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MATEMATICKY CASOPIS
ROENIK 22 1972 ¢isLo 3

JORDAN—HOLDER THEOREM FOR LINES
EVA GEDEONOVA, Bratislava

The aim of this paper is to find such nonmodular lattices in which the
Jordan —Holder theorem for lines is true. The notion of a line is a natural
generalization of the notion of a chain in a lattice. M. Kolibiar in his paper [2]
has shown that two neighbouring elements of a connected line in a modular
lattice are comparable and form a priminterval. He has also shown that the
Jordan—Hélder theorem for lines is true in modular lattices. We shall prove
that if every two comparable neighbouring elements of any connected line
in a finite lattice form a priminterval, then this lattice is modular (see Theo-
rem 1). Hence two neighbouring elements of a connected line in a semimodular
lattice need not form a priminterval. But the Jordan—Holder theorem for
lines holds for some semimodular lattices by considering the correspondence
of simple pairs of lines. It can be shown that if a lattice has a connected line
which has two uncomparable neighbouring elements, then this lattice contains
lines with different lengths. If a lattice is p-modular (i. e. it does not contain
a sublattice with diagram in Figure 1) then any two neighbouring elements
of any its connected line are comparable. In this paper it is proved that the
Jordan—Holder theorem for lines is valid in a p-modular and semimodular
lattice. An example of a p-modular and semimodular lattice which is not
modular is given.

Basic concepts and properties

Throughout the paper S denotes a lattice. Let a, b, x € §. We say that z is
between a and b and write axb if @Nx)U (xNb)=x=(aVa)N (zUb).
When the lattice S is a chain then axbiffa < x < borb = x £ a. The relation
“between’’ in S possesses the following properties:

(er1) xyz implies zyx
(x2) xyz and xzy imply y = 2
(t) xyz and zzu imply yzu.
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Four different elements «,b,c,d e S f;ﬁi“ ‘a pseudolinear quadruple when
they satisfy abc, bed, cda, dab. If axb, then a N'b £ x £ a U b. Clearly, axb
and @ £ b implies ¢ £ x £ b.

If 4, B are subsets of some lattices and a bijection ¢ from 4 onto B is given,
so that abe if and only if g(a)p(b)@(c), we say that 4, B are b-equivalent. A subset
A of 8 is called a line if there exists a b-equivalent chain to 4. An element a
is an endelement of a line A4, if @ € 4 and for any two elements of the line 4
is ayx or ayx. Evidently, a chain in § is a line in 8. The relation “between‘
in a line has the following property:

(¢2) xyz, yzu and y =+ z imply xyu.

Let A4 be a line in S with an endelement a. For x,y € 4 set x <y iff axy.
Evidently, (4, <) is a chain and xyz, x,y,z€ 4, if and only if x <y <=z
or z <y <x. A line 4 < 8 is called connected when it has the following
property: If o € § and if there exist elements @, b € A, such that axb and
A U {z} is a line in S, then z € 4.

In paper [2] the following equivalent definition of a line is given: A subset
of a lattice is a line if and only if it satisfies the following two conditions:

(1) for all three elements x, y, z € 4 one (at least) of the relations zyz, yzx,
zzy, holds.

(ii) A does not contain a pseudolinear quadruple.

In the paper [4] there is the following statement: If a subset A of a lattice
has more then four elements and satisfies the condition (i) of the preceding
definition then 4 is a line.

Let 4 be a line in 8. Two elements a, b € 4, a + b, are called neighbouring
if {x |z e A, axb} = {a, b}.

An interval [a,b](={xeS|a <2 2 b}), a b, is called priminterval
if [, b] = {a, b}. If [, b] is a priminterval we say that b covers a, and denote
a <] b. Two elements a,b e § are incomparable, if neither ¢ < b nor b < a
holds, we write a || b.

We say that the lattice S satisfies the wpper priminterval condition, if for
every two elements a, b€ S, a N b <] b impliesa <] ¢ U b. Dually, we say that
the lattice S satisfies the lower priminterval condition, if for every two elements
a,be S, a<]avubimpliesand <b.

Neighbouring elements in a line

Definition 1. A line A in S has the property (o) if every two neighbouring
comparable elements of A form a priminterval.
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Theorem 1. If every connected line in a lattice S has the property (o), then
the lattice S satisfies the lower and the wpper priminterval conditions.

Proof. Let u,ve S, | v, u N v < v. The elements u, u U v, v form a line.
Let K be a connected line which contains the elements u, v U v, v. Let K
contain an element x such that x + u, x + u U », ux(x U v). Consequently,

(1) u<r<ulLwv.
Since 2 € K, uxv. Then
(2) r=@wmNz)V(ENv)=uU(xNv).

From (1) it follows u N v £ 2 N v £ v. In view of w N v <J veither u N v =
=xNvor xNv=v Assuming uNv=zNv we get from (2) x =u U
U (w N v) = u, which cannot be by (1). If x N v = v, then by (2) x = v U v,
which is impossible by (1).

Consequently, in the line K there does not exist an element x such that
ux(u U v), w + x + U v. It means that the elements «, « U v are neighbour-
ing elements of the line K. Considering the fact that the line K has the pro-
perty («), we have u <] v U v.

We have proved the upper priminterval condition. The lower priminterval
condition follows by duality.

Lemma 1. Let A be a subset of a lattice S having the following properties:

(i) There exist two elements a, b € A such that a N'be A and
A ' =[anbaln 4, A" =[anb,b]N A are chains.

(i) /U4 =4

(iii) If x,ye A(A"),x =2 y,z€ A" (A ), then xyz
Then A is a line with endelements a, b.

Proof. The set A” @ A’ is a chain (4" is a dual chain to 4", @ means
the ordinal sum). We shall prove that A” @ A" and A are b-equivalent.
Let ¢: A” @ A’ — A be an identical morphism. We shall denote the relation
“‘between,, in the chain A” @ A4’ as (x, y,2)p. If z, y,ze A"(4’), then (z, y, z)f <
< @p@)py)pk). If xe A", y,z€ A, then (z, y, z)8 implies y < 2, from which
it follows @(@)p(y)p(z) by (iii). If a,ye A", ze A’, then (x,y, 2)8 implies
x 2 ¥y, hence p(x)p(y)p(z) by (iii). Clearly, p(x)p(y)p(z) implies (z, ¥, z)8.

Lemma 2. If A is a line with endelements a, b, @ || b, a N b e A, then A =
— A'"U A", where A’ =An[anb,a], A=A nfanbb], A", A" are
chains.

Proof. The line 4 is b-equivalent with some chain B hence there cxists
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a bijection ¢ from 4 onto B. Let A; = {x€ A | p(x) £ p(a N b)} and Ay =
={rxed|p) 2 ¢lanbd)}. Then 4 = 4; U 4;. If ac 4,, then 4; = 4,
A, =4" If x,ye 4’, then z < a, y £ a. From axy(ayzx) it follows y <
fx=a(x £y = a). Therefore A’ is a chain.

Remark. If 4 isaline with endelements a, b, a || b, a N b € A, then we shall

denote the set 4 n [a N b, a] by 4’ and the sct 4 n [a N b, b] by A”.

Lemma 3. Let A be a line in the lattice S with endelements a, b, a ||b,a N b e A.
Let an element u € [a N b, a] U [a N b, b] satisfy the following conditions:
(i) aub
(ii) 4" v {u} or A" U {u} is a chain.
Then the set A O {u} is a line.

Proof. The conditions (i), (ii) of Lemma 1 are fulfilled. Thus it remains
to prove the condition (iii). Let u € [@ N b, a]. We shall consider three possi-
bilities, the others are symmetrical.

a) Ifx,ye 4", x £ y, then
(1) z=azU@nNb)=@Ny)UanNnd) =@nNy) U (xnNu).
Since 4 is a line and a is an endelement, then axy, hence
(2) r=@Va)NyUz) 2 @Vu Nyu) = .

uxy holds by (1) and (2).
b) Let x e 4’, ye A", x = u. Considering the fact that aub, we get « =

=wUa)N (uUb) 2 (uUax)N (vUy) = u. Since the second identity holds,
trivially zuy follows.

c) Let e A’, ye A", x < u. Since axy,
r=@Ua)N(zVy 2 @m®Yr)N(zVy) = .
The second identity holds trivially, hence wuay.

Lemma 4. The relation zab implies x Na = z N b.
Proof. From zab we get a = (xUa)N(@Ud) =2 xnNbd. Hence zNa =

= xNb.
Theorem 2. Let K be a line tn the lattice S with endelements a, b a || b. Then
K'={anz|aeK}u{dbna|ze K}

28 a line in S with endelements a, b.
Proof. For every element « € K, axb. Hence by Lemma 4 a Nz =2 aNbd
and b Nz = a N b. Therefore

K"=(K"nlanb,al) u (K n[enb,bl,
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which means that the condition (ii) of Lemma 1 is fulfilled. We show that
the condition (i) holds too. Let z,ye€ K™ n [a N b, a]. Hence, there exist
elements 21, 41 € K such that

r=aNx, Yy=aNy.

Either axzi1y1 or ayiz; holds, therefore either e Nay =2 a Ny or a Ny =
= a N z; by Lemma 4, hence z = y or y = x. We see that the condition (i) is
fulfilled.

It remains to prove the validity of the condition (iii) of Lemma 1. Let
x,ye K™ n [e N b, a] and

(1) x>y

and let ze K™ n [a N b, b]. Hence, there exist elements z1, y1, 21 € K such
that

x=x1Na yYy=y1Na z=2z21NDhb.

Either ax1y1 or ayix: holds. From the relation ay;x; there follows @ N 3y, =
2 a N x; by Lemma 4, hence ¥ = z, which is impossible by (1). Since « =+ y,
we get @1 + y.. Therefore

(2) axiyi, *1 -+ Y.

The elements .c1, 71, 21 satisfy one of the relations: a) z;2191, b) x12191, ¢) X19121 .

a) Let ziz1y:1. Since y; € K, ayib. This and the relation (2) imply the relation
a1y1b, by (t1). From this and from the relation zix1y1 there follows the relation
z11b, by (t2), which implies by Lemma 4

(3) bNnyrzbnNz.

The relation (3) and ayd imply y =anyr=an (e Ny) Y (bdNiy))
ZanNn((anyp)uUdnNna)=an(yuz)zaenN(yUz)=(xUy) N(yU:z)

=
Z =
2 y, hence

y=@uy)Nyuvsz).

Since the second identity holds trivially, we get xyz.

b) Let x1z191. The relation ayd and (2) imply the relation z1y:b, by (t1).
From this and from a1211 it follows that by (t1) z.y1b. From this xyz follows
exactly as in the case a).

c) Let xy121. This relation and (1) imply ¥y < (U y) N (y U 2) =
xNyUz) = (@nNz)NeNny)VUbdNz)) S(@eanaz)N(nyUz) =

(
anN (@ N @ruUz) San (1Y) N Yz) =an y =y. The second
identity is easy to prove, hence xyz.
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Definition 2. Let K be a line with endelements a, b. The pair of elements
z,y € K is called a simple pair {x, y) with respect to a if axy and the elements
x, y are neighbouring in the line K.

Remark. If we shall consider a line with endelements a, b, we shall call
a simple pair {x, y> with respect to a shortly a simple pair {z, y).

Lemma 5. Let K be a line with endelements a, b, a || b. Let {x, y> be a simple
pair of the line K and x 2y (x £ y). Then e Nb, ynby ((eNa,yna)
s a simple pair of the line K.

Proof. We suppose z % y. Evidently, axzy and ayb. From these two rela-
tions there tollows by (t;)

(1) xyb.
This implies by Lemma +
(2) yNbzarxnNndb, aNny=xrNb.

It ynb=xnNb, then (1), (2) imply y=@Ny)uynNnd) =Ny u
U@ Nb)=(xnNy). Hence y < @, which is impossible (we have supposed
2 2 y). Hence 2 Nb < y N b. The line K" fulfils the conditions (i), (ii), (iii)
of Lemma 1 (see the proof of Theorem 2). From the condition (iii) it follows

a(rNbd) (yNb).

It remains to show that the elements x N b, ¥ N b are neighbouring in the
line K. If ¢ € K™ exists such that

(3) ynb>c>xzNb

then, since ¢ € K"”, there exists an element ¢; € K such that ¢ = c¢; N b.
Since z, y are neighbouring elements of the line K, either c.xy or zycy. The re-
lation ¢jxy cannot hold, because the relations ¢;zy and zyb imply ci12b by (t2),
which implies b "z = b N ¢; == ¢, contrary to (3). On the other hand the
relations zyc: and axy imply ayc; by (t2). From this and from acib we have
yeib by (t1). By Lemma 4 ¢c=bnNc¢ = bNy, which is also impossible.
We see that the elements @ N b, y N b are neighbouring in the line K°. The
assertion in the brackets can be proved analogously.

Lemma 6. Let K be a line with endelemenis a, b, a || b. Let {x;, yiy,t = 1, 2,
be two simple pairs of the line K different from each other. If x; 22 y;, ¢ = 1, 2
@i Xy, t=12),thenbnNnar £bNxz(@aNyL = anys).

Proof. By assumption, aziy;, ¢ = 1, 2. Since ay;b, ¢ = 1, 2, we get by (t;)

(1) $i:l/ib, P = 1, 2.
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Since the pairs {x1, ¥1), {2, y2) are different from each other, z; + 2. Let
(€) bNx =bnN a,.

We can consider w220, because the case xax:b is symmetrical. The relations
21xeb and (2) imply 22 = (ke Nz1)) U (22 Nb) = (z2Nz21)) YU (21 N b) = x4,
hence

(3) X2 _S_ x1.

Considering the fact, that zix:b and 21, 71 are neighbouring elements, we get
a1y1x2. This and (3) gives

y1=(x1 N y1) Y (y1 N x2) = (21 N y1).
Hence y1 < 1, which contradicts the assumption. The assertion in the brackets
can be proved analogously.

Definition 3. Let K be a finite line. The length A K of the line K is the number
of its simple pairs.

Definition 4. T'he line K has the property (B), if any two neighbouring elements
of the line K are comparable.

Theorem 3. Let K be a finite line of the lattice S with endelements a, b, a || b.
Then

a) of the line K has the property (f), then dK = dK".

b) if the line K has not the property (8), then dK < dK".

Proof. Let us denote the set of all simple pairs of the line K(K") by
K*(K"*). Let us define a map ¢ from the set K* into the set K"* as follows.
Let (x,y> e K*. If x > y, then ¢({z, y>) = {a N z,a N y)> and if % y, then
oz, ) =<d Na,bNyy. By Lemma 5 ¢({x, y>) are simple pairs of the
line K. We show that the map g is 1 — 1. Let (x1, y1> # (a2, o). f 21 3 o1,
Xz 3 y2 or x> y1, X2 > y2, then ¢y, y1)) ¥ ¢((x2, y2>) by Lemma 6.
If2y & y1, 22 > y2, then (o, 1)) = <b N 21, b Ny € K™* and p({2, y2) =
= {a N2, a N yye K' The case x1 > y1, x2 £ ¥2 is similar to the preceding
case. We have already proved that {x1, y1) * (@2, s> implies @({x1, 11>) *
+ (a2, y27)-

We first assume that the line K has the property (8). We show that ¢ is
a map from the set K* onto the set K"*. Let {c,d> e K"* By Lemma 2
either ce K™ or ¢ € K"". Let, for example, ¢ € K°”. Then

(1) anb c<d.
Since ¢, d € K™”, there exist z, y € K such that

(2) c=zxznb, d=ynNnb.
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If there were yxb, then by Lemma 4 there would be x n'b = y N b, hence
¢ 2 d, which contradicts (1). Consequently xyb and since azb, hence by (t)

(3) axy.

The relation x = y implies x N b = y N b, hence ¢ = d, which contradicts (1).
Hence » 2z y. Since the line K is finite, therc exist elements a; (¢t = 1, 2, ..., n)
such that

r=x0n < <. <¥p-1<¥p =Y

(x <y<=axy,x,yc K) and {x;, 241, 2 = 1,2,...,n — 1, are simple pairs.
From x 2 y and from the property (8) it follows that there exist an 7, 1 <
<4 < n — 1, such that

(4) X << Xi1.

In view of z <2y <xi+1 <y <b there holds ax;b and 2;11yb. Hence by
Lemma 4 it follows

c=axNb2xyNbsxaNbsyndb=d.

By Lemma 5 @({x;, xi41)) = {xs N b, 2301 N D), hence x;Nb £ x; Nb.
Considering the fact that {c, d) is a simple pair, we see that

(e, dy =< N b, 2411 N D) = @(<g, @i41)).

Let us assume that the line K has not the property (f). Then there exist
two neighbouring elements ¢, d of the line K, which are incomparable. Let acd.
Since ¢ = d, ¢({c,dy) =<bnNc,bNdy. By Lemma 5 the elements a N,
a N d form the simple pair {a N ¢, @ N d). Let {x,y> € K* such that p({x.y>) =
=<lanz,anyy=<anc,andy. Thenz > y.Sincec £d,x £ yandc|d,
it follows by Lemma 6 that a Nd £+ ¢ N y. But this contradicts the fact
that @Kz, »>) = <a Nz, a N y). Hence no simple pairs are mapped on the
simple pair (¢ N ¢, a N d). This gives dK < dK".

Remark. The last theorem shows that if a finite lattice contained a con-
nected line K with endelements @, b, which has not the property (8), then
in this lattice the Jordan—Holder Theorem for lines would not hold. Let us
find a sufficient condition that every line of the lattice S have the property (f).

Definition 5. 4 lattice S is partly modular (p-modular), iff for -every
a, b, a1, by € S, which satisfy the condition

(1) (a1Ub)f\a:a1, ((LUbJ_)ﬂb:b]_,

we have a; U by = (a1 U b) N (a U by).
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Theorem 4. A lattice S is p-modular of and only if it does not contain a sub-
lattice with the diagram of Figure 1.

Proof. If a lattice contains a sublattice of Figure 1, then by Definition 5
it is not p-modular.

Now we assume that the lattice S does not contain a sublattice with the
diagram of Figure 1. Let a, b, a1, by € 8 and let (1) of the Definition 5 hold.
If @ £ b, then by (1), a1=@a and (¢ Ub)Nb = (bUb)Nb=>, hence
b1 £b. Then a1 Vb = aUb = (Vb)) N (aUb) = (@ Ub) N (aV by).
The case @ = b is symmetrical. Let a || b. Let us denote as = a U by, by =
— a1 U b. Then from (1) it follows

(2) anNb<aifacazaUdb, aNnb<bi<b=<b=LauUbd

and also a; U by £ as N ba. If a1 U by < az N bz and no two elements would
be equal in (2), then the sublattice of the lattice S, generated by the elements
a, b, i, by, az, bs, would have the diagram of Figure 1. Therefore a; U by =

a b,

Fig. 1
— a3 N by. If some two elements are equal in (2), then it is easy to prove that
a1 VU by = azN bs.

Theorem 5. A lattice is p-modular if and only if it satisfies one of the following
conditions.

(1) For every a,b, a1,b1€ 8, a||b: If {a, &1, b1, b} is a line with endelements
@, b, then a(ay U b1)b.
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(ii) For every a,b,a;,b1€ 8, a|b: If {a,ar, by, b} is a line with endelements
a, b, then a(ar N b1)b.

(iii) For every a,b,a1,bi,a2,b2€ S, alb: If

aeNb=>b,boNa=a1, arub=bs, b Ua = as, then a;\U by = a> N ba.

Proof. Clearly, a lattice is p-modular if and only if it satisfies the condi-
tion (iii) (see the proof of the Theorem 4).
We shall prove that the conditions (iii) and (ii) are equivalent. Let lattice S

satisfy the condition (ii) and let the elements «, b, a1,b,a2,b2€ 8, a b
satisfy the conditions

(1) asNb=>b, baoNa=a, ayVUb="0b, bUa=a.

If a =a, then bs =a1 Ub=aUb = az. Hence az Nbs =a> =a VU b, =
= ay; U b and condition (iii) is fulfilled. The case by = b is analogous. Suppose
now that a1 + a, by + b. We show that {a, @z, b2, b} is a line withend elements
a, b. According to the suppositions (1) there holds as < (@ U a2) N (b U az) =
=as N (DU az) =az and a2 2 (@ Naz) U (b N az) = a U b = as. Therefore
aazb. In a similar manner it can be shown that absb. Therefore the set {a, a2, a U
U b, bs, b} forms a line by the dual statement to Lemma 3. Clearly, the set

{a, as, bs, b} forms a line, hence a(az M b2)b. From this it follows
az N b = (@ N az N b)) U (azNbsNb) =
=(@nN b1 YUa)Nb)U (a2 (ag Ub)Nb)=(aNb)VU (a2 Nb) =
=a; U b;.

(We have applied the relations (1)). We get a2 N b> = a; U b1, as claimed.
Suppose now that the lattice S satisfies the condition (iii). Let the set
{a, a1, b1, b} be a line with endelements @, b. Well shall prove that the elements

a,b,bUb)Na, (aVa)Nb,aUa,bubd,

Satisfy the conditions (1). Evidently, the first two conditions are fulfilled.
Since abib, aa1b, it follows

(2) Gubl))Nna=0bUYUb)N((bhvae)nae)=biNa,
(3) (cVva)Nb=(@Va)N ((e1VUdb)Nbd)=arNb.
(2) gives

(4) GuUub))Na)Vb=biNa)ub=0b1Na)U (B 1NbdUDb =

=b1UDb.
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Analogously (3) implies
(5) ((eVa)NbD)Vu=a1Va.

The relations (4), (5) are the second two conditions of (1) for our elements.
Since the lattice S satisfies the condition (iii), we get

(6) (@Ua) N (bub)=(aUa)nd)u(bub)na).
(2), (3), (6) yield ‘
(7) (@Vam)NBUb)=(a;Nbd)U (aNby).

Since ambi, a;bib and (7) holds, we get a1 N by == ((¢ U ar) N (a1 U by)) N
A ((bUbl) N (b]_Uaj_)) = (aVa) N (bUb]) N (a]Ubl) = ((alr\b) v
U@nb)) N biVa) = (e Nbd) U (e N bi). From this and from (6), (7)
it follows (@ U a)) N (bUb) = a1 Nby = ((aVUa))Nb) U ((bUb) N a).
From this relation we get
amNb 2 (@au@nNb)NGU(@Nb)) £ (@Va)nN (bUb) =a N by,
N Z@naNnb)udnand)=@NGub))Ubdn(aUa)) =

=a; N by.

From the two last relations we get a(a; N b1)b, which proves our assertion.
The equivalency of the conditions (i), (iii) can be proved analogously.

Lemma 9. If xab, then x(a N b)b (x(a U b)b).
Proof. From the relation xab it follows

zUa=zU(@Nnz)U(anNd) =(anb)uux,
anNb=(ava)N(@ubd)Nnbdb=(aUx)Nnb.
These two relations imply
anNndb s (eand)ua)N((anNnd)ud)=(avzx)Ndb=anb.

Therefore a N b = ((@ N d) U z) N ((@ N b) U b). The dual relation is evident,
hence z(a N b)b. The assertion in brackets can be obtained by duality.

Lemma 10. If the elements x, y, a, b belong to a line K, and xab, xya, then
zy(a N b) (zy(a U b)).

Corollary. The relation xab tmplies za(a N b) (xa(a Y b)).

Proof. From zab and zya it follows that yad by (t1). The last relation
and xya gives xyb by (t2) (if # == a, then xyb, too). By the preceding Lemma
from yab it follows that y(a M b)b. But this and ayb imply xy(e N d) by (t1).
The assertion in brackets is dual.
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Theorem 6. Let S be a p-modular lattice. Then every connected line in the
lattice S has the property (), which means that any two neighbouring elements
of any connected line are comparable.

Proof. Let S be a p-modular lattice. Let K be a connected line in S, which
has not the property (8). Hence there exist @,b e K, a || b, ¢, b neighbouring
elements in the line K. We shall prove that {& N b} U K is a line. To this
end, it is sufficient to show:

1. For any z, y € K one of the relations holds: z(a N b)y, zy(e N b), yx(a N b).

2. If the set {a N b} U K contains exactly four elements, then these elements
do not form a pseudolinear quadruple.

We first prove the assertion 1. We have considered the following cases.
1. xab, yab, 2. xab, aby, 3. yab, abx, 4. abx, aby. In view of the symmetry it
suffices to consider the cases 1. and 2. In the first case it zya, then the relations
aab, xya imply axy(a N b) by Lemma 10. If yxa, then from yabd it tollows by
Lemma 10 that yxz(e N b). If xay, then x <a <y or y <a <. From the
suppositions ¢ + b and 1it followsthatx <a <bandy <a <bordb <a <z
and b < a <y. Hence = a or ¥ = a. Therefore yxa or xya, which was con-
sidered. In the case 2 the set {z, a, b, y} forms a line. Since the lattice S is
p-modular and « ||y (if * £ y or y = «, then {, @, b, y} is a chain contrary
to a || b) we get x(a N b)y by Theorem 5, (ii).

We show the validity of 2. Since @ || b, it cannot be ab(e N b) or ba(a N b).
Hence we have a(a N b)b. Therefore the elements a, b, @ N b, ¢ of the set
{& N b} U K can form a pseudolinear quadruple only in this way:

a(e ND)b, (@ N b)bc, bea, cala N D).

The relation bca contradicts the fact that the elements @, b are neighbouring
in K.

Since a || b, we have K u {¢ Nnb} 2 K, which is a contradiction to the
supposition that K is a connected line.

Jordan—Holder Theorem for Lines

Lemma 11. If abx, aby and there exist an element w such that v < u < vy,
then abu.
Proof. 6 2 (@aub)Nn bV u) 2 (aVb)N(bUy) =D,
bz (andb)udbnu)z(and)u bna)=>.

Theorem 7. Let S be a p-modular lattice. Let K be a finite connected line with
endelements a, b e S, a || b. Then the line K™ is connected.
Proof. If K™ is not connected then there exist elements a;, 1. c € S such
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that a1, b1 € K°, ¢ ¢ K™, uichy and K™ U {c} is a line. Hence a <a; <¢ <
< by <b, whence

(1) ach.

Since the line K" is finite, there exist , y € K" such that z, y are neighbouring
elements of the line K™ and acy. Let , y € K™" and let x < y. Then

(2) r<<c<y=b.

We shall show that there exists an element u € S, u ¢ K, such that aub and
K u {u} is a line, hence the line K is not connected, which is a contradiction
with the supposition. Therefore the hypothesis that the line £ is not connected
1s contradictory. '

Since the lattice S is p-modular and the elements z, y form a simple pair
{x, y», by Theorem 3 there exists {(z1, y1> € K* such that p({x1, y1)) = {z, ¥).
From the construction of the map ¢ it follows that

(3) <y, x=a1Nb, y=y1NbHb.
Let w = 21 U ¢. Since 21 < y1 and ¢ < y < y1 we get
(4) r = U= Y.

Further, we shall show that

(5) rnUc=u=(@aVc)Nyp.

Since axy, we get by Corollary of Lemma 10 that (@ U x)ry. Therefore
{a Uz, 2, y} is a line. The relation axy implies z = (¢ Uz) N (x VU y) =
— (@ U x) Ny and this implies a Uz || y. If (@ U 2)cy, then {a Uz, x, ¢, y}
is a line by Lemma 3. But axy and zcy imply axc by (t1), axc and xcy (x =+ c,
a,z,c,yc K™ U {c}) imply acy by (t2), acy implies by Corollary of Lemma 10
(@ U c)ey. Finally, acy, (aUc)ey and a S aUx £ aUc imply (e U x)cy
by Lemma 11. Proving z < z; £ ¢ Uz and (e U x)r1y we get that {a Uz,
x1, %, ¢, y} is a line. But, since x = x1 N b (see (3)) and ax1b (x, € K), we have

(6) rUa= (@ NbU(z1Na)Ua)=2x1Ua,

hence z; < a U z. (Clearly @ £ xy). Since {x1, y1) is a simple pair, we have
x1%1b, which yields, by Lemma 9, z1(y1 N b)b, hence x1yb (see (3)). The relations
ax1b, x1yb imply axy by (t1), whence by Corollary of Lemma 10 (a U x1)x1y.
Hence

(@ Y x)xry
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by (6). Since {a U x, 21, , ¢, y} is a line, the set {a U z, a1, ¢, y} is a line too.
Since the lattice S is p-modular it follows by Theorem 5 (1) that

(e U 2)(x Y e)y.
In view of this and of (2), (4), (6), z1y1b we have
nVc=(avzunVVec)N(@UcUy)=(aVarUc)N(@1Vy) =
=(@avec)N((mNy)Y(y1Nbd) =(eavec)nNy.

This proves (5).
Next we show that

(7) aub.
Since
cZ(@mNe)UenNd)=(x1Nc)Vc=c
and, with respect to (5), (3), (2) and acy,
c2(mue)Necudb)=@ue)Nny Nb=(aUc)Ny-=:
=(avc)N(cVy) =c,

we get x1cb. From axib (x1 € K) and x1cb it follows that axic by (t1). Since
axic, x1ch, axib and acb (see (1)) and the elements @, x1, ¢, b do not form a
pseudolinear quadruple (the relation cba is not possible) the set {a, 1, ¢, b}
is a line. By Theorem 3, (i) a(x1 U c¢)b, therefore the relation (7) is proved.

We shall now show that

(S) X1 F U, uUF Y.

Ifu = a;,thenc £ cUx; = u = rrandc £ b(see(2)),hencec £ x1 N b =z,
contrary to (2). If w = w1, then (¢ U @) N y1 (see (5)) hence y; < ¢ U a. In view
of ach we have c = (e Ue) N (bUc) = y1 Nb =y, thus ¢ 2 y, which contra-
dicts (2).

It remains to show that K U {u} is a line, that is:

A) For any e, f € K one of the relations euf, efu, feu holds.

B) If the set K U {u} contains exactly four elements, then these elements
do not form a pseudolinear quadruple.

A) We have to consider the following cases a) exiy1, friyi, b) exiyr, x1yLf.
The other two cases are symmetrical.

a) Let exyy1, friyn and let efx;. Then efy;. The relations efr;, efy; and
x1 £ u £ y; (see (4)) imply efu by Lemma 11. If fex; then, analogously, feu.

b) Let exyy1, 21y1f. Since axyy1, there exists a linear ordering of the line K
such that ¢« <e <x1 <y, <f <b. This implies aex; and aey;. Since x1 <
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< u £ y1 by (4), aew by Lemma 11 holds. Analogously it can be shown that
ufb. These two relations imply, by Lemma 4,

(9) uNnfzunb, uvfsuvub, uvezunNa, uVe=uVa.
This and the relation aub (see (7)) imply

S (Uf)Nn (Ve S (wVa)N (wUb)=u,

uz(uNe)V@mnf)z(una)u(wnd) =u.

This proves that euf.
B) The set K U {u} contains the elements x;, y1, » and let it contain the
element te K, ¢t % 1, % y1. Since 1 £ » < y; and the elements z;, y1 form

a simple pair, the elements a1, y1, %, ¢ can form a pseulinear quadruple only
in this way

1wy, wyil, yitxy, txiu.
The relation yitx; contradicts the supposition.

Definition 6. A lattice S satisfies the condition (y), if to any two elements
a,be S,a|b and to any connected finite line with endelements a, b there exists
a connected line with the same length and the same endelements, containing the
element a N b.

Theorem 8. A lattice S is p-modular if and only if any its sublattice satisfics
the condition (y).

Proof. If the lattice S is not p-modular, then it contains a sublattice
with the diagram of Figure 1, by Theorem 4. The line {«, a1, b2, b} and the
line {a, @y, @ N b, by, b} are connected and they have different lengths.

Let the lattice S be p-modular. Let K be a finite connected line with end-
elements «, b, @ || b. The line K™ is connected by Theorem 7. The line K has
the property (8) according to Theorem 6, hence dK = dK” by Theorem 3.
We found to K a connected line K™ with endelements a,b,a N"be K" and
with the same length.

Definition 7. A lattice S is wpper semimodular i{f lo any three elements
a,brelS

(1) allb, avub>x>a
there exists at least one t such that

aVb>tzbdb and (zNH)Ua==2.
(Definition 7 is from [3]).

Remark. Every modular lattice is p-modular, but the lattice of Figure 2
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is p-modular and is neither upper semimodular nor modular. The lattice
of Figure 3 is upper semimodular, but is not p-modular.

Fig. 2 Fig. 3

Theorem 9. Let S be an upper semimodular lattice. If K ts a connected line
in 8 with endelements a,be S, a | b, aNbe K, then for any two neighbouring
elements ¢, d € K either ¢ < d or d <] c.

Proof. Let, for instance, ¢,d e K'(= K n [a N b, a]) and let ¢ > d, where
¢, d are neighbouring elements in K. Let [d, ¢] not form a priminterval, thus
there exists an element w € 8, ¢ > u > d. Since ¢, d € K', we get

(1) aZc>u>d=anb.

Since the line K is connected the set KX U {u} does not form a line. The condi-
tion (ii) of Lemma 3 is fulfilled, hence the condition (i) of Lemma 3 is not ful-
filled and the relation aub does not hold. Hence

(2) u <<an (uyUb).
Since ¢ € K, we get acb. This and (1) gives
c=(@uc)N(cudb)y=anduc)zan (bUu).
Therefore either a) ¢ >anN (b U u) or b) ¢c =a N (b U w).
a) Let £ = a N (b U u), hence ¢ > ¢t and £ > u by (2). This and (1) gives
3) c>t>d.
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We show that ath: t Z (eanNt)U (BN = (cN)V BN =tUbnNi) =t
2 (aut)N(BUE) = (ave)N bUueanduw) can(duBduau) =
=anN byUu)=t(see (1), (3)).

The set K U {f} is a line by Lemma 3 and ¢¢ K which contradicts the
assumption.

b) Let ¢ =a N (b U w). We show that the conditions (1) of Definition 7
are fulfilled by the elements u, b U d, c. We first show that w ||b U d. If w <
sbud,thend=(aud)Nn (bBUd) = anu=wu (since de K, we have adb
and @ > « by (1)), thus d = «, which contradicts (1). If b Ud = u, then
b < uw. This and u < a (see (1)) give b << @, contrary to the assumption.
Consequently, #{bUd. From ¢ =an (b Uu) it follows that ¢ < b U .
If c=bUwu, then b £ ¢ £ a contrary to the assumption. Since c <bU u
and u < ¢ ((1)), we get

budyvu=>bVu>c>u.

Since the elements u, b U d, ¢ satisfy the conditions (1) of Definition 7 and the
lattice S is upper semimodular, there exists an element z such that

(4) bUuu>z2zz2bud
and
(5) (sz)uu:c_

Thus ¢ z ¢ Nz If c Nz = ¢, then ¢ U 2z = z. Combining the relations (4), (1)
and ¢ Uz = z we get

bUu=0bUd)VUu £zVUu2UCc=2,

hence b U « < z, which contradicts (4).
Therefore ¢ > ¢ N z. According to (4) z = b U d, hence z = d. This gives

cNnzzend=d. If cnNz=d, the relation (5) would not hold. We have
shown that

(6) c>cnNz>d.

We next show that a(c N 2)b. Since bU (cNz) £ bUd)U(cNz) £ 2V

UenNnz) =zand an(bU(cnNz) = an(dUc) = ¢, we get anN (bU

U (c N 2)) £ ¢ Nz (We have used the relations (1), (4) and acb). Then
cNzz=(avecnNz)Nn@ducnNnz)=an(bduUlcnNz) =cnNz.

It is easy to prove the second identity. We have proved that the element ¢ N z
satisfies the suppositions of Lemma 3. Hence K U {c N2} is a line,c Nz ¢ K,
which contradicts the fact that K is a connected line. Hence the assumption
that [d, ¢] is not a priminterval is contradictory.
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Corollary. If a lattice S is upper semimodular and K is a connected line with
endelements a,b,a|b,a Nbe K, then K = K'u K", where K', K" are con-
nected chains between a,a N'b and b, a N b.

Remark. Two intervals of a lattice are called fransposes when they can
be written as [@ N b, a] and [b, @ U b] for suitable a, b. Likewise, two intervals
[#, y] and [2’, y'] are called projective if and only if there exists a finite sequence
[z, y], [x1, y1l, ..., [, ¥'] in which any two successive intervals are trans-
poses. From paper [1] it follows that the following theorem is true.

Let the lattice S be upper semimodular, K, L be connected chains in S with
endelements a, b (a < b) and K be a finite chain, then the following holds:

1. The chain L is finite and has the same length as K.

2. There exists a 1 — 1 mapping of the primintervals of the chain K onto
the primintervals of the chain L such that the corresponding primintervals are
projective.

Lemma 12. Let the lattice S be p-modular and upper semimodular. Let K, L
be finite connected lines with endelements a, b. Then there exists ¢ 1 — 1 corres-
pondence between the set of simple pairs of the line K and the set of simple pairs
of the line L such that the corresponding simple pairs are projective.

Proof. We shall say that the lines are in the relation £, if there exists
a 1 — 1 mapping of the set K* onto the set L* such that the corresponding
simple pairs are projective. We show that LZL". According to Theorem 3
and Theorem 6 there exists a 1 — 1 mapping ¢ of the set L* onto the set L™*.

Let ¢(<z, y>) = <b Nz, b N y). In view of the definition of the mapping ¢
in the proof of Theorem 3 we have x <y, b Nz < b N y. We have

xNdNy)=xzNnynNnb=2xnNhb.
Since <z, > is a simple pair, we get axy. From this it follows that xyb, hence
rUbny)=@nNyvynd =y.

Therefore the simple pairs <z, y>, <b N 2, b N y> are transposed. Analogously,
if pz,y>) =<anNx,anyy, then {(x,y>, (anNz, any) are transposed,
hence LZL".

Since the lattice S is upper semimodular, in view of the Corollary to Theo-
rem 9 L" = L™ u L"", where L"', L™" are connected chains between
aNb,a and a N b, b Analogously, K”', K" are connected chains between
anb,aand a Nb,b. According to Remark following Theorem 9, L™ZPK"',
LN"PK"™", hence L"PK".

Since LZL" and KZK", L"ZK" and the relation & is symmetrical
and transitive, we have LZK as claimed.
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Lemma 13. Let L be an infinite line with endelements a,b, a||b. Then the
line L™ is infinite too.

Proof. Let us map any element z € L onto the ordered pair (¢ Nz, b N z):
¢(x) = (@ N z,b N z). We show that the mapping is 1 — 1. If ¢(x) = ¢(¥),
then

(1) anzx=any, bNx=>bny.

Since z, y € L, we can, for instance, consider that axy, hence zyb.
This and (1) give

r=@nz)V@ny)=(@ny)Vny =y,

y=@nNny)und)=@ny)vudnaz) =,
hence x = y.
If the line L is infinite, then the set of ordered pairs {(e "z, b N z) |x € L}
is infinite too, hence L"™ =={a Nz |x e L} U {b Nz |2 € L} cannot be finite.

Theorem 10. Let the lattice S be p-modular and wpper semimodular. Let K, L
be connected lines with endelements a, b, a || b. Let the line K be finite. Then there
exisis @ 1 — 1 mapping of the set of simple pairs of the line K onto the set of
svmple parrs of the line L such that the corresponding simple pairs are projective.

Proof. If the line L is finite, then the assertion follows from Lemma 12.
If the line L is infinite, then the line L” is infinite by Lemma 13 and hence
the connected line L which contains L” is infinite too. Since the lattice §
is upper semimodular, K" is connected and there holds

L'?K" and L'PK".

Hence the chains L', L” are finite, which contradicts the fact that L is infinite.
Hence the assumption that the L is infinite is false.

Remark Clearly if a lattice is lower semimodular (a dual definition to De-
finition 7) and p-modular, then Theorem 10 is true.

Example

Consider the lattice 4G»(D) of affine subspaces of the n-dimensional vector
space D" over a field D which has not the characteristic 2. Affine subspaces
are defined as subsets of D» containing with every two a, b all points of the
form @ + A(b — @), A€ D. It is well known that this lattice is lower semi-
modular and it is not modular. We shall show that this lattice is p-modular too.

The elements of the lattice 4G»(D) have a form @ + 4 where 4 is a vector
subspace of the D? and a is an element of D».

We first prove
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1. a) The meet of two elements a + A, b -~ B of the lattice AG,(D) s either
Oorz-+ (4An B), where z€ (a 4+ A) n (b + B).

b) The join of two elementsa + A, b + Bof AGy(D)isa + (b —a ® A ® B).
where b — a is the vector subspace of D generated by b — a and 4 @ B is the
lattice-join of A and B in the lattice of all vector subspaces of D».

Proof. a) If (¢ + 4) n (6 + B) = 0, then there exists an element z € a -
+ A,zeb+ B. Hence ¢ - 4 =z + A, b + B ==z 4+ B. This implies

@+4A)n(b+B)=c+4)n(iE+B)>z+(4dnB).

If rez+ A and €z + B, then x =24 a, x =2 + b for some ac A,
be B. Hence a = b and a € A n B, which follows x =2 +~a€ 2+ (4 n B).

b) Clearly, (¢ + A)v(b+B)ca+b—a®A4A®B). Let veca+
+b—a®A4A®B).Thenx =a -+ a(b —a) + a1 +b1,a1e A,b1€ B.xeD.
If « = 1 then x == a; + b, + b. We can write

2= {a+ @)+ iy — (@ + a1)),
where
Y= (a — a1) + 2(b + b1 — (@ — @)).

The point y belongs to (¢ — 4) v (b + B) because it belongs to the line which
is defined by points ¢« —a;€ea -+ 4 and b + b, € b + B. Since the point @
belongs to the line which is defined by points lying in the set (¢ + 4) v (b + B),
it belongs to the (¢ + 4) v (b + B). If « = 0, then = ¢ 4+ a1 + b1. We can
prove that ze (e 4 4) v (b 4 B), analogously as in the foregoing case.
Ife=a+4+ab—a)+a+band « &= 1, « + 0, then z = a + «(b — a) +
+ (1 — a).a/(1 — &) + abifo, where as = a1/(1 — «) € A and b = bifo € B.
Hence x =a + «(b — a) + (1 — &)az + oaba =a -+ as + «(b + bs — (a + a2)).
Therefore x belongs to the line which is defined by ¢ + a:€a + 4 and b +-
+ b2 € b + B, consequently, z € (a -+ A) v (b + B).

2.Ifa+ A< b+ B, then A < B and if a + 4 =b + B, then 1 = B.

Proof. From a« + A < b + B it follows that a = b + by, by € B, hence
a—beB. Ifxe A, thena + x = b + b1, by € B. Therefore v = —(a — b) +
~+ b1, hence x € B.

The second assertion follows from the first.

3. If the elements @, b1, a, b € AGQ (D) satisfy
(?ilul_))r\c“t_——al, (EUE}_)(‘\E:E]_,
then (@1 U by) = (@1 Y b) N (b1 U a).
Proof. Let a, = ay + A1, by = b, + By, a=a + A, b = b -+ B. Since
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a,+ Ay ca+ A, b+ B, b+ B, we get amea-+ 4, bye b+ B and we
have

(1) a+A=a+A, b+B=0b+B.

From the assumption and (1) it follows that

ay + Ay = (a1 + A1) v (b1 + B)) o (@ + A) =

O+ —mw® L ®B)n @ d)=z2+ (b —a ®41 @ B)nd),

where

ze(t 4 (b —a1 ® 41 @ B)) n (@ + A4).
Herce by 2. we get

o

(3) dA=F —mohL®Bnd
and analogously

o

(3) Bi=0bi—a1®A@ B)n B.
Since the lattice of all vector subspaces of D® is modalar, it follows that

L OB =(hi—a®4:,©B)nd)@ (b —u®AB)nb) =
—h—wo4 @B nd®(hh—aud®d®B)nB)=
—h—ame4LeBnb—au®4d®B)u (4o b
and
by —a, @ 41 ® Bi=
e h—medeoBnbh—a©d®B)nbi—u®deB).
Since ay + Ay ca + A, by + By < b+ B, by 2. a1 =« 4, Bi = B.
Hence b — a1 @ A1 @ Bi— (b —a1 ® 41 @ B)n (b — a1 @ 4 ® By)-

From this, (1) and 1. it follows that

(@ ub)yn (bLva) =

(@ -+ (b1 — @ @4 ®B)n(@+ G —a®dd®B))=
=4+ (- ®4,dB) N —a®4@DB)=
=+ (b — a1 ® 4 @ Bi) = (@ + A1) vV (br + B1) = ap Y br.
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