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Matematický časopis 23 (1973), No. 4 

A DECOMPOSITION OF A FUNCTIONAL 
AS A DIFFERENCE OF TWO POSITIVE FUNCTIONALS 

JAN SIPOS, Bratislava 

The present paper deals with a generalization of the theorem concerning 
the decomposition of a generalized measure as a difference of two measuies 
and of the theorem concerning the decomposition of Daniell integrals. Functions 
on lattices of a certain type are examined. A special selection of lattices gives 
the theorem about the decomposition of the measure and of the integral. 
A similar method was used in papers [2] and [4]. 

Let us introduce some notation first, x v y, x l\ y — will denote lattice 
operations. xn / x (xn \ x) will be written iff xn ^ xn+i (xn+i ^ xn) for every n 

00 00 

and \/ = x (/\ = x). 
n=l w = l 

Let S be a distributive lattice with the operations +, —. We shall use 
the following conditions: 

(ai) There is an element 0 E S such that x — x = 0 for every x E S. 
(a2) If x, y, v E S and 0 ^ x S y S v, then 0 ^ y — x ^ v — x ^ v. 

If x,y, v E S and v ^ x ^ y ^ 0, then v ^ v — y ^ x — y ^ 0. 
(a3) If a, x, xnE S and xn / x (xn \ x), then xn A a / x A a and a — xn 

\ a — x (xn v a \ x v a and a — xn / a — x). 
(a4) b = a + (b — a) if 0 ^ a ^ b or if b ^ a ^ 0. 
(as) If u ^ v and a ^ b, then a + u ^ b + v. 

Let / be such a function on S that, for every a E S, the set 

{I(x)/ aAO^x^awO} 

is either upper or lower bounded. We shall use the following conditions: 

(bi) 1(a) + 1(b) = I(a v b) + I(a A b) 

for every a, b E S. 
(b2) 1(0) = 0. 
(b3) If 0<:X^a<:b,0<:y<:b — aorifb ^ a ^ x ^ 0, b — a ^ y ^ 0, 

then 

I(x + y) = I(x) + I(y) . 
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(b4) If an / a or an \ a, and \I(an)\ < oo, for every n, then 

lim l(an) = 1(a) . 

Definition. For a e S ive define 
h(a) = sup {I(x) I 0 ^ x S a}, h(a) = inf {I(x) /0<lx<ia}tfa^0, and 
h(a) sup {I(x) /a ^ x S 0}, h(a) = inf {I(x) a <, x <, 0} if a <l 0. 

Proposition 1. Let S satisfy (ai) and I satisfy (b2). Then the following assertions 
hold: 

(i) h(0) = h(0) = h(0) = J4(0) - o, 
(ii) I\ and h are non-negative, h and J4 are non-positive, 

(iii) If 0 £ a £b, then h(a) ^ h(b) and h(a) ^ h(b), 
If a S b ^ 0, then h(a) ^ h(b) and I±(a) ^ F4(b). 

Proposition 2. Lel $ satisfy (ai), (a2), (a4) and J satisfy (b2) and (b3). 
7/ 0 <l o <\ x tl u, s > 0, h(u) < oo (F2(tf) > — oo) and h(u) ^ I(x) + e 
(h(u) ^ I(x) — E), lAen — E ^ I(v) (I(v) ^ e). If u ^ x ^ v <, 0, e > 0, 
I3(?0 < °o (I4(^) > —-oo) and h(u) ^ I(x) + e (I$(u) ^ I(x) — E), then —e <; 
^ 7(v) ( i » ^ E). 

Proof. We shall prove the assertion only for J i . The proofs for h, I3 and h 
are analogous. 

Let 0 ti v tk x <l u, E > 0, h(u) < co and h(u) ^ I(x) + E and let I(v) < 
— e. Since 0 S v ^ x, it follows from (D3) and (a2) that 

(1) I(x) = i » + l(x — v), 0 ti x — v <, u 

and 

J» + I(x - v) ^ h(n) + I(v) <h(u)- E . 

From this and from (1) it follows 

I(x) < h(u) — E , 

Mhich contradicts the assumption. Hence I(v) ^ —•£. 

Proposition 3. Let S satisfy (ai), (a2) and (a4), and let I satisfy (bi), (b2) 
and (hz). Then 

(2) h(a) + h(b) = h(a v 6) + Ij(a A 6) 

for j — 1, 2, 3, 4 where a, b *g 0 in case j = 1,2, and a,b ^ 0 in case j — 3, 4. 
Proof . The proposition will be proved only for j = 1. The proof for j = 2, 3, 4 

is analogous. 
Let a,b ^ 0, and let Ii(a v b) — 00. Let t be such that 

0 <l t ^ a V b , 
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then (since S is distributive) 

t == (a A t) V (6 A 0 • 

Prom the definition of h and from (bi), (b3), (a4) and (a2) we obtain 

I(t) = I(t A a) + I(t A b) — I(t A a A b) = 
= J(* A a) + /((« A b) — (* A a A &)) 

and 
0 ^ (6 A t) — (a A 6 A t) ^ b . 

Since 0 ^ t A a ^ a, we have 

/(*) ^ / I ( « ) + / J ( 6 ) -

Further, 
oo = h(a v 6) = sup {7(0 JO %t ^ a\j b) ^ h(a) + h(b) , 

hence (2) holds. 
Now if h(a V 6) < oo, then also / i(a), T\(b), h(a Ab) < co. Let a,b e S, 

a,b ^ 0 and let £ be any positive number. Choose x,y e S with 

h(a) g ./(x) + e/2 0 ^ a ^ a , 

h(b) S I(y) + e/2 O^y^b, 

then using (bi) we obtain 

h(a) + h(b) £ I(x) + I(y) + £ = I(xVy) + I(xAy) + e, 

where 
0 ^ xy y <; a\J b, O^xAy^aAb. 

Therefore 

h(a) + h(b) rg h(a V 6) + h(a A b) + e . 

The inequality holds for every e > 0, hence 

(4) h(a) + h(b) ^ h(a Wb)+ h(a A b) . 

Now we prove the opposite inequality. Let s > 0. Choose x e S with 

(5) h(a V b) ^ I(x) + e, 0 ^ x ^ a V b, 

then 

(6) h(a V b) + h(a Ab) ^ I(x) + h(a A b) + s . 

Clearly x = (x A a) V (x A b) (since $ is distributive). This gives 

(7) I(x) + h(a A b) + s = I((x A a) V (x A b)) + h(a A b) + e . 

Prom (6), (7) and from (bi) we have 
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h(a V 6) + / i (a A b) ^ l(x A a) + / (# A b) — /(x A a A 6) + 
+ h(a A 6) + e , 

where 0 ^ x A a ^ a, 0 ^ x A b ±1 b, therefore 

(8) h(a v b) + h(a A b) ^ h(a) + h(a A b) - I(x A a A b) + /i(b) + £. 

Choose ?/ e S with 
/ i (a A 6) ^ % ) +e, 0 <> y ^ a Ab, 

then 

/ i (a A b) — /(a; A a A b) ^ /(?/) — /(<£ A a A 6) + e . 

Owing to (bi) we have 

/ i (a A b) — l(x A a A b) ^ I(x V ?/) + I(x A y) — /(#) — /(cr A a A b) + e , 

where O^xMy^aMb, therefore 

/ i (a A b) — I(x A a A b) ^ h(a V 6) — I(x) — (I(x A a A b) — I(x A y)) + e . 

From (5) and from the condition (b3) it follows that 

(9) / i ( a A b) — I(x A a A b) ^ 2e — I(x A a A b — x A y) , 

where 0 f^ x A y ik x A a Ab. Then from (a2) it follows 

0 <> x A a Ab — xAy^x^ayb. 

If in Proposition 2 we put 

u = a V b and v = x A a Ab — x A y , 
we can see that 

(10) —/(a; Aa\b — xAy)^e. 

From (8), (9) and (10) we have 

/ i (a V b) + h(a A b) ^ h(a) + h(b) + 4e , 
and so 

(11) / i (a V b) + h(a A b) ^ h(a) + h(b) . 

From (4) and (11) it follows 

/ i (a v b) + h(a A b) = / i(a) + /i(6) . 

Proposition 4. Let S satisfy (ai), (a2), (a,*), (as) and I satisfy (bi). (b2), (b3). 
Then 

h(b) = h(a) + h(b ~ a) 
for j =1,2 if 0 ^ a £b, and for j == 3, 4 if b ^ a ^ 0. 

367 



Proof . Let 0 S a ^ b, e > 0, h(b) < oo. Choose x e 8 with 

h(b) ^ l(x) + e and 0 ^ x ^ b . 

I t follows from the last inequality, (bi) and (bs) that 

(12) Ii(6) <; J(x A a) + l(x V a) — /(a) + £ = /(# A a)"-f i(.r V a — a) +1 . 

Since O^a^xya^b, from (a2) it follows that 0 ^ x \[ a — a t> b — ?, 
and so from (12) we obtain 

/i(6) ^ h(a) + h(b -a) + *. 
Therefore 

(13) ii(6) g Ji(a) 4 ii(6 - a) . 

If Ji(6) = oo, then the proof of (13) is similar but we must use the fact tluit 

{l(x) /aAO^x^avO} 
is lower bounded. 

Now we prove the opposite inequality. Choose x, y e S with 

h(a) g I(x) + e\2 0 ^ x = a 
and 

h(b - a) ^ I(y) + e/2 0 ^ y £ b - a. 

Then from (a2), (b3), (a5) and (a4) it follows that 

h(a) + h(b -a)S I(x) + l(y) + e = I(x + y) + e 
and 

0<*x + y<*a+(b — a) = b. 
Hence 

(14) h(a) + h(b - a) £l.(b) + e. 

From (13) and (14) we have 

h(a) + h(b - a) = h(b) . 

The proofs for J\, h and h are analogous. 
Proposition 5. Let 8 satisfy (ai), (a2), (a3), (a4), (a5), I satisfy (bi), (b2), (b^), 

(b4). If a, xn ^ 0 and xn/ a(xn \ a), then l\(xn) / h(a) and h(xn) \ I-i(a) 
(Ii(xn) \ Ti(a) and h(xn)/ l<i(a)). If a,xn S 0 and xn / a(xn \ a), then 
h(xn) \ h(a) and l±(xn) / J4(a) (h(xn) / h(a) and I±(xn) \ J4(a)). 

Proof . Let xn / a, xn, a ^ 0, then for every n 

(15) h(xn) g h(a). 

Let l\(a) < GO, then for every e > 0 there is t e 8 such that 
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(16) h(a) ^ I(t) + e and 0 ^ t ^ a 

From (a3) we have xn A t / a A I = t. 

Since 0 ^ xn A t S xn, on grounds of (b4) we have 

(17) I(t) = lim /(xw At) ^ lim /i(x„) . 

From (16) and (17) we obtain 

(18) h(a) ^ limh(xn) + e . 

The proof follows from (15) and (18). 
I^et now h(a) = oo, then for every N there is an element t e S such tha t 

0 ^ t ^ a and JV ^ /(l). Similarly we can easily see that 

Ar ^ l(t) S lim h(xn) 

for every AT, therefore 

lim h(xn) = oo . 

J^et now xn \ a. From (a3) it follows that 

xi — xn / xi — a and x- — xn, x^ ~ a ^ 0 . 

From the first part of the proposition it follows that 

h(xi — xn) / h(x\ ~ a) . 

According to Proposition 4 we obtain 

h(x\) = h(xn) + h(x\ — xn) . 

Hence 

h(xx) = lim h(xn) + lim /i(xi — xn) = lim h(xn) + h(xi — a) , 

and so 

h(xi) — h(xi — a) = lim h(xn) , 

therefore from Imposit ion 4 it follows tha t 

/i(a) = lim Ii(xn) . 

The proofs for / 2 , /3 and / 4 are analogous. 

Proposition 6. Let S satisfy (ai), (a2), let I satisfy (b2), (b3). / / a ;> 0, l/,^ 

(19) 1(a) = h(a) + h(a) , 

if a ^ 0, then 

(20) /(a) = /8(a) + /4(a) . 
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Proof . Let a ^ 0, then 1(a) = co (1(a) = — oo) if and only if Ii(a) = 
= oo (I2(a) = —oo). 

That means, if 1(a), Ii(a) or I2(a) is oo or - c o , then (19) holds. 
Let now 1(a), Ii(a), I2(a) be finite. Let s > 0. Choose x e S with 

Ii(a) <; /(#) + s and 0 ^ x ^ a, 

then 0 S a — # ^ a and hence 

I(a — x) ^ J2(a) . 

Therefore it follows from (b3), that for every s > 0, 

Ii(a) + h(a) £ 1(a) - I(a - x) + e + /2(a) ^ 

^ /(a) + Z(a — x) — I(a — x) + e = /(a) + £ . 

Hence 

(21) Ii(a) + Z2(a) ^ /(a) . 

Let now £ > 0 and x be such that 

I(x) ^ I2(a) + E and 0 ^ x ^ a. 

Then 0 ^ a — x ^ a and from (03) we obtain 

1(a) = /(») + I(a — x)^ I(x) + Ii(a) ^ I2(a) + / i(a) + e . 

I t follows from the last inequality that 

(22) 1(a) ^ h(a) + I2(a) . 

The obtained inequalites (21) and (22) complete the proof. The proof for 
a ^ 0 is analogous. 

Definition. We denote 

I+(a) = Ii(a V 0)+ h(a A 0), l~(a) = - / 2 ( a V 0) - J8(a A 0). 

Then the following theorem holds: 
Theorem. Ze£ S satisfy (ai), (a2), (as), (a4), (a5) and I satisfy (hi), (b2), 

(b3), (b4). Then 

(i) I+(0) = J-(0) - 0, 

(ii) If a ^ b, then I+(a) ^ I+(b) and I~(a) g / -(b) , 

(iii) / / xn / a (xn \ a),thenl+(xn) / f+(a) (I+(xn) \ I+(a))andI~(xn) / 

/ I-(a) (l-(x*) \ / " (a ) ) , 
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(iv) For every a,beS we have 

I+(a) + I+(b) =-= I+(a Vb) + I+(a A 6) 

and 

I-(a) + /-(&) == / - ( a V 6) + I~(a A b). 

(v) I+(b) = I+(a) + /+(& - a) and /-(&) = I~(a) + I~(b - a) 

if 0 ^ a ^ b or if b ^ a ^ 0. 

(vi) For every a e S we have 

1(a) = I+(a) - I~(a) . 

Proof . The statements (i), (ii), (hi), (iv), (v) follow from Propositions 1, 3, 4, 5. 
We prove (vi). Let a e S. From (bi) and (b2) it follows tha t 

1(a) = I(a V 0) + I(a A 0) . 

However a V 0 ^ 0 and a A 0 ^ 0, hence from proposition 6 we have 

1(a) = h(a\j 0) + I2(a V 0) + h(a A 0) + /4(a A 0) = /+(a) - / - ( a ) . 

I t is a natural question whether the decomposition of / is unique. If, e. g. 
I+(a) is finite, then 

1(a) = 2l+(a,) - (I+(a) + I~(a)) 

and this decomposition is a different one. Yet the following proposition is t rue: 
Proposition 7. Let S satisfy (ai), (a2), (a3), (a4) and (as), / satisfy (bi), (b2), (03) 

and (b4). Let \I(a)\ < 00 and I = J+ — J - , where J + , J~ satisfy (i), (ii), (v) 
and (vi). Then I+(a) S J+(a), I~(a) ^ J~(a). 

Proof . Let first a ^ 0. Then 

J+(a) = I±(a) and /~(a) = - / 2 ( a ) . 

Since |/(a)| < 00, for every e > 0 there is £̂ e S such tha t 

/ i (a) ^ I(u) +• e and 0 ^ u ^ a. 

I t follows from the last inequality and from Proposition 2 that 0 ^ x ^ u 
implies I(x) ^ — s, therefore I2(u) ^ — s and hence 

(23) h(u) ^ I±(a) <: I(u) + E, I2(u) ^ — 8. 

Further, according to (03) and (23), 

I(a — u) = 1(a) — I(u) = I±(a) + I2(a) — I(u) ^ I2(a) + 8 

I\(a —• u) = / ( a —- w) — /2(a —- u) g / (a — w) — /2(a) ^ e . 
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Hence 

(24) 72(a — u) ^ I (a — u) ^ /2(a) + £, 7i(a — u) ^ E. 

Since 7+(b) — I~(b) = J+(b) — J~(b), for every b e S we have 

/+(^) - I~(u) = J+(zO — J-(^) . 

Thus, 

I+(u) = J+(%) - J~(u) + F-(tO . 

However, I~(u) — —l2(u), —J~(u) g 0, hence according to (23) 

(25) I+(u) ^ J+(u) + e . 

Similarly from the relations 

I~(a — u) = J~(a — u) — J+(a — u) + 7+(a — ^) , 

7+(a — ^) = Fi(a — u), —J+(a — u) g 0 

and from (24) we obtain 

(26) / - ( a - u) ^ J~(a — u) + e . 

Using (2P>) and 

7+(a — u) — JJi(a — u) + I~(a ~ u) — J~(a — u) 

we have 

(27) 7+(a - u) ^ J+(a - u) + s . 

From (25), (27) and from the property (v) (Theorem) for ./̂  and J~* wo have 
I+(a) = I+(u) + I+(a - u) g J+(a) + J+(a - ?0 + 2f = J-(a) + iV, 

for every c > 0, hence 

7+(a) £ J+{a) . 

Further 

/ - (a ) = I *-(a) — J i (a) + J-(a) g e/-(a) . 

Hence we obtained 

7^(a) ^ J"(a) and I-(a) S. J'(a) . 

For a ^ 0, the proof is similar. 
Let a be an arbitrary element from S. From the validity of (i) and (iv) 

for 1+ and I~ we obtain 
I+(a) - F+(a V 0) + 7+(a A 0) rg J + ( a V^) + J (a ^ 0) ~= J (a) . 

Similarly we obtain that 7~(a) ^ J~(a). 
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The following example shows that if \I(a)\ = oo, then the statement of 
Proposition 7 need not be valid. 

Example . Denote J+, J~ byr 

J+(0) = 0, J+(a) = —1, J~(0) = 0, J~(a) = — oo . 
Then I = J+ — J~ implies that 1.(0) = 0, 1(a) = oo, where S = {0, a} and 
0> a, 0 + a = a + 0 = a + a = a — 0 = a, 0 + 0 = 0 — 0 = 0 — a = 

a — a = 0. We see that / = 1+ — I~~ = J+ — J~ i> valid although 
- 1 =-J+(a) <J+(a) = 0 . 

Corollary 1. Let S be a a-algebra of subsets of X. Let fi be the generalized 
measure on S. Then there are measures fi+ and fi~ such that 

ft = fi+ — fi~ . 

Proof . If A and B are any two sets from S, then let A v B denote their 
union, A l\ B denote their intersection, A — B denote the relative complement 
of B in A, and A + B = A V B. Then (ai), (a2), (a3), (a4), (a5), (bi), (b2), (b3), 
(1)4) hold and the Corollary is a consequence of the Theorem. 

Corollary 2. Let S be a a-algebra of real functions. Let fi be the Daniell integral 
on S. Then there are integrals fi+ and pr such that fi+(f) ^ 0 and fi~(f) ^ 0 
if f ;> 0, and 

ft -= fi+ — fi~. 

Proof . If / , g are any two functions, let ( / v g)(x) = max {f(x), g(x)} 
(f A g) =•- min \f(x), g(x)}, (f + g)(x) = f(x) + g(x), (f — g)(x) = f(x) — g(x). 
Then (ai), (a2), (a3), (M), (^5), (bi), (b2), (b3), (b4) are valid and an application 
of the Theorem completes the proof. 
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