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Matematický časopis 19 (1969), No. 3 

A NOTE CONCERNING A PAPER BY L. E. SNYDER 

LADISLAV MlSIK, Bratislava 

I n a recent paper [2] L. E. S n y d e r has given a sufficient condition for 
every boundary function defined by the approximate Stolz angle method to be 
in the first Baire class. I n this paper the result by Snyder is improved in such 
a way as to give the necessary and sufficient condition. 

B2 detones the Euclidean plane. Let W = {(x, y) : (x, y) e B2, y > 0}. By 
the Stolz angle Sx we mean an angle in W with a vertex in (x, 0) which is 
symmetric about the half-line {(x, y) : (x, y) e W, y ^ 0} and its size is not 
greater than jr. Let 0(x) be a size of the Sx, i. e. 0 < 6(x) < n. For r > 0 
we define Si = {(u, v) : (u, v) e Sx,v < r}. The point (x, 0) is said to be 
a point of density of E relative to Sx, if 

|K n Sr
x\ 

lim inf = 1 

holds. \A\ means the 2-dimensional Lebesgue measure of the set A. 
L. E. S n y d e r has proved ([2], p. 420, Corollary 2): 
Let 0 : W -> ( — oo. oo) and let there exist for each x G (— oo, oo) a set Ex <= IV 

such that 
(i) (x, 0) is a point of density of Ex relative to Sx 

(ii) lim 0(u, v) = f(x) exists for each x e ( — oo, oo). 
(u,v)Mx,0) 
(u,v)eEx 

If the function 0: ( — oo, oo) -> (0, n) associated with the family of Stolz angles 
is upper semicontinuous, then the boundary function f is in the first Baire class. 

The proof of this corollary is indirect. I t is supposed that there is a nonempty 
perfect set P for which the partial function f/P has no point of continuity. 
The upper semicontinuity of the function 0 is used only7 to guarantee the 
existence of an open interval J for which inf {0(x) : x e J n P } > 0 . The 
existence of such an interval J is sufficient to conclude a contradiction. Hence 
from the proof of Corollary 2 it is clear that the following Theorem is t rue : 

Theorem 1. Let 0 : W -^ (-co, oo) be a function, let there exist for each 
x e (—oo, oo) a set Ex c [V such that 
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(i) (x, 0) is a point of density of Ex relative to Sx 

(ii) lim 0(u, v) = f(x) exists for each x e ( — oo, oo). 
(u,v)Mz,0) 
(u,v)eEx 

If the function 0 : (— oo, oo) -> (0, n) associated with the family of Stolz angles 
has the following property: 

(iii) for each perfect set P there exists an open interval J such that J n P =f= 0 
and inf {0(x) : x e J n P} > 0, then the function f is in the first Baire class. 

Every function 0 : ( — oo, oo) -> (0, n) which is in the first Baire class has 
the property (iii). In fact: If 0 is in the first Baire class and P is a perfect set, 
then there exists a point xo e P such that the partial function f\P is continuous 
in xo. Since 0(xo) > 0, there exists an open interval J which contains the 

0(xo) 
point xo and 0(x) > > 0, for each x e J n P. Therefore we have: 

&(x0) 
inf {6(x) : x e J n P} ^ > 0. We remark further tha t every upper 

semicontinuous function is in the first Baire class ([1], p. 249). 

Theorem 1 is the best possible result in this respect, since the following 
holds: 

Theorem 2. Let a family of Stolz angles Sx for x e (-co, oo) be given. Let 0 
be a function: ( — oo, oo) -> (0, n) associated with the family of Stolz angles which 
does not possess the property (iii), i. e., there exists a nonempty perfect set P 
such that inf {0(x) : x e J n P} = 0/or every open interval J for vMch J n P 4= 

+ 0. 
Then there exists a function 0 : W -> ( — oo, oo) and a set Ex for each x e 

e ( — oo, oo) such that 
(i) (x, 0) is a point of density of a set Ex relative to Sx 

(ii) lim 0 (u,v) = f(x) exists for each real number x and f is not in the 
(M,V)->(.C,0) 
(U,V)EEX 

first Baire class. 
Proof. Let P be a nonempty perfect set with the property that inf {0(x) : 

: x e J n P} = 0 for each open interval J for which J n P =f= 0. From the 
existence of the countable base for ( — 00,00) it follows tha t there exists 
a sequence {Jn}n=i °f open intervals such that Jn n P =f= 0 for n = 1, 2, 3, . . . 
and for every open interval J and for each point x e J n P there exists an 
open interval Jp for which xeJpnP<=JriP. Let {rn}^=1 be a sequence 

1 0(rn+1) 1 0(rn) 
of points of P such that 0(rn) <— , tg < — tg for?^ = V 2, 3, . . . 

2 2 2 2 
and every open interval Jn (n = 1, 2, 3, ...) contains an infinity of terms 
of this sequence. We take En = AS^, where hi < 1. From (rn+ifi) $ 
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1 
U iEr4: i = 1, 2, 3 . . . . , n] it follows that there exists an hn+\ < such tha t 

<• M } 2n+1 

ghn+t n(v {Eu:i = 1,2,3, ..., n}) = 0. We put Ern+i -= S%£. In such a way 
we obtain by induction a sequence {Ern}°^=zl of disjoint sets for which Ern = Srn, 

1 
where hn <—, for n= 1, 2, 3, I t is obvious that (rw, 0) is a point of 

2n 

density of Ern relative to Srn for n = 1, 2, 3, . . . . 
Let a; <£ {rJ: n=l,2, 3, . " . } . We put Ex = Sx

x — U {K,,. : » = 1, 2, 3, . . . } . 
We shall show that (x, 0) is a point of density of Ex relative to Sx. Let e > 0 

1 ©far) 
and < e. Since 0(x) > 0, we can choose an N such tha t tg < 

2* 2 

1 0(x) 
< tg . Then the following holds: 

2K+i 2 

©fa™) 1 0(»*) 1 ©(*) 
tg < — tg < tg 

2 2* 2 2^+i+- 2 

for i = 1,2,3, .... Since (#, 0) <£ U {F7rn : w = 1, 2, . . . , N — 1} there exists 
an h, 0 < h ^ 1 such that ££ n (U {Ffrn: n = 1, 2, 3, . . . , N — 1}) = 0. Let 
0 <hr <h. Then F7* n Sh

x' = £*' - (U {#rn :n = N, N + 1, ...}) = Sh
x' — 

— (U{F/rn n /g^ : ^ = N, N + 1, ...}). Hence"it follows tha t 

|£f| (я) 
A ' 2 t g — — 

< 

(x) \ (r,) (x) 
A'-tg—- > Л' 2 tg t g — — 

o(z) 
t g — -

2K+(»-лr+i) 
те=ІV и=JГ 

> (x) (x) 
Ä ' - t g — - t g — ^ 

= 1 — > = 1 — > 1 — e for 0 < h' < h. 
/ f 2K+i+1 2K 

i=0 

Hence (x, 0) is a point of density of Ex relative to Sx. 
We define now & : W -> ( — oo, oo) as follows: 
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Ф(u, v) = (rn) if (u, v) є EГ for » = 1, 2, 3, . . . 

Ф(u, v) = 1 if («, ») є łҒ — (U{#Г n : n = 1, 2, 3, ...}). 

I t is obvious that there exist 

and 

f(rn) = Иm Ф(u, v) = (rn) for n = 1, 2, 3, . . . 
(tø,fl)->(Гя,0) 
(u,v)єEГn 

f(x) = lim Ф(w, v) = l for xф{rn:n = 1, 2, 3, . . . ) . 
(u,vЫx,0) J 

(u,v)єEx 

The function / is not in the first Baire class because fjP has no point of 
continuity on P ([1], p. 254). If J is an open interval which has a nonempty 
intersection with P, then inf {f(x) :xeJr\P} = 0 < 1 = sup {f(x) :xeJn P}, 
because {rn : n = 1, 2, 3, ...} n (J n P) is a countable set and J n P is an 
uncountable set. The function f/P has then the oscilation equal to 1 in each 
point of P and therefore it is nowhere continuous on P . 
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