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ON THE PROLONGATIONS
OF DIFFERENTIABLE DISTRIBUTIONS

IVAN KOLAR, Brno

Using the theory of jets, we clarify some problems in the foundations of the
higher order geometry of diffcrentiable distributions. We first show that
one can naturally introduce two kinds of prolongations of such a distribution.
Then we establish an invariant algorithm for each kind of these prolongations.
Meeting the semi-holonomic contact elements in the course of the prolongations
of the second kind, we explain from the conceptual point of view the well-
known analogy between some geometric properties of manifolds with con-
nection and differentiable distributions on homogeneous spaces. In conclusion,
we outline how to treat the distributions on spaces with Cartan connection.
Our considerations are in the category C*. The standard terminology and
notations of the theory of jets are used throughout the paper.

An m-dimensional distribution 4 on a differentiable manifold 1/ is usually
introduced as an assignment to each point x € M an m-dimensional subspace
of To(M),m <n =dim M, [2]. Since we aim at higher orders, we shall
equivalently define A4 as a cross-section of the fibered manifold K! (M) of all
regular contact ml-elements on M. As K} (M) is an associated fibre bundle
of the symbol (I, K}, , L}, H'(J])), where K, , = K. (R"), the indirect
form of 4, [6], is a mapping HY(M) - K} .. Let K}, < K., be the subspace
of all elements transversal with respect to the canonical projection R» — Rm
and let

HY (M) = {ue H(M); u(A(x)) € K}, x = pu} .

On ];7;11,m> there are natural coordinates y;, [7]. Hence we have the coordinate
functions a’: HYM)->R of 4; in other words, dz’ = a)(u) dz? are the
equations of the subspace u-1(4(x)) < To(R"?). Let ¢ be the canonical form

of HY(MM), [2], [4]. By a certain analogy to [7], Proposition 1, we shall say that

(1) (PJ:aZ'Ppy »q¢ ...=1..,m,
J,K,...=m-+1,...,n,

are the formal equations of 4.
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In accordance with the general theory of prolongations of geometric object
fields, the cross-section A: M — K} (M) is prolonged to a cross-section jl |:
M — J'K}(DM), where J'Kl.(M) means the first prolongation of fibered
manifold K} (M) - M. This cross section will be called the (first) prolongation
of the first kind of 4. By [6], J'K! (M) is a fibre bundle associated with
WYHY(M)) = H2(M). But there is a natural reduction H2(M) of H2(J)
and it is more appropriate to consider J*K} (M) as a fibre bundle associated

m

with H2(M). Analogously, the cross-section §j°4: M — J"'K} (M) will be said

m
to be the r-th prolongation of the first kind of 4, the space J"K () being
considered as a fibre bundle associated with H'*(3). On the other hand,
using some specific properties of distributions, one can introduce another
kind of prolongations of 4. We first recall some notions.

By a regular holonomic or semi-holonomic or non-holonomic contact
m"-element on M is meant a set XL/, or YL or ZL!,, where X or Y or Z
is a regular holonomic or semi-holonomic or non-holonomic m'-velocity on J/;
we shall denote the fibered manifold of all such elements by K’ (M) or K’ ()

or K’ (D), respectively. A semi-holonomic contact m'-element YL is called

m
holonomie if it contains a holonomic m’-velocity, i. e. if there holds Y L]

= Y'L,, Y' €T, (M). Similarly, a non-holonomic contact m’-element is said
to be semi-holonomie, if it contains & semi-holonomic m’-velocity. Let o):
K (M) - K5(DI), s < 7, be the jet projection. In general, a cross section /;:
M — K" (M) will be called a non-holonomic m’-distribution on /. Naturally,
the cross-section j*A1: M — J*K" (M) will be said to be the s-th prolongation
of the first kind of 4;. Moreover, let 4: M — K. (M) be a distribution of the
first order on M. Let A(x) = XL}, X = joy, where y is a mapping of R"
into 3. Then Ay is a mapping of R" into K,(M) and, by [9], jo( 1,%) is
identified with an element of K"''(J), which will be denoted by jl41(4)(x).
One sees easily that this definition is correct. The cross section jAi(4): M —
— K"1(M) will be called the prolongation of A; with respect to A. In particular,
if 4 = p}(4,), then 4] = j'4,(0}(4,)) will be said to be the (first) prolongation
of the second kind of A; or the weak prolongation of A;. By the iteration
AP = (A4¢7Y) we introduce the s-th prolongation of the second kind or the

s-th weak prolongation of A,.

Lemma 1. Let A4 be an m-dimensional distribution of the first order on 1.
Then all weak prolongations of A are semi-holonomic, i.e. A®: M — K31 ()
for every s.

Proof. According to [9], choose an auxiliary fibering = : U — Uy, Uy = Rm,
on a neighbourhood U of a point « € M in such a way that A(y) is transversal
with respect to & for every y € U. Then the restriction of 4 to U can be
identified with a distribution o: U — JY(U, &, U1) on fibered manifold (U, 7, Uy)
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in the sense of [3]. By definition, the s-th weak prolongation A of A cor-
responds to the s-th prolongation 6@ of d, [3]. By Proposition 3 of [3], 6® is
semi-holonomic. Hence A® is also semi-holonomic, QED.

Let (E, p, B) be a fibered manifold, dim B == m. A distribution ¢: ¥ — J'E
will be said to be involutive, if it is involutive as an m-dimensional distribution
on the differentiable manifold ¥ in the classical sense, [2].

Lemma 2. A4 distribution §: E — JIE s involutive if and only if its first
prolongation 6’ is holonomic, i.e. 6': K — J2K.

The proof consists in a simple evaluation in some local coordinates.

Taking into account the above identification, we obtain

Proposition 1. A distribution A: M — KL (M) is involutive if and only if its
first weak prolongation is holonomic, i.e. A": M — KZ ().
By definition, we now deduce immediately

Proposition 2. If A is involutive, then A® is holonomic for every s. Moreover,
if ¢ is the germ of the integral manifold of A at x € M, then A®(x) = k¢ (= the
contact element of order s - 1 determined by ().

Remark 1. Starting from involutive distributions, we can give an in-
structive description of the difference between the prolongations of the first
and of the second kinds of a distribution A4: M — K}(JM). If 4 is involutive,
it is locally represented by an (n — m)-parameter family of m-dimensional
submanifolds of /. Investigating the prolongations of the second kind,
we consider each of these submanifolds separately and we construct its higher
order contact elements. Constructing the prolongations of the first kind,
we use essentially even the integral submanifolds in a neighbourhood of the
corresponding point. Further, if 4 is not involutive, the difference between
both kinds of prolongations can be shortly expressed by an analogy to the
previous situation. Investigating the prolongations of the second kind, we
consider A as a ‘non-holonomic” generalization of an m-dimensional sub-
manifold of M, while in the case of the prolongations of the first kind 4 is
considered as a ,,non-holonomic* generalization of an (n — m)-parameter
family of m-dimensional submanifolds of M.

Since the prolongations of the first kind of A4 are, in fact, the prolongations
of a geometric object field in pure form, an algorithm for such prolongations
is described in [6]. The only specific feature is that we apply the reduction
of WY(H"(M)) to Hr+1(M) at every step. Consequently, we have to restrict
the canonical form of WY(Hr(M)) to Hr+1(M), but this restriction is just the
canonical form of H'+1(}f). Thus, we have to find an invariant algorithm
for the weak prolongations only. To get a “lemma”, we shall first study the
prolongations of arbitrary geometric object fields with respect to a distri-
bution.
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Consider o principal fibre bundle P(M, () and an associated fibre bundle
E = EUI, ¥, G, P). Denote by KL () the space of all regular contact m!-ele-
ments on E transversal with respect to the bundle projection p: E — JI.
The space [(E) has a natural structure of an associated fibre bundle of the
symbol (M, A, G%, WI(P)), where we set A = KL,0(F x R»), cf. [6]. Introduce
q:F X Re < Rm, (z, (2, ...,a"))b> (2!, ..., 2m) and denote by .1 < A the
subspace of all elements transversal with respect to ¢. Then every element
of A can be identified with a 1-jet of R™ into ¥ x R»—m with source 0 € R™
and with target in F x {0}, 0 e R»~m. In this sense we shall write A
=T!(F) X L} ,.,- If 24 are some local coordinates on F, then the cor-

m
responding local coordinates on A are

(2) A28y

Let A: M — KL (M) be a distribution and let o: I — K be a geometric object
field. Then we define the prolongation jlo(4) of ¢ with respect to 4 as follows.
The jet jio being identified with an n-dimensional subspace V of Tz (£),
we denote by jlo(4)(z) the m-dimensional subspace of V over A(x). By the
natural identification, jlo(4) is a cross section of K1(E). By [6], if b4 arve
the coordinate functions of o, then the coordinate functions b4 — fb4

and b7 of jlo satisfy

(3) dbt - 1020 = biE, 0y =1,...,m,
x=mn-+1,...,n -+ dim G,

where dz? 4- &(z*)w* = 0 are the equations of the fundamental distribution
on G X F and (6, @) is the canonical form of W1(P). Let y: W1(P) — HY(JI)
be the canonical projection, [5]. Considering the formal equations (1) of |,
introduce @, = y*a). (Since O = y*gi holds, we may say that @ - a,0"
are the formal equations of 4 on W21(P).) Then the coordinate functions
of j's(4) corgesponding to z*, yJ of (2) are b*, @). Let us denote by ¢, the

coordinate functions of jlo(4) corresponding to z; .

Proposition 3. There holds
(4) ¢ = bya) + bl

Proof. This follows directly from the above identification of .1 and
Th(F) X Ly -

Remark 2. From the formal point of view, (4) looks like if one substitutes
the formal equations of 4 into the right-hand side of (3).

In particular, if we take a non-holonomic m'-distribution A;: 2 — K" (41)

as the above cross section o, then j4:(4) seems to have two meanings. On
the one hand, by our first definition, it is a cross section of K+(M), while,
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on the other hand, it is a cross section of K2 (K" (M)) by the second definition.
But both these cross sections are mutually identified in the sense of [9].
so that our notation is correct. Thus, we may apply Proposition 3 for in-
vestigating the weak prolongations of a distribution A: M — K (3[). The
coordinate functions of the successive weak prolongations of A can be treated
by a recurrent algorithm starting from the formal equations (1) of 4. Let

Qy} + P of) = 0

(5) (ly‘}fl T,r—l—‘F” (yf,...,yﬁu r,w;f,...,cu]’:l___j,):O

be the equations of the fundamental distribution on L) x K
by the recurrent algorithm established in [8]. Set

H'(M) = {ue H'(M); jY(u) e H'(IM)} .

(In general, ji means the canonical projection of r-jets into s-jets, s < 7.)

deduced

n,m

Proposition 4. Assume by induction that we have deduced the coordinate

functions «), ..., al ., : H(B)->R of the (r—1)-st wca]c prolongation

A0 of A Lt @ = ot o @y = Gl gy HF) > R D
the coordinate functwns of the r-th weak prolongatzon A(’) of 4, let ¢
— (@' @, ..., ¢ ;) be the canonical form of H'+1(M) and let by, . be the

Sfunctions deterniined by

J J K Ix ; J
(6) da’pl...pr + IIﬂp;...pr(aq PR R ‘PJ RRER) %?1...7',) b prL(P
Then it holds
J J K J
(7) ApseoprDrin — bpx...prlx’apm + bpx...pmru .

Proof. This follows easily from Proposition 1 of [6], Proposition 3 and
the relation Ar) = jiAr=1)(A).

For the next step of the algorithm, we extend (5) to the equations of the
fundamental distribution on L) x KL in the way described in [8],
Proposition 3.

Assume now that M is a homogeneous space with a fundamental group ¢.
Fix a point ¢ € M and denote by H its stability group. Then G has a natural
structure of a principal fibre bundle over M with structure group H and
K (M) can be considered as an associated fibre bundle of the symbol
(M, K, M), H, @). For the sake of simplicity, we shall restrict ourselves

to those homogeneous spaces for which one can find such a basis w® of g*
that there holds

(8) dot = cho! A wh, Jthy...=mn-4+1,...,dim G,

2
dw? = cj'”wf A wk 4 ; Cy®? A 07,
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provided wf = 0 are the differential equations of H. (As remarked in [7],
a great number of homogeneous spaces investigated in the classical differential
geometry are of type (8).) We denote by K the subgroup w?* = 0 of ¢ and
we shall consider a local coordinate system x on F corresponding to the
canonical coordinates on K determined by e;, where e, means the basis of
g dual to o*. By means of x, K], (M) is locally identified with K} . Set

G ={gel g (Ag)) e KL},

where z is the bundle projection of G(M, H). Thus, we have the coordinate
functions a';: G >R of A. For analogous reasons to (1), we shall say that
(9) o’ = ajo?

are the formal equations of A. In this situation, the coordinate functions
of the successive weak prolongations of 4 can be treated by the following
recurrent algorithm. Let ## be the restriction of w* to H and let

(10) dy) + Wl =0,

dyzl...p, + lFZI. . .p,}.(yflf7 cre y;i...Qr )7[’1 =0

be the equations of the fundamental distribution on H X K, deduced
according to [8].
Proposition 5. Assume by induction that we have found the coordinate functions

@, .., G —R of the (r — 1)-st weak prolongation AT-V of A. Let

by i be the functions determined by

J J K K J ;
(11) dapl...pr + IFpl...p,l (aq& s ey G -Qr)wl = bpl...priwz'
Then the remaining coordinate functions aly .. G—>R of the r-th weak
prolongation of A satisfy
7 3 K J
(]2) “pl...prpm - bpl...erapm + bml-upmm :

Proof. This is a direct consequence of (7) and of [7].

For the next step of the algorithm, we extend (10) to the equations of the
fundamental distribution on H x K'. in the way described in [8], Pro-
position 4.

Remark 3. To clarify fundamental ideas, we have used the “frame field
of order zero’ in our previous investigations. In practice, it is useful to apply
a convenient specialization of frames. (A modern explanation of Cartan’s
method of specialization of frames is given in [13].) In particular if H acts
transitively on K}, (J), then one can use the “frame ficld of the first order”
of A characterized by @) = 0. Under this specialization of frames, the pro-
longation procedure is essentially simplified. Some concrete evaluations
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of this sort for 2-dimensional distributions on a 3-dimensional projective
space can be found, e.g., in [11].

Remark 4. Since the (r — 1)-st prolongation of the first kind j7—14 of 4 is
a cross section of Jr1K} (M) and Jr—1K} (M) is an associated fibre bundle
of the symbol (M,J. KL (M), H, G), it is natural to introduce a geometric
object of the order r of the first kind for m-dimensional distributions on A
as an equivariant mapping u of H-space J. 'K} (M) into another H-space S.
Let pi2 be the induced mapping of Jr-1K} (M) into B = E(M, S, H, G), cf. [7].
Then the composition ugjr—14: M — E is the value of u on 4. On the other
hand, dealing with the weak prolongations of 4, we obtain a more interesting
situation. Since A7-1) is a cross section of K/,(M) = K (M)(M, K, (M), H,G),
we are led to equivariant mappings of H-space K, (M). In [8], where we
have treated the manifolds with connection, such an equivariant mapping
i K, (M) — S was said to be a semi-holonomic geometric mr-object on J.
This mapping is extended to a mapping us: K., (M)—E = E(JM, S, H, G)
and the composition usd¢=1: M — E is the value of u on 4.

Remark 5. We have shown that one meets the semi-holonomic geometric
mr-objects both in the theory of m-dimensional manifolds with connection
and in the case of the weak prolongations of m-dimensional distributions.
This explains numerous analogies between geometric properties of manifolds
with connection and of differentiable distributions. Our results also give
a conceptual explanation of the following fact, which was pointed out in the
coordinate form by Kovancov, [10]. By Propositions 1 and 2, if a distribution 4
is holonomicin the second order, then every weak prolongation of 4 is holonomie.
On the other hand, there are manifolds with connection holonomic in the
second order which are not holonomic in the higher orders, see [9].

Remark 6. Let M; < M be a k-dimensional submanifold and let 4 be an
m-dimensional distribution on AM;, i.e. A: M, —>K}n(]l11). In this case we
shall say that 4 is an immersed distribution. (The first systematic explanation
of the use of Cartan’s methods for the investigation of immersed distributions
was presented by S¢erbakov, [12].) Then A¢-1(x)is a semi-holonomic contact
m’-clement on M which is in a natural incidence relation with the contact
element k[ 1/, determined by M, x € M. Combining in a convenient way
the algorithm for the fundamental fields of submanifolds, [7], with our previous
results, onc can obtain an invariant method of investigation for immersed
distributions. But a detailed explanation of this subject is beyond the scope
of this paper.

As another natural generalization, one can treat a distribution on the base
of a space with Cartan connection. Let P(B, ) be a principal fibre bundle,
let M be a homogeneous space with fundamental group @, let ' be a connection
of the first order on the groupoid PP-1 associated with P and Ict o be a cross
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section of the associated fibre bundle £ = E(B, J/, G, P). According to [4],
a space with Cartan connection of type ./ can be defined as a quadruple
(P(B, ), M, C, o)satisfying the following two conditions: a) dim B = dim J/,
b) C-1(x)(o) is regular for every xe B. Further, let A: B— K}(B) be an
m-dimensional distribution on B. To define the weak developments of A,
we first explain how to develop contact elements by means of elements of
connection. It will be sufficient to treat the semi-holonomic case only.
According to Ehresmann, [1] (for terminology and notations see [3]), if X 1s
a semi-holonomic r-element of connection on. PP 1 over 2 € B and if Z is
a semi-holonomic r-jet of a manifold NN into £, gZ € £, , then the development
XYZ) of Z by means of X is defined by

(13) X-YZ) = (X~1pZ) . Z e J'(N, E,),

where p: I — B in the bundle projection. This operation is immediately
extended to contact elements on  as follows. If # is a semi-holonomic contact
kr-element on E at a point of E,, n = YL, then the semi-holonomic contact
kr-element (X-1(Y))L. on E; is well determined by 7, since (X-1(Y))4

= ((X"1pY). Y)A = (X-1pYA). YA, Ae L. This contact element will be
said to be the development of » by means of X and will be denoted by X-1(n).
We now introduce the r-th weak development A7(4) of 4 by

(14) () (x) = [CrD]Yz) (640D () € K (Ez)

where C0-1) is the (r — 1)-st prolongation of C accordingto Ehresmann, [1],
and oA (x) e KT (E) is the image of A¢-D(x) € K" ,(B) by . The following
consideration shows that A7(4) can be constructed in a natural way by means
of C only. We shall proceed by induction. The first weak development of 4 is
the cross section x> C-1(x)(cd(x)) of U K} (E;). Consider the (r — 1)-st

weak development Ar-1(4): B |J K, 1 E,,) = W and denote by V the

zeB
tangent space to A-1(4) at Ar1(4)(x). Then the m-dimensional subspace

of V over A(x) is identified with a contact m!-element { on W. Since 1 is
a fibre bundle associated with P, the development C—1(z)({) of ¢ by C(x) is
a contact m!-element on K7 }(F;). By [9], C~1(2)(() is identified Wlth a contact
m-element on E,. Analogously to [3] and [8], we deduce that this contact
element coincides with Ar7(A)(x). Furthermore, combining our previous pro-
cedure with the method established in [8], one can obtain an invariant method
of investigation for distributions on the base of a space with Cartan connection.
Finally, we remark that one can similarly treat a distribution immersed in
a space with Cartan connection, or, in other words, a distribution on the base
of a manifold with connection in the sense of [8].
Remark 7. After this paper has been finished, there appeared the book [14],

324



a great part of which is devoted to differential geometry of differentiable
distributions. In this connection, we underline that our paper explains the
foundations of the higher order geometry of differentiable distributions in the
intrinsic form and that we outline some further generalizations of this subject
(in particular, Proposition 4 implies immediately an invariant method of
investigation for differentiable distributions on spaces with a fundamental
Lie pseudogroup, cf. [7]).
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