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GENERALIZATION OF SOME RESULTS FOR EXACTLY
COVERING SYSTEMS

STEFAN PORUBSKY, Bratislava

We call a system of residual classes
(1) aj(mod n;), 0L a; <my, 0=1,2,...,k

exactly covering if every integer belongs to exactly one of these classes.

In this paper we shall study exactly covering systems with exactly one
m-tuple of the residual classes with respect to the same module whereas the
remaining modules are distinct. The cases m = 2, 3 are investigated in [3]
and [4], and there the following results are proved:

Lemma 1. Let (1) be an exactly covering system. Let there in (1) appear one
couple of the residual classes with respect to the same module and the other ones
are distinct. Then ng = 2t for 1 = 1,2, ...,k — 2; ng—y = np = 2F1. (see [3])

Lemma 2. Let there in the exactly covering system (1) exist one triple of the
residual classes with respect to the same module and the other modules are distinct.
Then we have n; = 2t for ¢ = 1,2, ...,k — 3;np2 = np 1 =np = 3. 2571,
(see [4])

We shall study the cases m = 4, 5, and partly 7.

We can assume in (1) that n; < n2 < ... < ng. In [1] it is proved that
in every exactly covering system we have nz_; = n;. Hence we can suppose

ny << ne < ... <<N-m < Ng-m+1 = ... = Ng.

If (1) is an exactly covering system and z is a complex number, with z, < I,
then

foe]
P ) ) N
Sad= > Z+ 244+ > &
=0 i=a,(n,) 1=a,(n;) 1=ar(nk)
i=0 i=0 i=0
In the case of n; < ne < ... < Mh—y < Nf—ms1 = ... = N We get
1 2, 2% zalc—m zalc—m+1 + + ~Tle
11—z 1—2m 1 — 2 +W+l——:""‘"‘ 1 — )
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2mi
Let us suppose z - em, [2] < 1. If

lim (%™ ... 4+ 2%) £ 0,
2mi

zse e

lz|<1

then the last fraction of the right-hand side tends to infinity but the remainig
ones are finite. This is a contradiction and therefore

lim (%™ ...+ 2%) =0,

2mi

z->e Mk
lz]<1
1. €.
Z—niak ﬂak 2 @a
enyg it + eme T 4+ ...t em *=0.

In the following we shall need the following lemma.

Lemma 3. Let p, b1, ..., by, m be integers with 2 < p
< by < m. Let

IIA

508 <... <

2mi 2mi 2mi
em " 4 em + ... tem=0.

Let no partial sum of this sum vanish. Then

a) the residual class by (mod m/p) contains exactly those integers which belong
to the system

bi(mod m), ba(mod m), ..., bp(mod m),

if p=2,3,and 5.

b) the case p = 4 is impossible.

27 2:
Proof. Let us assign to the complex numbers en * -

Tvi b
, ...,em ’* the vectors
Zi, ..., Zp in the usual way.

a) If p = 2, then the vectors z;, z; are conversely oriented and so

2 27
—by+ n=—bs.
m m
‘We have from here
m
b1 + — = bs.
2

In case p = 3 (resp. p = 5) we get according to Theorem 6 in [2] that the
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vectors z;, zs,z3 (resp. z1,...,25) forM a regular triangle (resp. a regular
pentagon). Then

bt'—1+—:7n’ bi? 7‘:2: 37
resp.
27 27 2m
bia+-—=—bi, i=2345

After some modifications we get

m
b; = bi1 —|—/3‘: t=2,3,

Tesp.

m
bz:bi~1+?, 1=2,3,4,5.

Ve see that the residual class bi(mod m/p) consequently contains those numbers
which are contained in the system

bi(mod m), bx(mod m), ..., by(mod m)

and not any other if p = 2, 3 and 5.

b) From the mentioned Theorem 6 in [2] it follows that the case p = 4
is impossible. (We can obtain this statement also if we consider that the vectors
7y, ..., 24 form a parallelogram.)

Now we shall prove some theorems analogous to Lemmas 1 and 2.

Theorem 1. Let (1) be an exactly covering system. Let there exist exactly one
4-tuple of the residual classes with respect to the same module and the remaining
ones are distinct. Then

n;=2fori=1,2,....k —4; np_3 = Ng—2 = Ng_1 = ng = 252
or
ng=2fort=1,2,...,k—5;mp4=3.25 npg=... =np=3.284,

Proof. As we have pointed out we can order the residual classes in (1)
so that ny < me < ... < g_3 = Ng—2 = ng-1 = ng. We know that the following
holds for (1)

2 a1

27 @ 27 a i a 2; a
— Ak-3 k-2 — @k-1 — Ak
e i + e + e -+ e = 0.
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Let us decompose this sum into partial sums so that none of them contains any
vanishing subsum. This is possible in a unique way (with a suitable changing

of the indices of g; s), i. e.

27 @ 2t @ 2ni @ 2mi @
— (k-3 — Gx-2 —— Gk-1 —— Ak
e nx _*_. e nk = e + € i = 0 .

Then we can modify the system (1) into the form (see Lemma 3)
(2) a;(mod n;), ¢ =1,...,k — 4; ar—s (mod nx/2), ar—1(mod ng/2).

If ng/2 < nmg-4, the system (2) is exactly covering with exactly one residual
class with respect to the greatest module, which is impossible owing to the
result in [1].

Let nx/2 = ng-4. Then the exactly covering system (2) contains exactly one
triple of the residual classes with respect to the same module and the other
modules are distinct. Owing to Lemma 2 we have

L. "k
ng=2,41=1,..,.k —5; ngg=—=23.2+5
2
and after some modification
=21 =1,...,k —5; np-4=3.2F35, np 3 =mnp o = np-1 = N =

= 3.2k,

In case nx/2 > nx_s We obtain an exactly covering system with one couple
of the residual classes with respect to the greatest module. From Lemma 1

we have

=20 ¢ =1,...,k—4; Np_3 = Ng-2 = N1 = Ny = 2k-2,

.
which proves our theorem.

Theorem 2. Let (1) be an exactly covering system. Let (1) contain exactly
one 5-tuple of the residual classes with respect to the same module and the others

are distinct. Then

Ny =20 =1, ...,k — 5, Mg = Np—3 = Np_2 = N1 = N = 5.2575,

Proof. We can suppose similarly as in the preceding case that ng_4 =

= Np-3 = Nk 2 = Ng—1 = Nx and
i ax E')ﬂ—i(t 2 A 2 lﬂ @r-1 :—’" @
(3) € 1y "'4+ e i =3 + e ni ~f— enx + € ni ":O.
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Let us distinguish the following cases (with a suitable changing of indices
of a,, s):

27i 2mi 27 27 27l
31) eﬁak—l + eﬂ—kak—a + en—kak—z = em k-1 + e nx 273 — 0,
where no of these two sums contains a vanishing partial sum. By Lemma 3
the system
(4) a; (mod n;), 1 =1,...,k — 5; aga(modng/3), ar—1(mod ny/2)

is exactly covering, too. Since an exactly covering system contains at least

23
two residual classes with respect to the greatest module, we have ?= Nk 5.

Since S #* P (4) is an exactly covering system with two residual classes

with respect to the greatest module. From Lemma 3 it follows that
a; (mod n;), et =1,...,k — 6; ar—sa(mod ng/3), ar—1(mod ng/4)

is an exactly covering system. Evidently n;/3 > ng/4. Owing to the same con-
sideration we have ny_¢ = n;/3 and therefore the system
ai(mod ni), 7 = 1, ey k— 7; ark_4(mod nk/G), ak_l(mod nk/4)
. . L N
is exactly covering. Again o +# o
Thus we can reduce the number of residual classes (4) to two

Nk

2x .3

(5) Ap—a (mod ), -1 (mod %), «, f are natural numbers
and this system is exactly covering. For arbitrary natural numbers «, 8 we
have 2¢ . 3 5= 28. Therefore (5) is an exactly covering system with two distinct
modules, which is a contradiction with the result in [1], i. e. this case is im-
possible.

b) The sum (3) contains no vanishing partial sum. Then we can modify
the system (1) by Lemma 3 into the form

ai(modn;), ¢t =1,...,k — 5; ag(mod ng/5).

This is an exactly covering system with one couple of the residual classes with
respect to the same module. We get from Lemma 1 that

n; — 2i, 1 = 1, ey kE— 5; Np—4 = Ngp—3 — Ng-2 — Ng—1 — N — 5.2k5,
There are no other possibilities of the decomposition of the sum (3) into

sums with no vanishing partial sum and therefore the proof is finished.
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The cases with m = 2, 3 and 5 indicate the following statement: Let m be
a prime number. Let exactly one m-tuple of residual classes with respect
to the same module appear in the exactly covering system (1) and let the
remaining modules be distinct. Then the exactly covering system (1) is uni-
quely determined. However, the following holds:

Theorem 3. Let the exactly covering system (1) contain exactly one T-tuple
of the residual classes with respect to the same module whereas the other modules
are distinct. Then at least the following three cases can hold

n =2, 1=1...,k—9;
Np-8 = 2k_7, Ngp— = 3. 2""8, Np—6 = ... =N = 3. 2k=7
=2 i=1,...,k—10;
Ng—9 = 3. 2]“10, Np-g = 3. 2k‘9, Ng—7 = 32, 2k_10,

Ng—6 = ... = N = 32, 2k-9

Il

2

-

|

ng =2 41=1...,k—17;
ﬂk_(;:’nk_sz...:’ﬂk=7.2k_7.

Proof. We get similarly as before that nx_¢ = ... = n; and

2ni

?ﬂa 6 211?“ 5 — @k
en T em T L em =0,
Let
2mi 2i 2ai 2ni 2ni 2ai 2i
e ni k-6 + enx k5 enx k-4 + enx Qx-3 — enx ax-2 + € Ak-1 + ene k 0.
Then we can modify the system (1) into the form

aimod n;), 1 =1, ..., k — 7; ag—z(mod ng/3), ax—s(mod nx/2), ax—¢(mod ng/2).

n Nk
Let A nr 7 and —;— = ng-g . Thenfrom thelatest system we get the following

~

one

a;modn;), 1 =1,...,k — 9; ax—2(mod ng/6), ar—s(mod n/6),

. N ng .
where either nj_¢ :? Or Np-9 =~ ? In the first case we get, owing to
Lemma 2,

. Ng-8  MNk—7 ng
n =2, 1 =1,...,k —10;, ng_9 = 5 = 5 Z?

= 3. 210,

213



and in the second by Lemma 1

. Ng—-8 Ng -7 Ng )
ni:2171:1,__,’k_9; —_—— = = 9k 8:

i. e. the first and the second possibility of our theorem.

The third possibility is obtained if we take an exactly covering system
of Lemma 1 with £ — 6 residual classes and we cover one of the couple of
residual classes with seven residual classes modulo 7 . 2¥=7. (To this possibility

leads the case where the vectors zy, ..., z; assigned to the complex numbers
i 2
ene L, ene

form a regular heptagon.)
Remark. Tt seems there are no more possibilities of exactly covering

systems with one 7-tuple of the residual classes with respect to the same
module as in Theorem 3.
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