,)) = inf pMA, ® B, — By, ® 4y)1)

t+0 p(t)
eXi®X,

Now the last expression is majorized by the analogous quotient with ¢ =
= y;; ® Y, where y,€ X, are defined above. This quotient is, with respect to
the definition of «, equal to

_2(_411?/1 DY — 1 @ A,y,)

P @ Ye) Py @ Ys)
— Ay — A1) @ ) X Py @ (Asys — Ays))
- Py @ Ys) (Y1 ® Ys)

__P((AL?/; — M) @ Yo— 1 ® (Asy, — lyz))_ -

Since p is a crossnorm of ¢,, and ¢,, the last sum is equal to

g(Awy, — yy) g( Ay, — Ays)
9(y1) 9(y2)

= §(Py; A — 2E) + g(Py; A — AE)

and the proof is complete.

(6,3) Theorem. Let K, ..., K./(r =2) be a partition of N, P; = P(K)),
X, = P;X, k; the number of elements of K,. Let A be a matrix and put A; =
= P,AP; on X;. Let ge L and let g; be the norms induced on X; by g. Let p,,
be crossnorms of g, and g, and let us write simply p,, for ©(p, Prs) on L(X, ® X,,
X, ® X,). Suppose that, for some index 1,

¢, = min Py(x(4; ® EjMEi ®4,) >0

i=1,...,

and

for B=A -3 P;, AP;.
j=1

7

Then, the region H; of those complex numbers z satisfying the inequality
g(Py; A —zH) = g(B) v(o})

(v(x) defined in (5,2)) contains exactly k; eigenvalues of the matrixz A, each of them
considered with the corresponding multiplicity.
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r
All remaining eigenvalues of A are contained in the region H = u HF
j=1
. . . j*i
where HF¥ is the region of those complex numbers z, for which

§(P;; A —zE) < g(B).

The regions H and H; are disjoint.

Proof. The present theorem is an immediate consequence of theorem (5,3).
It is sufficient to show that the number ¢; fulfills the assumptions of (5,3);
this, however, follows from (6,2).

Remark. Lemma (6,1) enables us to compute p,(v(4; @ £, — KE; @ A;))
in the most important case when g is the /,-norm. Then, if o = 7(G,, G,))
Po(v(A; © B, — B, © 4) = o((4,] © [B,] — [B;] © [4,)), where [4,]....
are matrices of the operators 4,, ... in the given bases. This last expression
can be easily computed for p = 1,2 or oo (see, e. g. [3], p. 62—63).

7. Special cases

In this paragraph we shall spezialize some of the results obtained. First,
consider the case when the sets K, ..., K, contain only one element each, so
that r is equal to the order of the matrices, » = n.

It is easy to see that for every norm g€ L and every matrix 4

J(Py; A—AE) = |a; — 1|,
plvd; @ B, — B, @ A;)] = | ay; — j; |
If 4 is a given matrix, let M(A4) be the matrix with elements m,; = 0 and

m;; = a;; for @ == 7.
The theorems (3,4), (5,1) and (6,2) have the following consequences:

(7,1) Let A = (ay;) be a matrix, let g€ L. Suppose that
| aza;; | > g*(M(4))

foralli, 7 =1,...,n, 4 =7 Then A is reqular.

(7,2) Let us denote, for a matrix A = (a;) and a norm ge L, by M;(i 5= j,
i, J = 1,...,n), the region of all complex numbers z such that

la; —z|]a;—z| = g2(M(A)).
Then, each eigenvalue of A lies at least in one of the regions M.

162



(7,3) Let A = (ay;) be a matrix, let ge L. Let i be a given index. Suppose that

¢; = min | a; —a;; | > 0.

j*i
If0 <o, = iﬂ%& < 1, then the circle
1— 1 —¢2
lay; —z| = g(M(4)) -—1(‘7‘_——‘

contains exactly one eigenvalue of A.
Finally, we shall specialize the theorem (6,2) for the case when r = 2 and
one of the sets K; contains a single element only.

(74) Let A = (a;) be a matrix. Let ge L and suppose that g fulfills (L,) as
well. Put

0 == g(l) 07 AL 0)7 Ql - g’(17 O, .. '70)’
o = g(0, ayy, Qyy, . . ., Qy), © 9'(0, ayg, Qgg, « -+, Gyy).

Let K ={2,3,...,n}, P= P(K). Let us assume that

c=qP; A—ayE) >0
and that
- — 2 max (pw’, 0'w)
¢

< L

Then the circle | a;; —z | < v(c) max (pw’, o'w) contains exactly one eigenvalue
of A. All remaining ergenvalues of A are contained in the region

§g(P; A —zF) < max (oo’, 0'w),

which is disjoint from the above circle.

Proof. The present theorem will be an immediate consequence of (6,3)
if we prove that
c=pxd, @ B, —E, ®@4,)),

9(B) = max (ow’, 0'o),

with 4, = P,AP, and B = P,AP, + P,AP, where P, = Pand P, =
= P(K,), K, = {1}. In the first formula, we write p for 7(p, p) where p is
a crossnorm of ¢, and g,.

Take g(B) first. Put R = P, AP,,S =P, AP,, so that g(5) < max (g(R), g(S))
by (L,). According to (L), we have g(R) = g(P,AP,)= g(P,BP,) = g(B) and simil-
arly, g(S) = ¢g(B). Tt follows that g(B) = max (g(R), ¢(S)). Let a, be the vector
with coordinates (0, ay,, . .., @,1), let a; be the functional with coordinates
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(0, @y, . . ., @y,). Similarly, let e, be the vector (1,0, . . ., 0) and e, the functional
(1,0,..., 0). We have, for each ze€ X

Rx = (x, a) e,
Sz = {x, e a;

whence g(R) = g'(a]) gle,) = oo and g(8) = g'(¢}) g(a,) = ¢'0
Further, consider p(x(4, ® E, — B, ® A4,)). We have. the dimension of
X, being 1,

p(x(Al ® Eg — El X A2)) — 1inf ])(Y(Al ® E2 *El ® A2)) —

t%0 p(t)
X, @ X
= inf P4, ® By —E, ® 4,)(x 1@ %))
@ 10 p(r; ® xy)
— ot P @, —a @A) o P © (a0 — Ayry))

21 @ 22+0 p(a; @ ) 2y @70 P @ )

e (A, — Agw,) .
“:lif;) g(xy) = g(P; ay, £ A).

8. An application to normal matrices

In this paragraph we shall specialize the preceding results in the case that
the matrices considered are normal and the norm g€ L is the Kuclidean one.
First, we shall prove two lemmas.

(8,1). Let M,, M, be two closed non-void sets of the complex plane C. Let
ze(.
Then
oMy, M) = o(z, My) + o(z, M,)

where ¢ denotes the distance in C.

o(z, m‘i)

Proof. There exist points m,€ M, and m,€ M, such that p(z, M-) 0
oz, My)

(i = 1.2). Now o(M,, M) = o(my.my) = 0(2, my) + (2, mg) = oz, My) +
which completes the proof.

(8,2). Let A be a normal matriz, let h denote the Euclidean norm g, in X.
Let z be a complex number, M the set of all eigenvalues of A.

Then R
A —zE) = o(z, M).
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Proof. Since the matrix 4 is normal, there exists a unitary matrix U such
that UAU* is diagonal. According to the definition of 4 it is easy to see that

WA —2E) = (UAU* — 2E) = min | }, —z |

where 1; are the diagonal elements of UAU¥*, consequently the eigenvalues
of A. Thus, (4 — zE) = o(2,M) and the proof is complete.

(8,3) Theorem. Let A be a matriz, K, . . ., K, a partition of N, P; = P(K)),
k; the number of elements in K. Let the linear mappings A; = P; AP; be normal
forj=1,..., 7. Let M(j =1,...,r) be the spectrum of A; in P, X, let c; =
= min o(M;, M;) for a given index i. If ¢; > 0 and
i
o] = 2h(,B) <1

i

where B = A — > P,AP;,
i=1
then the spherical neighbourhood R, of M, consisting of those complex numbers z,

Fulfilling
o(M;, z) = h(B) v(o;)

(v(x) was defined in (5,2) and h is the Buclidean norm), contains exactly k; eigen-
values of A, each considered with its multiplicity. The remaining eigenvalues are
contained in the region
o(U M, 2) = h(B),
ji
disjoint from the preceding one.

Proof. This is an immediate consequence of theorem (5,3) since

¢, < min [inf (W(P;; A — zB) + iz(Pj; A —zE)]
jE z
according to (8,1) and (8,2).

Remark. The number o(M;, M;) is equal to o ([4;] @ [H;] —[E;] ® [4;])
where @ = (G y), G(y) (cf. the remark following (5,3)). This follows easily
from the fact that 4, = U, D, U¥, A; = U,;D;U¥ where U,, U, are unitary
and D;, D; diagonal with elements from M;, M, respectively.
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Ceskoslovenské akademie véd v Praze

HEROTOPHIE HEPABEHCTBA IIJIfI CIIEKTPA MATPUI[bI
MHPOCIHAB ®UJIJIEP u BJOACTHMHI HTAK

Buieoant

B macrosmeii pabore pacemarpusacrest cacayiomasn sagaua: Ilyers Oyger A marpuna
HOPSLARA 77 ¢ ROMILICKCHBIMIL dareaenrramu a,, . Hymuo oupene/urs takyo obiactbh G kom-
ILICKCHOI ILTOCKOCTH, 4TOOLl BCC cnerTp Marpuipl A copepaadcsa B G. Pesydastath droro
THIA BLITCRAIOT 13 HecaeoBaniil ye0Buii peryiasaprocti Marpuil. Tak, nanpusmep, ocnonuni
pesyaprat o Kpyrax 'epmropupa BHITCKACT N3 KJIACCHUECKOTO YCJOBHA PCerylsspHOCTH
Apayapa. Bee H3BeeTHbIC peaydbTaThl 9TOIO THIA HCHO/L3YIOT abCOMIOTHLIC BeJIMYMILL
DJIEMCITOB  paccMaTpiuBacyoii ymarpuisl. Oneniku noayuennsie B 210ii pabore copepsmar
TO/IBKO HOPMBI HENAIOHAJILHOI YaCTH MATPAILL! 1, TP YeM HeAMaroHaibHast 4acTh MATP 1Ll
nornzaerca B Gosice o0nem cmpic/ae, a MMCHHO Tak, YTO JONYCKAIOTCS B MATPHILI pas-

JACJCHHBIC B KJICTRKH.
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