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Matematický časopis 23 (1973), No. 4 

ON THE PROLONGATIONS 
OF DIFFERENTIABLE DISTRIBUTIONS 

IVAN KOLAR, Brno 

Using the theory of jets, we clarify some problems in the foundations of the 
higher order geometry of difforentiable distributions. We first show t h a t 
one can naturally introduce two kinds of prolongations of such a distribution. 
Then we establish an invariant algorithm for each kind of these prolongations. 
Meeting the semi-holonomic contact elements in the course of the prolongations 
of the second kind, we explain from the conceptual point of view the well-
known analogy between some geometric properties of manifolds with con­
nection and differentiable distributions on homogeneous spaces. In conclusion, 
we outline how to treat the distributions on spaces with Cartan connection. 
Our considerations are in the category (700. The standard terminology and 
notations of the theory of jets are used throughout the paper. 

An m-dimensional distribution A on a differentiable manifold M is usually 
introduced as an assignment to each point x e M an m-dimensional subspace 
of TX(M), m < n = dim M, [2]. Since we aim at higher orders, we shall 
equivalently define A as a cross-section of the fibered manifold K)n(M) of all 
regular contact m1-elements on M. As K)n(M) is an associated fibre bimdle 
of the symbol (M, K}im, L}, HX(M)), where K}nn = K}n0(Un), the indirect 
form of A, [6], is a mapping HX(M) -> K}im. Let K\m

 c K},m be the subspace 
of all elements transversal with respect to the canonical projection R™ -> R m 

and let 

Hl(M) = {u G m(M); u~i(A(x)) e k\m, x = fiu} . 

On Kami there are natural coordinates yJ, [7]. Hence we have the coordinate 
functions aJ: HX(M) -> R of A; in other words, &xJ = aJ(u) dxp are the 
equations of the subspace u~1(A(x)) <= To(R>1l)> Let op be the canonical form 
of Hl(M), [2], [4]. By a certain analogy to [7], Proposition 1, we shall say t h a t 

(1) cpJ = aJ
pcpp, p,q, . . . = 1, . . . , m , 

J, K, . . . = m + 1, . . . , 7i, 

are the formal equations of A. 
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In accordance with the general theory of prolongations of geometric object 
fields, the cross-section A : M -> K^(M) is prolonged to a cross-section j 1 J : 
31 -> J1Km(3I), where J1Km(M) means the first prolongation of fibered 
manifold Km(M) -> M. This cross section will be called the (first) prolongation 
of the first kind of A. By [6], JxKm(3I) is a fibre bundle associated with 
W1(H1(3t)) = H2(M). But there is a natural reduction H2(M) of HH3I) 
and it is more appropriate to consider J1Km(3I) as a fibre bundle associated 
with H2(M). Analogously, the cross-section jrA: M -> JrKm(M) will be said 
to be the r-th prolongation of the first kind of A, the space JrK)n(M) being-
considered as a fibre bundle associated with Hr+1(3I). On the other hand, 
using some specific properties of distributions, one can introduce another 
kind of prolongations of A. We first recall some notions. 

B}r a regular holonomic or semi-holonomic or non-holonomic contact 
mr-element on M is meant a set XLr

m or YUm or ZLm, where X or Y or Z 
is a regular holonomic or semi-holonomic or non-holonomic mr-velocity on M; 
we shall denote the fibered manifold of all such elements by Kr

m(M) or Km(M) 
or Km(M), respectively. A semi-holonomic contact mr-element YUm is called 
holonomic if it contains a holonomic mr-velocity, i. e. if there holds YUm 

= Y'Lr
m, Y' eTm(M). Similarly, a non-holonomic contact mr-element is said 

to be semi-holonomic, if it contains a semi-holonomic mr-velocity. Let Q*r: 
Kr

m(M) -> Km(M), s ^ r, be the jet projection. In general, a cross section zJi: 
M -> Km(M) will be called a non-holonomic mr-distribution on M. Naturally, 
the cross-section jsA\: M -> JsKm(3I) will be said to be the 5-th prolongation 
of the first kind of A\. Moreover, let A : M -> Km(M) be a distribution of the 
first order on M. Let A(x) = XLm, X = j\\p, where ip is a mapping of R" 
into 21. Then A\ip is a mapping of RWI into Km(M) and, by [9], j j( 1^) is 
identified with an element of Kr+1(M), which will be denoted by jlA\(A)(x). 
One sees easily that this definition is correct. The cross section jlA\(A): 31 -> 
-> Kr+1(M) will be called the prolongation of A\ with respect to A. In particular, 
if A = QI(AX), then A[ = jxA \(QI(A±)) will be said to be the (first) prolongation 
of the second kind of A\ or the weak prolongation of A\. By the iteration 
A{(] = (A^'^y we introduce the «s-th prolongation of the second kind or the 
s-th weak prolongation of A\. 

Lemma 1. Let A be an m-dimensional distribution of the first order on 31. 
Then all iveak prolongations of A are semi-holonomic, i.e. zl(s): 31 -> KS+1(3I) 
for every s. 

Proof . According to [9], choose an auxiliary fibering n : U -> U\, U\ c R^, 
on a neighbourhood U of a point x e 31 in such a way that A(y) is transversal 
with respect to n for every y e U'. Then the restriction of A to U can be 
identified with a distribution d: U -> J1( U, n, U\) on fibered manifold (U ,71, U\) 
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in the sense of [3]. By definition, the s-th weak prolongation A{s) of A cor­
responds to the s-th prolongation 6(s) of 6, [3]. By Proposition 3 of [3], 6{s) is 
semi-holonomic. Hence Zl(s) is also semi-holonomic, QED. 

Let (E, p, B) be a fibered manifold, dim B — m. A distribution 6: E -> JXE 
will be said to be involutive, if it is involutive as an m-dimensional distribution 
on the differentiable manifold E in the classical sense, [2]. 

Lemma 2. A distribution d: E -> JXE is involutive if and only if its first 
prolongation 6' is holonomic, i.e. d':E->J2E. 

The proof consists in a simple evaluation in some local coordinates. 
Taking into account the above identification, we obtain 

Proposition 1. A distribution A: M -> K]n(M) is involutive if and only if its 
first weak prolongation is holonomic, i.e. A': M -> K^(Jf). 

By definition, we now deduce immediately 

Proposition 2. If A is involutive, then A{s) is holonomic for every s. Moreover, 
if f is the germ of the integral manifold of A at x e M, then A(s)(x) = ks

x
+1£ ( = the 

contact element of order s + 1 determined by f). 
R e m a r k 1. Starting from involutive distributions, we can give an in­

structive description of the difference between the prolongations of the first 
and of the second kinds of a distribution A : M -> K^M). If A is involutive, 
it is locally represented by an (n — m)-parameter family of m-dimensional 
submanifolds of M. Investigating the prolongations of the second kind, 
we consider each of these submanifolds separately and we construct its higher 
order contact elements. Constructing the prolongations of the first kind, 
Ave use essentially even the integral submanifolds in a neighbourhood of the 
corresponding point. Further, if A is not involutive, the difference between 
both kinds of prolongations can be shortly expressed by an analogy to the 
previous situation. Investigating the prolongations of the second kind, we 
consider A as a "non-holonomic" generalization of an m-dimensional sub-
manifold of M, while in the case of the prolongations of the first kind A is 
considered as a ,,non-holonomic" generalization of an (n — m)-parameter 
family of m-dimensional submanifolds of M. 

Since the prolongations of the first kind of A are, in fact, the prolongations 
of a geometric object field in pure form, an algorithm for such prolongations 
is described in [6]. The only specific feature is that we apply the reduction 
of W1(Hr(M)) to Hr+1(M) at every step. Consequently, we have to restrict 
the canonical form of W1(Hr(M)) to Hr+1(M), but this restriction is just the 
canonical form of Ht+1(M). Thus, we have to find an invariant algorithm 
for the weak prolongations only. To get a "lemma", we shall first study the 
prolongations of arbitrary geometric object fields with respect to a distri­
bution. 
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Consider a principal fibre bundle P(M, G) and an associated fibre bundle 
E = E(M, i*7, G, P). Denote by K}n(E) the space of all regular contact m^ele-
ments on E transversal with respect to the bundle projection p:E-^M. 
The space Kl

nl(E) has a natural structure of an associated fibre bundle of the 
symbol (M, A, G\, W1(P)), where we set A = ll\vo(F x Rn), cf. [6]. Introduce 
q: F X Rn -> Rm, (z, (x1, ...,xn))\-> (x1, ..., xm) and denote by A <= A the 
subspace of all elements transversal with respect to q. Then every element 
of A can be identified with a 1-jet of Rm into F X Rn~m with source O e R m 

and with target in F x {0}, 0 e Rn~m. In this sense Ave shall write A 
= T}n(F) X L\ nhm. If zA are some local coordinates on F, then the cor­
responding local coordinates on A are 

(2) ^ , < , ^ . 

Let A : M -> K)n(M) be a distribution and let a: M -> E be a geometric object 
field. Then we define the prolongation jxa(A) of o* with respect to A as follows. 
The jet j].a being identified with an ^-dimensional subspace V of T0(X) (E), 
we denote by j1a(A)(x) the m-dimensional subspace of V over A(x). By the 
natural identification, jxa(A) is a cross section of K.}n(E). By [6], if b^1 are 
the coordinate functions of G, then the coordinate functions bA — p"bA 

and bf of jxa satisfy 

(3) dbA + £A(bB)6* = bf &, i,j,...= l,...,7i, 
x = n-\-l,...,n-\- dim G, 

where dzA -f- f;4(^)co" = 0 are the equations of the fundamental distribution 
on G X F and (6\ 0K) is the canonical form of W1(P). Let %: W1(P) -> FF(^0 
be the canonical projection, [5]. Considering the formal equations (1) of J, 
introduce aJ = %*aJ. (Since Ol = x*^ holds, we may say that QJ - aJ0p 

are the formal equations of A on IV1 (P).) Then the coordinate functions 
of jxa(A) corresponding to zA, yJ of (2) are bA,clJ. Let us denote by cA the 
coordinate functions of jxa(A) corresponding to zA. 

Proposition 3. There holds 

(4) cA = bAaJ
p + bA. 

Proof . This follows directly from the above identification of A and 
T1 (F) x L1 

- m l / / N -^n m,m ' 

R e m a r k 2. From the formal point of view, (4) looks like if one substitutes 
the formal equations of A into the right-hand side of (3). 

In particular, if we take a non-holonomic mr-distribution A\\ M -^ Kr
m(M) 

as the above cross section a, then ^XA\(A) seems to have two meanings. On 
the one hand, by our first definition, it is a cross section of K^hl(J/), while, 
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on the other hand, it is a cross section of K)n(K
r
m(M)) by the second definition. 

But both these cross sections are mutually identified in the sense of [9]. 
so that our notation is correct. Thus, Ave may apply Proposition 3 for in­
vestigating the weak prolongations of a distribution A: M -> K]n(M). The 
coordinate functions of the successive weak prolongations of A can be treated 
by a recurrent algorithm starting from the formal equations (1) of A. Let 

&yJ
P+xinJp(y?,Lo}) = o 

(*) ^P1...Pr + ^i...Pr(yf^'^yfi...gr^h''^<..jr) = ^ 

be the equations of the fundamental distribution on Ln X Kn deduced 
by the recurrent algorithm established in [8]. Set 

Hr(M) = {UG Hr(M); j)(u) e fr(M)} . 
(In general, fr means the canonical projection of r-jets into s-jets, s ^ r.) 

Proposition 4. Assume by induction that ^ve Jiave deduced tJie coordinate 
functions aJ,...,aJ

lVr:H
r(M)->H of tJie (r — l)-st weaJc prolongation 

A(r-D of A. Let aJ
p = fr*+1a

J, ..., aJ
pi_pr = j ^ . . . ^ , < . . . M r t l : Hr+1(M) -> R be 

tJie coordinate functions of the r-tJi weak prolongation A/r) of A, Jet cp 
— (cpl,cp1-, ...,(pjljr) be the canonical form of Ht+1(31) and let bVl Pri be tJie 

functions determined by 

(6) d<...pr + Y£. . .>f , ..., <...„, 4, ...,&..,,) = bJ
vl...Vri<pl. 

TJien it hoJds 

ll\ nJ = hJ nK 4- hJ 

V ' / ^pl .. . P?-Pr+1 UPl... PrK^Pr+l ~ Upi. • . PrPr+1 ' 

Proof . This follows easily from Proposition 1 of [6], Proposition 3 and 
the relation A<*> = jWr-U(zj). 

For the next step of the algorithm, we extend (5) to the equations of the 
fundamental distribution on Ln

+1 X Kr
n^ in the way described in [8], 

Proposition 3. 
Assume now that M is a homogeneous space with a fundamental group G. 

Fix a point c e M and denote by H its stability group. Then G has a natural 
structure of a principal fibre bundle over M with structure group H and 
Kr

m(M) can be considered as an associated fibre bundle of the symbol 
(M, Kr

mc(M), H, G). For the sake of simplicity, we shall restrict ourselves 
to those homogeneous spaces for which one can find such a basis co01 of g* 
that there holds 

(8) dco1 = c)kco3 A co*, l, pí, ... = n + 1, . . . , dim G, 

1 

2 
dco* = Cj/tcoЗ Л co» + —• C^CO^ l\ cov , 
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provided a)1 = 0 are the differential equations of H. (As remarked in [7], 
a great number of homogeneous spaces investigated in the classical differential 
geometry are of type (8).) We denote by K the subgroup coA = 0 of G and 
we shall consider a local coordinate system x on F corresponding to the 
canonical coordinates on K determined by e%, where ea means the basis of 
g dual to coa. By means of x, Kmc(3I) is locally identified with Kr

nm. Set 

G = {geG,g-HA(n(g)))EKim}, 

Avhere n is the bundle projection of G(3I, H). Thus, we have the coordinate 
functions aJ: O->R of A. For analogous reasons to (1), we shall say that 
(9) OJJ = aJojp 

are the formal equations of A. In this situation, the coordinate functions 
of the successive weak prolongations of A can be treated by the following 
recurrent algorithm. Let nl be the restriction of coA to H and let 

(10) dy,
p + ^Hyf)^ = o, 

<-<...» + ^ i . . . p j y f . • • • . » £ . * W = o 
be the equations of the fundamental distribution on H X Kr

nm deduced 
according to [8]. 

Proposition 5. Assume by induction that we have found the coordinate functions 
aJ,...,aplPr:G-^H of the (r — l)-st weak prolongation Zl^-1) of A. Let 
bpl Pri be the functions determined by 

(ii) <*<...„ +^L..PAK^-^l..qrw = K,..pr^
i-

Then the remaining coordinate functions apl ,PrPr+l: O —> R of the r-th weak 
prolongation of A satisfy 

(12) apl _ PrPr+i = bpl PrKap\+i + bpl^prPr+i . 

Proof . This is a direct consequence of (7) and of [7]. 
F"or the next step of the algorithm, we extend (10) to the equations of the 

fundamental distribution on H X Kr+m in the way described in [8], Pro­
position 4. 

R e m a r k 3. To clarify fundamental ideas, we have used the "frame field 
of order zero" in our previous investigations. In practice, it is useful to apply 
a convenient specialization of frames. (A modern explanation of Cartan's 
method of specialization of frames is given in [13].) In particular if H acts 
transitively on Kmc(3I), then one can use the "frame field of the first order" 
of A characterized by ap = 0. Under this specialization of frames, the pro­
longation procedure is essentially simplified. Some concrete evaluations 
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of this sort for 2-dimensional distributions on a 3-dimensional projective 
space can be found, e. g., in [11]. 

Remark 4. Since the (r — l)-st prolongation of the first kind f~xA of A is 
a cross section of Jr~1Km(M) and Jr~xKm(M) is an associated fibre bundle 
of the symbol (M,Jr~xK\n(M), H, G), it is natural to introduce a geometric 
object of the order r of the first kind for m-dimensional distributions on M 
as an equivariant mapping JLI of H-space Jr~xK}m(M) into another H-space S. 
Let /f2 be the induced mapping of J'-iK^M) into E = E(M, S, H, G), cf. [7]. 
Then the composition ^f^A : M ->E is the value of ju on A. On the other 
hand, dealing with the weak prolongations of A, we obtain a more interesting 
situation. Since zl^-1) is a cross section of Kr

m(M) = Kr
m(M)(M, Kr

mc(M), H,G), 
we are led to equivariant mappings of H-space Kmc(M). In [8], where we 
have treated the manifolds with connection, such an equivariant mapping 
H: Kmc(M) -> S was said to be a semi-holonomic geometric mr-object on M. 
This mapping is extended to a mapping /U2: Km(M) -> E = E(M, S, H, G) 
and the composition ^A<r-1): M ->E is the value of JU on A. 

R e m a r k 5. We have showrn that one meets the semi-holonomic geometric 
mr-objects both in the theory of m-dimensional manifolds with connection 
and in the case of the weak prolongations of m-dimensional distributions. 
This explains numerous analogies between geometric properties of manifolds 
with connection and of differentiable distributions. Our results also give 
a conceptual explanation of the following fact, which was pointed out in the 
coordinate form b y K o v a n c o v , [10]. By Propositions 1 and 2, if a distribution A 
is holonomic in the second order, then every weak prolongation of A is holonomic. 
On the other hand, there are manifolds with connection holonomic in the 
second order which are not holonomic in the higher orders, see [9]. 

R e m a r k 6. Let M± <= M be a k-dimensional submanifold and let A be an 
m-dimensional distribution on M\, i .e . A : M\ -> Km(M 1). In this case we 
shall sayr that A is an immersed distribution. (The first systematic explanation 
of the use of Cartan's methods for the investigation of immersed distributions 
was presented by S e e r b a k o v , [12].) ThenzJ^ - 1)^) is a semi-holonomic contact 
mr-element on M which is in a natural incidence relation with the contact 
element hr

xM\ determined by M\, x e M±. Combining in a convenient way 
the algorithm for the fundamental fields of submanifolds, [7], with our previous 
results, one can obtain an invariant method of investigation for immersed 
distributions. But a detailed explanation of this subject is beyond the scope 
of this paper. 

As another natural generalization, one can treat a distribution on the base 
of a space with Cartan connection. Let P(B, G) be a principal fibre bundle, 
let M be a homogeneous space with fundamental group G, let C be a connection 
of the first order on the groupoid PP-1 associated with P and let a be a cross 
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section of the associated fibre bundle E = E(B, 31, G, P). According to [4], 
a space with Cartan connection of type 31 can be defined as a quadruple 
(P(B, G), 31, C, o) satisfying the following two conditions: a) dim B = dim 31, 
b) C~x(x)(o) is regular for every xeB. Further, let A:B^K]n(B) be an 
^-dimensional distribution on B. To define the weak developments of A, 
Ave first explain how to develop contact elements by means of elements of 
connection. I t will be sufficient to treat the semi-holonomic case only\ 
According to E h r e s m a n n , [1] (for terminology and notations see [3]), if X is 
a semi-holonomic r-element of connection on PP 1 over x e B and if Z is 
a semi-holonomic r-jet of a manifold N into E, fiZ e Ex, then the development 
X~1(Z) of Z by means of X is defined by 

(13) X-\Z) = (X-ipZ) . Z e J r(N , Ex), 

where p: E —> B in the bundle projection. This operation is immediately 
extended to contact elements on E as follows. If rj is a semi-holonomic contact 
kr-element on E at a point oiEx, rj = YLk, then the semi-holonomic contact 
kr-element (X~1(Y))Li

k on Ex is well determined by rj, since (X~1(Y))A 
-= ((X-ipY) . Y)A = (X-ipYA) . YA, AeLr

k. This contact element will be 
said to be the development of rj by means of X and will be denoted by X~l(7]). 
We now introduce the r-th weak development )J(A) of A by 

(14) fc(A)(x) = [C(r-i)]-i(x)(oA<r-»(x)) e KrJEx), 

where C^-1) is the (r — l)-st prolongation of C according to E h r e s m a n n , [1], 
and oA<r~V(x) e Kr

m(E) is the image of A^~1)(x) e KrJB) by o. The following 
consideration shows that Xr(A) can be constructed in a natural way by means 
of C only. We shall proceed by induction. The first weak development of A is 
the cross section x !-> C~1(x)(oA(x)) of (J K]n(Ex). Consider the (r — l)-st 

_ xeJB 

weak development }f-i(A): B-> ( J Kr
m\Ex) = TV and denote by V the 

xeB 

tangent space to /Lr-1(Zl) at ?/~1(A)(x). Then the m-dimensional subspace 
of V over A(x) is identified with a contact m^element f on TV. Since TV is 
a fibre bundle associated with P, the development C~1(x)(C) of f by C(x) is 
a contact m^-element on K^1^). By [9], C~1(x)(^) is identified with a contact 
mr-element on Ex. Analogously to [3] and [8], we deduce that this contact 
element coincides with ?J(A)(x). Furthermore, combining our previous pro­
cedure with the method established in [8], one can obtain an invariant method 
of investigation for distributions on the base of a space with Cartan connection. 
Finally, we remark that one can similarly treat a distribution immersed in 
a space with Cartan connection, or, in other words, a distribution on the base 
of a manifold with connection in the sense of [8]. 

R e m a r k 7. After this paper has been finished, there appeared the book [14], 
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a. great part of which is devoted to differential geometry of differentiate 

distributions. In this connection, we underline that our paper explains the 

foundations of the higher order geometry of differentiable distributions in the 

intrinsic form and that we outline some further generalizations of this subject 

(in particular, Proposition 4 implies immediately an invariant method of 

investigation for differentiable distributions on spaces with a fundamental 

Lie pseudogroup, cf. [7]). 
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