
Matematický časopis

Eva Gedeonová
Jordan-Hölder Theorem for Lines

Matematický časopis, Vol. 22 (1972), No. 3, 177--198

Persistent URL: http://dml.cz/dmlcz/126520

Terms of use:
© Mathematical Institute of the Slovak Academy of Sciences, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/126520
http://project.dml.cz


M A T E M A T I C K Ý Č A S O P I S 
R O Č N Í K 22 1972 Č Í S L O 3 

JORDAN—HOLDER THEOREM FOR LINES 

EVA GEDEONOVA, Bratislava 

The aim of this paper is to find such nonmodular lattices in which the 
Jordan—Holder theorem for lines is true. The notion of a line is a natural 
generalization of the notion of a chain in a lattice. M. Kolibiar in his paper [2] 
has shown that two neighbouring elements of a connected line in a modular 
lattice are comparable and form a priminterval. He has also shown that the 
Jordan—Holder theorem for lines is tn ie in modular lattices. We shall prove 
t h a t if every two comparable neighbouring elements of any connected line 
in a finite lattice form a priminterval, then this lattice is modular (see Theo­
rem 1). Hence two neighbouring elements of a connected line in a semimodular 
lattice need not form a priminterval. But the Jordan—Holder theorem for 
lines holds for some semimodular lattices by considering the correspondence 
of simple pairs of lines. I t can be shown t h a t if a lattice has a connected line 
which has two uncomparable neighbouring elements, then this lattice contains 
lines with different lengths. If a lattice is ^-modular (i. e. it does not contain 
a sublattice with diagram in Figure 1) then any two neighbouring elements 
of any its connected line are comparable. I n this paper it is proved that the 
Jordan—Holder theorem for lines is valid in a ^-modular and semimodular 
lattice. An example of a -p-modular and semimodular lattice which is not 
modular is given. 

Basic concepts and properties 

Throughout the paper S denotes a lattice. Let a, b, x e S. We say that x is 
between a and b and write axb if (a n x) U (x n 6) = x = (a U x) n (x U b). 
When the lattice S is a chain then axb iff a ^ x ^ b or b S x ^ a. The relation 
"between" in 8 possesses the following properties: 

(ai) xyz implies zyx 
(0C2) xyz and xzy imply y = z 
(h) xyz and xzu imply yzu. 
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Four different elements a,b,c, d e S form a pseudolinear quadruple when 
they satisfy abc, bed, cda, dab. If axb, then a C\b ^ x ^ aKJb. Clearly, axb 
and a < b implies a ^ x S 6. 

If A, B are subsets of some lattices and a bijection <p from A onto B is given, 
so tha t abc if and only if <p(a)cp(b)<p(c), we say that A, B are b-equivalent. A subset 
A of S is called a Zme if there exists a 6-equivalent chain to A. An element a 
is an endelement of a line A, if a e 4̂ and for any two elements of the line A 
is ayx or ai/a;. Evidently, a chain in # is a line in S. The relation "between" 
in a line has the following property: 

(£2) xyz, yzu and y 4= z imply a;i/%. 

Let i be a line in # with an endelement a. For x,y e A set a; -< 1/ iff aa;?/. 
Evidently, (A, -<) is a chain and a;?/z, a;, y, z G .4, if and only if a; -< y -< z 
or z -< 1/ -< a;. A line -4 c # is called connected when it has the following 
property: If x G £ and if there exist elements a,b e A, such that aa;6 and 
-4 U {#} is a line in S, then x e A. 

In paper [2] the following equivalent definition of a line is given: A subset 
of a lattice is a line if and only if it satisfies the following two conditions: 

(i) for all three elements x,y,ze A one (at least) of the relations xyz, yzx, 
zxy, holds. 

(ii) A does not contain a pseudolinear quadruple. 
In the paper [4] there is the following statement: If a subset A of a lattice 

has more then four elements and satisfies the condition (i) of the preceding 
definition then A is a line. 

Let A be a line in S. Two elements a, 6 e A, a 4= 6, are called neighbouring 
if {x I x G A, axb} = {a, b}. 

An interval [a, 6] (== {x e S \ a ^ x ^ 6}), a 4= 6, is called priminterval 
if [a, 6] = {a, 6}. If [a, 6] is a priminterval we say that 6 covers a, and denote 
a <] 6. Two elements a,b e S are incomparable, if neither a ^ b nor b ^ a 
holds, we write a || 6. 

We say that the lattice S satisfies the upper priminterval condition, if for 
every two elements a,b e S, a n 6 <]6 implies a < j a u 6 . Dually, we say that 
the lattice S satisfies the lower priminterval condition, if for every two elements 
a,b e S, a <] a\J b implies a n 6 <] 6. 

Neighbouring elements in a line 

Definition 1. A line A in S has the property (a) if every two neighbouring 
comparable elements of A form a priminterval. 
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Theorem 1. If every connected line in a lattice S has the property (a), then 
the lattice S satisfies the lower and the upper priminterval conditions. 

Proof . Let u,veS, u\\v, u n v <] v. The elements u, u U v, v form a line. 
Let K be a connected line which contains the elements u, u U v, v. Let K 
contain an element x such tha t x =j= u, x =# u U v, ux(u U v). Consequently, 

(1) u -< x -< u U v. 

Since x e K, uxv. Then 

(2) x = (u n x) U (x Ci v) = uU (x C\ v). 

From (1) it follows uCW^xCw^v. In view of u O t; <] v either u n ;̂ = 
= a: O v or a; n v = ;̂. Assuming ttnt; = a;riw we get from (2) x = u U 
U (w n #) = w, which cannot be by (1). If x C\ v = v, then by (2) x = uU v, 
which is impossible by (1). 

Consequently, in the line K there does not exist an element x such that 
ux(u U v), u =# a; + u U «;. I t means that the elements w, w U v are neighbour­
ing elements of the line K. Considering the fact tha t the line K has the pro­
perty (a), we have u <] u U v. 

We have proved the upper priminterval condition. The lower priminterval 
condition follows by duality. 

Lemma 1. Let A be a subset of a lattice S having the following properties: 

(i) There exist two elements a, b e A such that a n b e A and 
A' = [a C\ b, a] n A, A" = [a n b, b] f\ A are chains. 

(ii) A' U A" = A 

(iii) If x, y e A (A"), x ^ y, z e A"(A ) , then xyz 
Then A is a line with endelements a, b. 

Proof . The set A" © A' is a chain (A" is a dual chain to A", © means 
the ordinal sum). We shall prove that A" © A' and A are 6-equivalent. 
Let (p: A" © A' -r A be an identical morphism. We shall denote the relation 
"between,, in the chain A" © A' as (x, y, z)fi. lix, y,ze A"(A'), then (x, y, z)/3o 
o (p(x)(p(y)(p(z). If x e A", y, z e A', then (x, y, z)/3 implies y ^ z, from which 
it follows (p(x)(p(y)(p(z) bŷ  (iii). If x, y e A", z e A'', then (x,y,z)fi implies 
x ^ y, hence (p(x)(p(y)(p(z) by (iii). Clearly, <p(x)(p(y)(p(z) implies (x, y, z)fi. 

Lemma 2. If A is a line with endelements a, b, a \\b, a C\ b e A, then A = 
— A'UA", where A' = A n [a n b, a], A" = A n [a n b, b], A', A" are 
chains. 

Proof . The line A is b-equivalent with some chain B hence there exists 
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a bijection <p from A onto B. Let Ax = {x e A \ <p(x) ^ <p(a n b)} and A2 = 
= {x e A | 99(x) ^ <p(a n 6)}. Then A = Ai\j A2. If ae Ai, then ^4i = ^4', 
-4 a — -4". If x,ye A', then a; ^ a, y ^ a. From axy(ayx) it follows ?/ ^ 
Sx^a(x^y^a). Therefore A' is a chain. 

R e m a r k . If A is a line with endelements a, b, a || b, a n b e ^4, then we shall 
denote the set A n [a r\ b, a]hy A' and the set A n [a C\ b, b] by A". 

Lemma 3. Let A be a line in the lattice S with endelements a,b,a\\b,aC\beA. 
Let an element u e [a n b, a] u [a n b, b] satisfy the following conditions: 
(i) aub 

(ii) A' u {u} or A" U {u} is a chain. 
Then the set A u {u} is a line. 

Proof . The conditions (i), (ii) of Lemma 1 are fulfilled. Thus it remains 
to prove the condition (iii). Let u G [a n b, a]. We shall consider three possi­
bilities, the others are symmetrical. 

a) If x, y G A", x ^ y, then 

(1) x = x U (a n b) = (x n y) U (a n b) = (x n y) U (x n u). 

Since A is a line and a is an endelement, then axy, hence 

(2) x = (x U a) n (y U x) ^ (a U w) n (y U a) ^ x. 

uxy holds by (1) and (2). 

b) Let x e A', y e A", x ^ u. Considering the fact that aub, we get u = 
= (u U a) n (w U b) >; (w U a;) n (u U 2/) >. w. Since the second identity holds, 
trivially xuy follows. 

c) Let x G A', y G A", x ^ u. Since axy, 

x = (a U x) n (x U H) >; (u U x) n (x U y) ^ x. 

The second identity holds trivially, hence uxy. 

Lemma 4, The relation xab implies x n a ^ a; n b. 
Proof . From #ab we get a = (x U a) n (a U b) ^ x n b. Hence x n a >= 

Theorem 2. .Le£ K be a line in the lattice S with endelements a, b a \\ b. Th°n 

Kn = {a n x\ XG K} u {b n X\XG K} 

is a line in S with endelements a, b. 
Proof . For every element x G K, axb. Hence by Lemma 4ar\x^anb 

and b C\ x ^ a n b. Therefore 

Kn = (Kn n[anb, a]) u (Kn n[anb, b]), 
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which means that the condition (ii) of Lemma 1 is fulfilled. We show that 
the condition (i) holds too . Let x, y e Kn n [a n b, a]. Hence, there exist 
elements x\, y\ e K such tha t 

x = a n x\, y = a n y\. 

Either ax\y\ or ay\x^ holds, therefore either a n x\ ^ a n y\ or a n y\ ^ 
^ a n cTi by Lemma 4, hence x ^ y or y ^ x. We see tha t the condition (i) is 
fulfilled. 

I t remains to prove the validity of the condition (iii) of Lemma 1. Let 
x, y e Kn n [a n b, a] and 

(1) x>y 

and let z e Kn n [a n 6, 6]. Hence, there exist elements #i , z/i, z\ e K such 
that 

x = x\ n a, y = y\ n a, z = z\ n b. 

Either a^ilji or ay\X\ holds. From the relation ay\X\ there follows a n y\ ^ 
^ & n #1 by Lemma 4, hence y ^ x, which is impossible by (1). Since x 4= y, 
wre get x\ =t= f/i. Therefore 

(2) ax-i?/i, xi + ?/i. 

The elements .ti, ?/i, z\ satisfy one of the relations: a) z\X\y\, b) x\Z\y\, c) x\y\Z\. 
a) Let 2I:EI?/I. Since y\ e K, a?/ib. This and the relation (2) imply the relation 

x\y\b, by (ti). From this and from the relation z\X\y\ there follows the relation 
z\y\b, by (t2), which implies by Lemma 4 

(3) b n ?/i *> 6 n «i. 

The relation (3) and a?/ib imply ?/ = a n ?/i = a n ((a n y\) U (6 n ?/i)) ^ 
*> a n ((a n ?/i) U (6 n 21)) = a n (y\J z) *> a; n (?/ U 2) = (a; U y) n (?/ U 2) ^ 
*> ?/, hence 

?/ = (a; U ?/) n ( i / U z ) . 

Since the second identity holds trivially, we get xyz. 
b) Let x\Z\y\. The relation ay\b and (2) imply the relation x\y\b, by (ti). 

From this and from x\Z\y\ it follows that by (ti) z^y^b. From this xyz follows 
exactly as in the case a). 

c) Let x\y\Z\. This relation and (1) imply y <; (x U y) n (y U 2) = 
.r n (?/ u 2) = (a n £1) n ((a n ?/i) u (6 n 21)) ^ (a n x\) n (?/i u 21) = 

a n (x\ n (?/i U 21)) ^ a n ((#i U ?/i) n (y\ U 21) = a n y\ = y. The second 
identity is easy to prove, hence xyz. 
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Definition 2. Let K be a line with endelements a, b. The pair of elements 
x, y e K is called a simple pair (x, y} with respect to a if axy amd the element* 
x, y are neighbouring in the line K. 

R e m a r k . If we shall consider a line with endelements a, b, we shall call 
a simple pair (x, yy with respect to a shortlv a simple pair (x, y}. 

Lemma 5. Let K be a line with endelements a,b, a\\b. Ijet (x, yy be a simple 
pair of the line K and x ^ y (x ^ y). Then (x n b, y n b> ((x n a, y n a ) 
is a simple pair of the line Kn. 

Proof . We suppose x ^ y. Evidently, axy and ayb. From these two rela­
tions there iollows byT (ti) 

(1) xyb. 

This implies by Lemma 4 

(2) y n b ^ x n b, x r\y ^ x n b. 

It y n b = x n b, then (1), (2) imply y = (x n y) U (y n b) = (x n y) U 
U (x n b) = (x n y). Hence y ^ x, which is impossible (we have supposed 
x ^ y). Hence x n b < y n b. The line Kn fulfils the conditions (i), (ii), (iii) 
of Lemma 1 (see the proof of Theorem 2). From the condition (iii) it follows 

a(x n b) (y n b). 

I t remains to show that the elements x n b, y n b are neighbouring in the 
line Kn. If c e Kn exists such that 

(3) y n b > c > x n b 

then, since c e Kn", there exists an element c\ e K such that c = c\ n b. 
Since #, y are neighbouring elements of the line K, either c->xy or xyc\. The re­
lation d#2/ cannot hold, because the relations c^xy and xyb imply cixb by- ($>2), 
which implies b r\ x ^ b n cj. = c, contrary to (3). On the other hand the 
relations xyci and axy imply ayc\ by (t2). From this and from acib we have 
yc\b by (ti). By Lemma 4 c = b n ĉ  ^ b n y, which is also impossible. 
We see that the elements x n b, y n b are neighbouring in the line Kn. The 
assertion in the brackets can be proved analogously. 

Lemma 6. Let K be a line with endelements a, b, a \\ b. Let (xi, yfy, i = 1,2, 
be two simple pairs of the line K different from each other. If x\• ^ yt, i = 1, 2 
(xi ^ yi, i = 1, 2), then b n x\ #= b n x2 (a n y\ #= a n 2/2). 

Proof . By assumption, axiyt, i = 1, 2. Since ayfi, i = 1, 2, we get by (t]) 

(1) a ^ b , f = l , 2 . 

182 



Since the pairs (x\, y^y, (x2, y2y are different from each other, x\ 4= x2. Let 

(.T) b n x\ = b n x2. 

We can consider x\x2b, because the case x2x\b is symmetrical. The relations 
x\x2b and (2) imply7 x2 = (x2 n x\) KJ (x2 nb) = (x2 n x\) U (x\ nb) ^ xi, 
hence 

(3) x2 ^ x\. 

Considering the fact, that x\x2b and x\, y\ are neighbouring elements, we get 
x\y\x2. This and (3) gives 

y\ = (xi n y\) U (y\ n x2) = (x\ n yx). 

Hence y\ S. x\, which contradicts the assumption. The assertion in the brackets 
can be proved analogously. 

Definition 3. Let K be a finite line. The length dK of the line K is the number 
of its simple pairs. 

Definition 4. The line K has the property (/3), if any two neighbouring elements 
of the line K are comparable. 

Theorem 3. Let K be a finite line of the lattice S with endelements a,b, a\\b. 
Then 

a) if the line K has the property (/5), then dK = dKn. 
b) if the line K has not the property (/?), then dK < d K n . 
Proof . Let us denote the set of all simple pairs of the line K(Kn) b}^ 

K*(Kn*). Let us define a map op from the set K* into the set Kn* as follows. 
Let (x, yy e K*. If x > y, then (p((x, yy) = (a n x, a n yy and if x ^ y, then 
(p((x, yy) = (b n x,b n yy. By Lemma 5 (p((x, yy) are simple pairs of the 
line Kn. We showr that the map cp is 1 — 1. Let (x\, y{) 4= (x2, y2y. If X\ > y\, 
x2 > y2 or x\> y\, x2> y2, then (p((xj, y{y) 4= (p((x2, y2y) by Lemma 6. 
If x\ ^y\,x2> y2, then (p((xx, y{y) = (b n x\, b n yxy e K"* duid(p((x2, y2y = 
= (a n X2, a n y2y e K'. The case x\ > y\, x2 ^ y2 is similar to the preceding 
case. We have already proved that (x\, y{) + (x2, y2y implies (p((x\, y{)) 4= 
4= (p((x2,y2y). 

We first assume that the line K has the property (/3). We show that (p is 
a map from the set K* onto the set Kn*. Let <c, dy e Kn*. By Lemma 2 
either c e Kn' or c e Kn\ Let, for example, c e Kn". Then 

(1) a nb ^ c <d. 

Since c,d e Kn", there exist x,y e K such tha t 

(2) c = x nb, d = y nb. 
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If there were yxb, then by Lemma 4 there would be x nb ^ y nb, hence 
c *> d, which contradicts (1). Consequently xyb and since axb, hence by (ti) 

(3) axy. 

The relation x ^ y implies x nb ^ y nb, hence c ^ d, which contradicts (1). 
Hence x ^ y. Since the line K is finite, there exist elements x% (i = 1, 2, . . . , n) 
such tha t 

x = Xi -< ff2 "< • • • < #n-l -< Xn = y 

(x •< 2 / 0 axy, a;, y £ K) and <#*, x^ iX i = 1, 2, . . . , n — 1, are simple pahs. 
From x ^ y and from the property (/5) it follows that there exist an i, 1 <; 
<? i <^ n — 1, such that 

(4) # < < # * . ! . 

In view of x •< x« -< #$+i •< z/ -< b there holds ar^b and xi+±yb. Hence by 
Lemma 4 it follows 

c = xnb^xtnb^ Xi+i n b ^ y nb = d. 

By Lemma 5 (p((xi, Xi+i)) = <Xi n b, a^+i n b>, hence #$ n i + xt+\ n b. 
Considering the fact that <c, dy is a simple pair, we see that 

<c, cT> = (pa n b, a;*+i n b> = <p{(xi, ^ + i » . 

Let us assume that the line K has not the property (/?). Then there exist 
two neighbouring elements c, d of the line K, which are incomparable. Let acd. 
Since c ^b d, <p((c, dy) = (b n c,b n dy. By Lemma 5 the elements a n c, 
and form the simple pair (a n c, a n dy. Let (x,yy e K* such that (p{(x.y}) = 
= (a n x,a n yy = (a n c, a n dy. Then x > y. Since c fg d, a; fg H and c || rf, 
it follows by Lemma 6 that a n d =\= a n y. But this contradicts the fact 
that cp((x,«/» = <a n x, a n yy. Hence no simple pairs are mapped on the 
simple pair (a n c, a n dy. This gives dK < d K n . 

R e m a r k . The last theorem shows that if a finite lattice contained a con­
nected line K with endelements a, b, which has not the property (/?), then 
in this lattice the Jordan—Holder Theorem for lines would not hold. Let us 
find a sufficient condition that every line of the lattice S have the property (/>). 

Definition 5. A lattice 8 is partly modular (p-modular), iff for every 
a, b, a±, bi e S, which satisfy the condition 

(1) (ai\J b) n a = a±, (a U bj.) n b = bi, 

we Jiave a\ U bi = (a± U b) n (a U bj). 
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Theorem 4. A lattice S is p-modular of and only if it does not contain a sub-
lattice with the diagram of Figure 1. 

Proof . If a lattice contains a sublattice of Figure 1, then by Definition 5 
it is not -p-modular. 

Now wre assume that the lattice S does not contain a sublattice with the 
diagram of Figure 1. Let a,b, <zi, bi e S and let (1) of the Definition 5 hold. 
If a ^ b, then by (1), a\ = a and (a U bi) n b ^ (b U bi) n b = b, hence 
bi S b. Then a± U bi = a U bi = (a U b) n (a U bi) = (a, U b) n (a U bi). 
The case a ^ b is symmetrical. Let a || b. Let us denote a% = a U bi, b2 = 
— ai U b. Then from (1) it follows 

(2) anb^a1^a^a2^aUb, a n b ^ b i ^ b ^ b 2 ^ a U b 

and also a, U bi ^ a2 n b2. If #i U bi < a2 n b2 and no two elements would 
be equal in (2), then the sublattice of the lattice S, generated by the elements 
a, b, a\, bi, a-i, b2, would have the diagram of Figure 1. Therefore a± U bi = 

Fig. 1 

— a-z n b2. If some two elements are equal in (2), then it is easy to prove that 
«i U bi = a2 n b2. 

Theorem 5. A lattice is p-modular if and only if it satisfies one of the following 
conditions. 

(i) For every a, b, a\, b\ e S, a\\b: If {a, a±, bi, b} is a line with endelements 
a, b, then a(a\ U bi)b. 
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(ii) For every a, b, a\, b\ e S, a\\b: If {a, a\,b\, 6} is a line with endelements 
a, b, then a(a\ n 61)6. 

(hi) For every a, b, a\, b\, a2, b2e S, a\\b: If 

a2 n 6 = b\, 62 n a = a\, a\ u 6 = 62, 61 U a = a2, then a\\J b\ = a2 n 62. 

Proof . Clearly, a lattice is ^-modular if and only if it satisfies the condi­
tion (hi) (see the proof of the Theorem 4). 

We shall prove that the conditions (iii) and (ii) are equivalent. Let lattice S 
satisfy the condition (ii) and let the elements a,b, a\, b\, a2, b? e S, a 6 
satisfy the conditions 

(1) a2 n 6 = 61, 62 n a = a\, a\ U 6 = 62, 61 U a = a2. 

If a\ = a, then 62 = a\ U 6 = a U 6 ^ a2. Hence a2 n 62 = a2 = a U b\ = 
= ar U 61 and condition (iii) is fulfilled. The case b\ = 6 is analogous. Suppose 
now that a\ 4= a, 61 4= 6. We show that {a, a2, 62, 6} is a line withend elements 
a, 6. According to the suppositions (1) there holds a2 ^ (a U a2) n (6 U a2) = 
= a2 n (6 U a2) = a2 and a2 ^ (a n a2) U (6 n <x2) = a U 61 = a2 . Therefore 
<m26. I n a similar manner it can be shown that a626. Therefore the set {a, a2,a\J 
U 6, 62, 6} forms a line by the dual statement to Lemma 3. Clearly, the set 
{a, a2, b2, 6} forms a line, hence a(a2 n 62)6. From this it follows 

a2 n 62 = (a n a2 n 62) U (a2 n 62 n 6) = 

= (a n (61 u a) n 62) u (a2 n ( ^ u 6) n 6) = (a n 62) u (a2 n 6) -= 

= a i U 61. 

(We have applied the relations (1)). We get a2 n &•> = a\ U 61, as claimed. 
Suppose now that the lattice S satisfies the condition (iii). Let the set 

{a, a\, b\, 6} be a line with endelements a, 6. Well shall prove that the elements 

a, 6, (6 U 61) n a, (a U a\) n 6, a U a\, 6 U 6^ 

satisfy the conditions (1). Evidently, the first two conditions are fulfilled. 
Since ab\b, aa\b, it follows 

(2) (6 U 61) n a = (6 U 61) n ((61 U a) n a) = 61 n a , 

(3) (a U ai) n 6 = (a U ai) n ((a\ U 6) n 6) = a\ n 6 . 

(2) gives 

(4) ((6 u 61) n a) u 6 = (61 n a) u 6 = (61 n a) u (61 n 6) u 6 = 

= 61 u 6 . 
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Analogously (3) implies 

(5) ((a U ai) n b) U a = a1 u a. 

The relations (4), (5) are the second two conditions of (1) for our elements. 
Since the lattice S satisfies the condition (hi), we get 

(6) (a U a i ) n (b U bj) = ((a U ax) n b) U ((b U bj) n a ) . 

(2), (3), (6) yield 

(7) (a u ai) n (b u bi) = (aj n b) u (a n bx). 

Since aaibi, aibib and (7) holds, we get ai n bi = ((a U ax) n (ai U bj)) n 
n ((b u bi) n (bi u ax)) = (A u ai) n ( b u b j ) n (aj u bi) = ((ai n b) u 
U (a n bi)) n (bi U aj.) = (ax n b) U (a n bi). From this and from (6), (7) 
it follows (a U ai) n (b U bL) = ax n bi = ((a U aL) n b) U ((b U bi) n a). 
From this relation we get 

«i n bi ^ (a U (ai n bi)) n (b U (ax n b])) < (a U ai) n (b U bi) = ainbi, 

a\ nbx ^ (a n ax n bi>U (b n ai n bj = (a n (b u bi) ) u (b n (a U ai)) = 

= ai n bi. 

From the two last relations we get a(ai n bi)b, which proves our assertion. 
The equivalency of the conditions (i), (hi) can be proved analogously. 

Lemma 9. If xab, then x(a n b)b (x(a U b)b). 
Proof . From the relation xab it follows 

x U a = x U (a n x) U (a n b) = (a n b) U x, 

a n b = (a U a;) n (a U b) n b = (a U a) n b. 

These two relations imply 

a n b ^ ((a n b) U a;) n ((a n b) U b) = (a U a) n b = a n b. 

Therefore a n b = ((a n b) U x) n ((a n b) U b). The dual relation is evident, 
hence x(a n b)b. The assertion in brackets can be obtained by duality. 

Lemma 10. / / the elements x, y, a, b belong to a line K, and xab, xya, then 
xy(a n b) (xy(a U b)). 

Corollary. The relation xab implies xa(a C\ b) (xa(a U b)). 
Proof . From xab and xya it follows that yab by (ti). The last relation 

and xya gives xyb by (t2) (if y -- a, then xyb, too). By the preceding Lemma 
from yab it follows tha t y(a n b)b. But this and xyb imply xy(a O b) by (ti). 
The assertion in brackets is dual. 
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Theorem 6. Let S be a p-modidar lattice. Then every connected line in the 
lattice S has the property (/?), which means that any two neighbouring elements 
of any connected line are comparable. 

Proof . Let S b e a ^-modular lattice. Let K be a connected line in S, which 
has not the property (/?). Hence there exist a, b e K, a \\ b, a, b neighbouring 
elements in the line K. We shall prove that {a n b} u K is a line. To this 
end, it is sufficient to show: 

1. For any x,y e K one of the relations holds: x(a n b)y, xy(a n b), yx(a n b). 
2. If the set {a n b} u K contains exactly four elements, then these elements 

do not form a pseudolinear quadruple. 
We first prove the assertion 1. We have considered the following cases. 

1. xab, yab, 2. xab, aby, 3. yab, abx, 4. abx, aby. In view of the syrmmetry it 
suffices to consider the cases 1. and 2. In the first case if xya, then the relations 
xab, xya imply xy(a n b) by Lemma 10. If yxa, then from yab it follows by 
Lemma 10 that yx(a n b). If xay, then x < a -< y or y -< a -< x. F'rom the 
suppositions a =(= b and 1 it follows that # -< a -< b and y -< a -< b or b -<&-<:£ 
and b •< a -< y. Hence x = a or y = a. Therefore yxa or xya, which was con­
sidered. In the case 2 the set {x, a, b, y} forms a line. Since the lattice S is 
-p-modular and x || y (if x ^ y or y ^ x, then {x, a, b, y} is a chain contrary 
to a || b) we get x(a n b)y by Theorem 5, (ii). 

We show the validity of 2. Since a \\ b, it cannot be ab(a n b) or ba(a n b). 
Hence we have a(a n b)b. Therefore the elements a, b, a C\b, c of the set 
{a n b} u K can form a pseudolinear quadruple only in this wa}T: 

a(a n b)b, (a n b)bc, bca, ca(a n b). 

The relation bca contradicts the fact that the elements a, b are neighbouring 
7 © o 

in K. 
Since a || b, we have K u {a n b} 3- K, which is a contradiction to the 

supposition tha t K is a connected line. 

Jordan—Holder Theorem for Lines 

Lemma 11. If abx, aby and there exist an element u such thai x rg u % y, 
then abu. 

Proof, b ^ (aU b) n (b U u) ^ (a U b) n (b U y) =--. b, 

b ^ (a n b) u (b nu) ^ (a n b) u (b n ^) = b. 

Theorem 7. Le£ S be a p-modular lattice. Let K be a finite connected line with 
endelements a,b e S, a\\b. Then the line Kn is connected. 

Proof . If Kn is not connected then there exist elements a±, bi, c e S such 

188 



tha t a i , bi 6 Kn, c $ Kn, u\cbi and Kn u {c} is a line. Hence a -< ai -< c -< 
-< bi •< b, whence 

(1) acb. 

Since the line Kn is finite, there exist x, y e Kn svich that #, ?/ are neighbouring 
elements of the line Kn and xc?/. Let x, y e Kn" and let x < y. Then 

(2) x <c <y ^ b. 

We shall show that there exists an element u e 8, u^K, such that awb and 
K U {a} is a line, hence the line K is not connected, which is a contradiction 
with the supposition. Therefore the hypothesis that the line Kn is not connected 
is contradictory. 

Since the lattice 8 is ^-modular and the elements x, y form a simple pair 
(x, y}, by Theorem 3 there exists (x\, y{) e K* such that cp((x\, y{)) = (x, y). 
From the construction of the map cp it follows that 

(3) x\ < y\, x = x\ n b, y = y\ n b. 

Let u = x\ U c. Since x\ < y\ and c < y ^ y\ we get 

(4) X\ ^ w ^ y\. 

Further, we shall show that 

(5) x\*u c = u = (a U c) n y\. 

Since axH, we get by Corollary of Lemma 10 that (a U x)xy. Therefore 
{a U x, x, y} is a line. The relation axy implies x = (a U x) n (# U y) = 
— (a\J x) n y and this implies aKJ x\\y. If (a U x)cy, then {a U x, a;, c, y) 
is a line by Lemma 3. But axy and xcy imply axe by (ti), axe and xq/ (x 4= c, 
a, x, c,y e Kn u {c}) imply aq/ by (t2), acy implies by Corollary of Lemma 10 
(a U c)cy. Finally, acy, (a U c)cy and a ^ a U x ^ a U c imply (a U x)cy 
by Lemma 11. Proving x ^ x\ ^ a \J x and (a U x)xiy we get tha t {a U x, 
x\, x, c, ?/} is a line. But, since x = x\ n b (see (3)) and axib (#i G K), we have 

(6) a; u a = (xx n b) U ((#1 n a) U a) = #i U a, 

hence xi ^ a U x. (Clearly x ^ xi). Since <#i, ?/i> is a simple pair, we have 
x\yib, which yields, by Lemma 9, x\(y\ n b)b, hence x\yb (see (3)). The relations 
ax\b, x\yb imply ax\y by (ti), whence by Corollary of Lemma 10 (a U X\)x\jy. 
Hence 

(a U x)x\y 
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by (6). Since {a U x, x\, x, c, y) is a line, the set {a U x, x\, c, y} is a line too. 
Since the lattice S is p-modular it follows by Theorem 5(1) tha t 

(a U x) (x\ U c)y. 

In view of this and of (2), (4), (6), x\y\b we have 

X\ u c = (a U x U x\ U c) n (a*j U c U y) = (a U x u c) n (a* U y) = 

= (a U c) n ((a?! n i/!) U (i/i n b)) = (a U c) n i/i. 

This proves (5). 
Next we show that 

(7) aub. 

Since 

c ^ (XT n c) u (c n 6) = (xi n c) u c = c 

and, with respect to (5), (3), (2) and acy, 

c s (xi u c) n (c u b) = (a u c) n ?/i n 6 = (a u c) n 2/ = 

= (a U c) n (c U ?/) = c, 

we get #ic&. From ax\b (%i e K) and arcb it follows tha t ax\C by (ti). Since 
«.ric, x\cb, ax\b and acb (see (1)) and the elements a,x\,c,b do not form a 
pseudolinear quadruple (the relation cba is not possible) the set {a, x\, c, b} 
is a line. By Theorem 5, (i) a(x\ U c)b, therefore the relation (7) is proved. 

We shall now show that 

(8) x\ 4= u, u # I/I. 

If u = x\, thenc ^ c KJ x\ = u = x\ and c ^ b (see (2)), hence c ^ ar n b = x, 
contrary to (2). Ifu = y\, then (c U a) n y\ (see (5)) hence y\ ^ c U a. In view 
of acb we have c = (a U c) n (b U c) ^ 2/1 n & = H, thus c ^ y, which contra­
dicts (2). 

I t remains to show that K U {u} is a line, that is: 
A) For any e,fe K one of the relations euf, efu, feu holds. 
B) If the set K U {11} contains exactly four elements, then these elements 

do not form a pseudolinear quadruple. 
A) We have to consider the following cases a) ex\y\, fx\y\, b) ex\y\, x\y\f. 

The other two cases are symmetrical. 
a) Let ex\y\, fx\y\ and let efx\. Then efy\. The relations efx\, efy\ and 

x\ ^ u ^ 2/1 ( s e e (4)) i m ply tfu by Lemma 11. If fex\ then, analogously^ feu. 
b) Let ex\y\, x\y\f. Since ax\y\, there exists a linear ordering of the line K 

such that rt <̂ c -< xi -< Hi - < / -< b. This implies aex\ and aey\. Since x\ ^ 
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^ u ^ yx by (4), aeu by Lemma 11 holds. Analogously it can be shown tha t 
ufb. These two relations imply, by Lemma 4, 

(9) u C\f ;> uf\b, u U / S uKJ b, uU e ^ u n a, uKJ e <: uKJ a. 

This and the relation aub (see (7)) imply 

u ^ (u U / ) C\(uKJ e) ^ (w U a) n (w U 6) = it, 

^ ;> (^ n e) u (u n / ) > (^ n a) u (u n b) = w. 

This proves that en/. 
B) The set K u {^} contains the elements xl9yx, u and let it contain the 

element t e K, t + x\, t =f= i/i. Since x\ -^ u -^ y\ and the elements #i , i/i form 
a simple pair, the elements x\, yx, u, t can form a pseulinear quadruple only 
in this way 

xxuyx, uyxt, yxtxx, txxu. 

The relation y\tx\ contradicts the supposition. 

Definition 6. A lattice S satisfies the condition (y), if to any two elements 
a, b G S, a || b and to any connected finite line with endelements a, b there exists 
a connected line with the same length and the same endelements, containing the 
element a C\b. 

Theorem 8. A lattice S is p-modular if and only if any its sublattice satisfies 
the condition (y). 

Proof . If the lattice S is not ^-modular, then it contains a sublattice 
with the diagram of Figure 1, by Theorem 4. The line {a, ai,b2, b} and the 
line {a, «i , a n b, b\, b) are connected and they have different lengths. 

Let the lattice S be ^-modular. Let K be a finite connected line with end-
elements a, b, a || b. The line Kn is connected by Theorem 7. The line K has 
the property (/?) according to Theorem 6, hence dK = dKn by Theorem 3. 
We found to K a connected line Kn with endelements a,b, a C\b e Kn and 
with the same length. 

Definition 7, A lattice S is upper semimodular if to any three elements 
a, b, x e S 

(1) a || b, a U b > x > a 

there exists at least one t such that 

a U b > t *> b and (x C\ t) U a =-= x. 

(Definition 7 is from [3]). 
R e m a r k . Every modular lattice is ^-modular, but the lattice of Figure 2 
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is ^-modular and is neither upper semimodular nor modular. The lattice 
of Pigure 3 is upper semimodular, but is not ^-modular . 

Fig. 2 Fig. 3 

Theorem 9. Let S be an upper semimodidar lattice. If K is a connected line 
in S with endelements a,b e S, a\\b, a n b e K, then for any two neighbouring 
elements c, d e K either c <] d or d <] c. 

Proof . Let, for instance, c, d e K'(= K n [a n b, a]) and let c > d, where 
c, d are neighbouring elements in K. Let [d, c] not form a priminterval, thus 
there exists an element u e S, c > u > d. Since c,d e K', we get 

(1) a ^ c > u> d ^ a C\b. 

Since the line K is connected the set K u {^} does not form a line. The condi­
tion (ii) of Lemma 3 is fulfilled, hence the condition (i) of Lemma 3 is not ful­
filled and the relation aub does not hold. Hence 

(2) u <aC\ (u\Jb). 

Since c e K, we get acb. This and (1) gives 

c = (a U c) n (c u 6) = a n (6 U c) ^ a n (b u %). 

Therefore either a) c > a n (6 U u) or b) c = a n (6 U w). 

a) Let t = a n (b U w), hence c > £ and £ > u by (2). This and (1) gives 

(3) c>t>d. 
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We show that atb: t ^ (a n t) U (b n J) ^ (c n l) u (b n l) = t U (b n t) = 1, 
£ ^ (a u l) n (b u t) <: (a u c) n (b u (a n (b u ^))) ^ a n (b u (b u w)) = 
= a n (b U %) = t (see (1), (3)). 

The set K u {/} is a line by Lemma 3 and t$K which contradicts the 
assumption. 

b) Let c = a n (b U it). We show that the conditions (1) of Definition 7 
are fulfilled by the elements u,b\J d, c. We first show tha t u || b U d. If % ^ 
^ b KJ d, then (] = (a U d) n (6 U d) ^ > a n ^ = ^ (since d e K, we have adb 
and a > u by (1)), thus c? ^ it, which contradicts (1). If b U d <; u, then 
b ^ u. This and u <. a (see (1)) give b <. a, contrary to the assumption. 
Consequently, u\\b KJ d. From c = a n (b U it) it follows that c ^ b U u. 
If c = b U it, then b ^ c ^ a contrary to the assumption. Since c < b U u 
and it < c ((1)), we get 

(bKJd)KJti = b\Ju>c>u. 

Since the elements u,b\J d,c satisfy the conditions (1) of Definition 7 and the 
lattice S is upper semimodular, there exists an element z such that 

(4) b KJ u> z ^ bKJ d 

and 

(5) (c n z) u tt = c 

Thus c *> c n z. If c n z = c, then c U z = z. Combining the relations (4), (1) 
and c U z = z we get 

bUit = ( b U d ) U ^ < ; z U M ^ z U c = z , 

hence b U u ^ 2, which contradicts (4). 
Therefore c> c C\ z. According to (4) z ^ b U d, hence z ^ d. This gives 

cr\z^cC\d = d. If c H 2 = rj, the relation (5) would not hold. We have 
shown that 

(6) c > c n z > d. 

We next show that a(c n 2)6. Since b U (c n z) ^ (b U d) U (c n z) ^ z U 
U (c n z) = z and a n (b U (c n z)) ^ a n (b U c) = c, we get a n (b U 
U (c n z)) ^ c n z. (We have used the relations (1), (4) and acb). Then 

c n z s (au (c nz)) n (b u (c n z)) = a n (b u (c n z)) ^ c n z. 

I t is easy to prove the second identity. We have proved that the element c C\ z 
satisfies the suppositions of Lemma 3. Hence K u {c n z} is a line, c C\z$K, 
which contradicts the fact that K is a connected line. Hence the assumption 
tha t [d, c] is not a priminterval is contradictory. 
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Corollary. If a lattice S is upper semimodular and K is a connected line with 
endelements a,b,a\\b, a n b e K, then K = K'u K", where K', K" are con­
nected chains between a, a nb and b, a nb. 

R e m a r k . Two intervals of a lattice are called transposes when they can 
be written as [a n b, a] and [6, a U b] for suitable a, b. Likewise, two intervals 
[x, y] and [xf, y'] are called projective if and only if there exists a finite sequence 
[x> y]> [xi> yi\> •••> [x'>y'] m which any two successive intervals are trans­
poses. From paper [1] it follows that the following theorem is true. 

Let the lattice S be upper semimodular, K, L be connected chains in S with 
endelements a,b (a < 6) and K be a finite chain, then the following holds: 

1. The chain L is finite and has the same length as K. 
2. There exists a 1 — 1 mapping of the primintervals of the chain K onto 

the primintervals of the chain L such that the corresponding primintervals are 
projective. 

Lemma 12. Let the lattice S be p-modular and upper semimodular. Let K, L 
be finite connected lines with endelements a, b. Then there exists a \ — 1 corres­
pondence between the set of simple pairs of the line K and the set of simple pairs 
of the line L such that the corresponding simple pairs are projective. 

Proof . We shall say that the lines are in the relation 8P, if there exists 
a 1 — 1 mapping of the set K* onto the set Z* such tha t the corresponding 
simple pairs are projective. We show that L£PLn. According to Theorem 3 
and Theorem 6 there exists a 1 — 1 mapping cp of the set Z* onto the set £ n * . 

Let <p((x, yy) = (b n x, b n yy. In view of the definition of the mapping cp 
in the proof of Theorem 3 we have x<y,bnx<.bny. We have 

xn(bny) = xnynb = xnb. 

Since (x, yy is a simple pair, we get axy. From this it follows that xyb, hence 

xu (bny) = (x ny)U (ynb) = y. 

Therefore the simple pairs (x, yy, (b n x, b n yy are transposed. Analogously, 
if (p((x, yy) = (a n x, a n yy, then (x, yy, (a n x, a n yy are transposed, 
hence L0>Ln. 

Since the lattice S is upper semimodular, in view of the Corollary to Theo­
rem 9 Ln = Ln/ u Ln", where Ln\ Ln" are connected chains between 
a n b, a and a n b,b. Analogously, Kn>, Kn" are connected chains between 
a nb, a and a nb,b. According to Remark following Theorem 9, Ln'SPKn', 
Ln"@Kn", hence LnS?Kn. 

Since LSPLn and K&Kn, LngPKn and the relation & is symmetrical 
and transitive, we have L8PK as claimed. 
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Lemma 13. Let L be an infinite line with endelements a,b,a\\b. Then the 
line Ln is infinite too. 

Proof . Let us map any element x e L onto the ordered pair (a n x, b n x): 
cp(x) = (a n x,b n x). We show that the mapping is 1 — 1. If cp(x) = y(y), 
then 

(1) a n x = a n y, b n x = 6 n y. 

Since x,y e L, we can, for instance, consider tha t axy, hence xyb. 
This and (1) give 

x = (a n x) U (x n y) = (a n y) U (x n y) g y, 

y = (x n y) KJ (y rib) = (x n y) KJ (b n x) ^ x, 
hence x = y. 

If the line L is infinite, then the set of ordered pairs {(a n x, b n x) \ x e L} 
is infinite too, hence Ln = {a n x \ x e L} u {b r\ x \ x e L} cannot be finite. 

Theorem 10. Let the lattice S be p-modular and upper semimodular. Let K, L 
be connected lines with endelements a,b, a\\b. Let the line K be finite. Then there 
exists a 1 — 1 mapping of the set of simple pairs of the line K onto the set of 
simple pairs of the line L such that the corresponding simple pairs are projective. 

Proof . If the line L is finite, then the assertion follows from Lemma 12. 
If the line L is infinite, then the line Ln is infinite by Lemma 13 and hence 
the connected line L which contains Ln is infinite too. Since the lattice S 
is upper semimodular, Kn is connected and there holds 

L'0>Kn' and L"&Kn. 

Hence the chains L', L" are finite, which contradicts the fact tha t L is infinite. 
Hence the assumption tha t the L is infinite is false. 

R e m a r k Clearly if a lattice is lower semimodular (a dual definition to De­
finition 7) and jy-modular, then Theorem 10 is true. 

Example 

Consider the lattice AGn(D) of affine subspaces of the ^-dimensional vector 
space Dn over a field D which has not the characteristic 2. Affine subspaces 
are defined as subsets of Dn containing with every two a, b all points of the 
form a -f X(b — a), Ae D. I t is well known that this lattice is lower semi-
modular and it is not modular. We shall show that this lattice is ^-modular too . 

The elements of the lattice AGn(D) have a form a + A where A is a vector 
subspace of the Dn and a is an element of Dn. 

We first prove 
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1. a) The meet of two elements a + A, b + B of the lattice AGn(D) is either 
0 or z + (A n B), where z e (a + A) n (b + B). 

b) The join of two elements a + A,b + B of AGn(D) is a + (b — a ® A ® B). 
where b — a is the vector subspace of Dn generated by b — a and A ® B is the 
lattice-join of A and B in the lattice of all vector subspaces of Dn. 

Proof , a) If (a + A) n (b + B) =f= 0, then there exists an element z e a -1-
+ A, zeb + B. Hence a + A = z + A, b + B = z + B. This implies 

(a + A) n (b + B) = (z + A) n (z + B) => z + (A n B). 

If x e z + A and x e z + B, then x = z + a, x = z + b for some a e A, 
b e B. Hence a = b and ae A n B, which follows x = z + a e z + (A n B). 

b) Clearly, (a + A) v (b + B) c a + (b — a ® A ® B). Let xea + 
+ (b — a ® A ® B). Then a = a + oc(b — a) + ax + b\,a\G A, b\ e B. oc eD. 
If a = 1 then x = a\ + b\ + b. We can write 

x = (a -4- a\) + l(y — (a + ai)), 

where 

y = (a — a\) + 2(6 + b\ — (a — a±)). 

The point y belongs to (a — A) V (b + B) because it belongs to the line which 
is defined by points a — a\ e a + A and b + b\ e b + B. Since the point x 
belongs to the line which is defined by points lying in the set (a + A) v (6 + B), 
it belongs to the (a + A) v (b + B). If a = 0, then x = a + a\ + b\. We can 
prove tha t x e ( a .+ A) V (b + B), analogously as in the foregoing case. 
If x = a + oc(b — a) + a\ + b\ and a =j= 1, a =j= 0, then x = a + a(b — a) + 
+ (1 — oc) . ax/(I — a) + abi/a, where a2 = «i/(l — oc) e A and b2 = bi/a e B. 
Hence x = a + oc(b — a) + (1 — a)a2 + ab2 = a + a2 + oc(b + b2 — (a + a2)). 
Therefore x belongs to the line which is defined by a + a2 e a + A and b + 
+ b2eb + B, consequently, x e (a + A) v (b + B). 

2. If a + A c b + B, then A c B and if a + A = b + B, then A = B. 
Proof . From a + A c b + B it follows that a = b + b\,b\e B, hence 

a — b e B. If x e A, then a + x = b + bi, bi e B. Therefore x = —(a — b) + 
+ bi, hence x e B. 

The second assertion follows from the first. 

3. If the elements a\ ,b\,a,be AGn(D) satisfy 

(a~i U b) n a = a~i, (a U bi) n b = bi, 

then (ax U bi) = (ax U b) n (bi U a). 
Proof . Let ai = ai + Ai, bx = bi + Bx, a = a + A, b = b + B. Since 

196 



ax + Ai c a + A, bx + Bx c b + B, we get ax e a + A, bx e 6 + B and we 

have 

(1) a +A = ax +A, b + B = bx + B. 

From the assumption and (1) it follows that 

ax + AX= ((ai + Ax) V (6X + B)) C\ (a + A) = 

(ax + (6i - ax ® Ax® B)) n (a + A) = z + ((bx - ax ® Ax ® B) n A), 

where 

z e (ai + (6X — ai © .4i © B)) n (a + A). 

Herce by 2. we get 

(2) A, = (6i - ai © Ax ® B) n A 

and analogously 

(3) Bx = (ST^TT ©A ® Bx) n B. 

Since the lattice of all vector subspaces of Dn is modular, it follows t h a t 

AX@BX = ({bx~=~ax 0 Ai ® B) n A) ® ((h - «i © 4̂ © -Bi) n 5 ) = 

= (6i - ax ® AT ® B) r\(A ® ((bx — ax ® A ® Bx) r\ B)) = 

= (b1^
='ax ®Ax®B)n ( 6 7 ^ 1 © A © Bx) U (.4 © B) 

and 

6i — ai © ^4i © -Bi = 

= (6i - ai © Ax ® B) n (6i - ax ® A ® Bx) a (bx - a x © -4 © 5 ) . 

Since a x + Ai c a + i . ^ + B ^ J + 5 , by 2. ax a A, Bx ^ B. 

Hence 6i — ax ®Ax®Bx = (bx - «i © Ai © # ) n (6i — ax ® A ® Bx). 

From this, (1) and 1. it follows that 

(ax U b) O (6i U a) = 

= («i + (bx — ax ®Ax® B)) n (ax + (Ъx - ax ® A ® Bx)) = 

= ax + ((bV^ãx © Ax © -B) П (6i - ai © A ® Bx) = 

= ax + (6i - ai © Лi © Bi) = (ai + Ax) V (6i + Bx) = «i U 6 L 
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